Курс лекций по математике

Министерство образования и науки Российской Федерации
ГОУ ВПО «Хакасский государственный университет им. Н. Ф. Катанова
Институт непрерывного педагогического образования








050708 (031200) Педагогика и методика начального образования







ДПП. Ф. 06. Математика


Электронный учебно-методический комплекс по дисциплине


Конспект лекций
(на правах рукописи)






















Абакан
1. Конспект лекция разработан в соответствии с рабочей программой дисциплины ДПП. Ф. 06. Математика по специальности 050708 (031200) Педагогика и методика начального образования

2. Разработчик: М. И. Якутова , кандидат педагогических наук, доцент

3. ПРИНЯТ на заседании кафедры педагогики и методики начального образования
24.06.2010, протокол № 10

Зав.кафедрой педагогики и методики начального образования _______________Т. А. Федорова




































Утвержден Учебно-методическим советом и рекомендован к печати Редакционно-издательским советом государственного образовательного учреждения высшего профессионального образования «Хакасский государственный университет им. Н. Ф. Катанова»


Рецензенты: Доможакова О.В., кандидат педагогических наук




Математика: учебно-методический комплекс по дисциплине: конспект лекций / сост. М. И. Якутова. – Абакан, 2010.


Конспект лекций представляет собой составную часть учебно-методического комплекса по дисциплине «Математика». Данное пособие создано с учетом требований государственных образовательных стандартов высшего профессионального образования и среднего специального образования.
Конспект лекций предназначен для студентов, обучающихся по специальности 050708 – педагогика и методика начального образования, 050709 – преподавание в начальных классах, а также практикующим учителям начальных классов.
Конспект содержит 25 лекций.















© Хакасский государственный
университет им. Н. Ф. Катанова, 2010
© Якутова М. И., составление, 2010

Оглавление
Введение...6
Лекция 1. Понятие множества 10
Лекция 2. Операции с множествами12
Лекция 3. Операции с множествами14
Лекция 4. Число элементов множеств 19
Лекция 5. Математические понятия.21
Лекция 6. Высказывания и высказывательные формы 25
Лекция 7. Высказывания с кванторами ..30
Лекция 8. Теоремы 33
Лекция 9. Математическое доказательство 37
Лекция 10. Способы математического доказательства..41
Лекция 11. Текстовая задача и процесс ее решения.43
Лекция 12. Текстовая задача и процесс ее решения.56
Лекция 13. Комбинаторные задачи и их решение.70
Лекция 14. Алгоритмы и их свойства.74
Лекция 15. Понятие вероятности83
Лекция 16. Соответствия.91
Лекция17. Взаимно-однозначные соответствия96
Лекция 18. Числовые функции..100
Лекция 19. Прямая и обратная пропорциональность..105
Лекция 20. Отношения на множестве...112
Лекция 21. Свойства отношений115
Лекция 22. Отношения эквивалентности и порядка на множестве121
Лекция 23. Алгебраические операции на множестве..126
Лекция 24. Выражения135
Лекция 25. Равенства и неравенства140
Лекция 26. Уравнения с одной переменной..142
Лекция 27. Неравенства с одной переменной147
Лекция 28. Уравнения с двумя переменными152
Лекция 29. Системы и совокупности неравенств с одной переменной.154
Лекция 30. Неравенства с двумя переменными.156
Лекция 31. Аксиоматический метод построения теории в математике 157
Лекция 32. Аксиоматическое построение множества целых неотрицательных чисел...160
Лекция 33. Вычитание и деление целых неотрицательных чисел .168
Лекция 34. Свойства множества целых неотрицательных чисел.174
Лекция 35. Метод математической индукции176
Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел..178
Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел..181
Лекция 37. Произведение и частное целых неотрицательных чисел 186
Лекция 38. Натуральное число как результат измерения величины..191
Лекция 39. Натуральное число как результат измерения величины..197
Лекция 40. Системы счисления. Десятичная система счисления204
Лекция 41. Алгоритмы арифметических действий над целыми неотрицательными числами в десятичной системе счисления ..211
Лекция 42. Системы счисления, отличные от десятичной..221
Лекция 43. Системы счисления, отличные от десятичной..224
Лекция 44. Делимость целых неотрицательных чисел227
Лекция 45. Наименьшее общее кратное и наибольший общий делитель чисел ..232
Лекция 46. Простые и составные числа ..235
Лекция 47. Алгоритмы нахождения НОД и НОК.238
Лекция 48. О расширении множества целых неотрицательных чисел. Целые числа240
Лекция 49. Положительные рациональные числа.252
Лекция 50. Десятичные дроби 260
Лекция 51. Действительные числа.264
Лекция 52. Система геометрических понятий, изучаемых в школе268
Лекция 53. Свойства геометрических фигур на плоскости..273
Лекция 54. Свойства геометрических фигур на плоскости..275
Лекция 55. Построение геометрических фигур 280
Лекция 56. Изображение пространственных фигур..286
Лекция 57. Геометрические величины292
Лекция 58. Геометрические величины295
Лекция 59. Геометрические величины: масса, время301
Лекция 60. Геометрические величины: связь величин..308
Заключение.311
Список литературы 312
Введение

Данный курс предназначен студентам факультетов и отделений начальных классов педагогических вузов и колледжей, а также учителям начальных классов. Актуальность и социальная значимость курса обосновываются необходимостью решения задач обучения, воспитания и развития младших школьников, что предполагает повышение уровня фундаментальной математической подготовки учителя начальных классов, основой которой являются прочные знания научных основ начального курса математики. Данный курс ставит задачу усиления прикладной и профессиональной направленности подготовки учителя. Современный учитель – это учитель-исследователь, постоянно осваивающий новые технологии, новые подходы к введению тех или иных математических понятий. Современный учитель должен уметь грамотно и четко излагать мысли, аргументировать выводы, применять методы математической статистики в педагогических исследованиях. Развитие математической культуры учителя предполагает знание им места и роли математики в современном образовании.
В предлагаемом курсе отдельные темы изложены с учетом принципа «строгости», а отдельные темы на уровне разъяснения (в соответствии с интуитивным пониманием). Это объясняется невозможностью изложить строго логически значительное количество понятий, которые включаются в курс математики на педагогическом факультете вуза.
Важно сформировать у студентов научное мировоззрение, показать взаимосвязь наук, рассмотреть происхождение математических понятий из потребностей практики, наполнить абстрактные понятия конкретным содержанием.
Прикладная направленность курса математики заключается в решении следующих задач:
- привить студентам навыки применения математического аппарата к решению задач, возникающих при изучении дисциплин профессиональной подготовки (информатики, экономики, изобразительного искусства, музыкального образования, технологии и др.);
- помочь развитию способностей студентов, формированию умений и навыков общего характера (вычислительных, измерительных, графических), овладению общенаучными методами (моделирование, наблюдение, эксперимент, сбор, обработка и классификация данных);
- выработать у студентов навыки самостоятельного приобретения знаний, умение работать со справочным материалом;
- активизировать использование студентами приемов логического мышления (анализ, синтез, аналогию, обобщение и др.);
- развить творческое мышление студентов, которое является одним из обязательных качеств гармонически развитой личности;
- сформировать научное мировоззрение студентов.
Курс лекций сопровождается иллюстрирующим материалом, решением математических задач. Это потребовало сделать изложение некоторых теоретических положений довольно кратким, без доказательств, строгих, но длинных. Например, изучение некоторых геометрических понятий представлено без доказательства многих теорем, доказанных в средней школе. Знание геометрического материала обобщается, иллюстрируется. Вместе с тем те вопросы, которые не изучались в средней школе, изложены тщательно, например, теория множеств, математическая логика.
Такие традиционные темы как «Рациональные вычисления», равенства и неравенства, функции, знакомы студентам, поэтому они лишь расширены.
Одна из важнейших задач начального курса математики – формирование у детей умения решать текстовые задачи. Этот раздел включен в курс лекций и его изучение направлено на овладение умениями решать нестандартные текстовые задачи. Тема «Нестандартные текстовые задачи» призвана усилить профессиональную подготовку будущих учителей.
Учитель должен получить знание о способах изучения математических понятий в начальной школе, поэтому в данном курсе рассматриваются вопросы, непосредственно примыкающие к курсу математики начальной школы, на более высокой логической основе.
В главе «Элементы логики» описаны особенности математических понятий, предложений и доказательств, обращается внимание на изучение разных по содержанию понятий и предложений, но имеющих одинаковую логическую структуру.
В лекциях представлены современные подходы к введению множества натуральных чисел и нуля: аксиоматический, теоретико-множественный, натуральное число как мера величины, современные подходы.
В главе «Элементы алгебры» раскрыты понятия соответствия, отношения, алгебраической операции, математического выражения, равенства и неравенства, уравнения. В главе «Геометрические фигуры» рассматриваются свойства фигур, их преобразование, этапы решения задач на построение, содержатся определения и свойства геометрических величин. Изучение величин продиктовано практическими потребностями человека, однако они рассматриваются в соответствии с математическими законами, что способствует увидеть их сходство (общие свойства) и различие (различные свойства).
Главной особенностью данного курса является его профессиональная направленность. Эта направленность заложена в отборе материала, в уровне его изложения.
Материал разбит на главы, главы – на параграфы, параграфы – на пункты. Каждая лекция строится так: рассматривается значимость материала в жизни и дальнейшем обучении, излагаются теоретические положения, формулируются выводы.
При подготовке к занятиям необходимо опираться на материалы учебников начального курса математики М. И. Моро, М. А. Бантовой, А. А. Аргинской, В. Н. Рудницкой и др. Курс написан с учетом реализации принципа преемственности с курсом математики, изучаемым в средней школе и курсом методики преподавания математики, изучаемым в вузе. Его содержание соответствует требованиям Государственного образовательного стандарта высшего профессионального образования по специальности 050708 (031200) – педагогика и методика начального образования.
Цель изучения курса: обеспечить студентам факультетов начальных классов необходимую подготовку для успешного обучения и воспитания младших школьников.
Задачами курса математики в вузе являются:
раскрыть студентам мировоззренческое значение математики, углубить их представление о роли и месте математики в изучении окружающего мира;
дать студентам необходимые математические знания, на основе которых строится начальный курс математики, сформировать умения для глубокого овладения его содержанием;
способствовать развитию мышления;
развивать умения самостоятельной работы с учебными пособиями и другой математической литературой.
Изучение литературы по теме следует начинать с общих работ, чтобы иметь представление об основных вопросах избранной темы. Статью или книгу нужно читать с карандашом в руках, делая выписки. Работу с литературой желательно вести по этапам:
Общее ознакомление с произведением в целом;
Беглый просмотр всего содержания;
Чтение в порядке последовательности всего материала;
Выборочное чтение какой-либо части произведения;
Выписка представляющих интерес материалов; критическая оценка записанного, его редактирование и «чистовая запись» как фрагмент будущей работы.
При изучении и конспектировании литературы следует обращать внимание на основные теоретические положения и методические подходы к их реализации. Используется не вся информация, а только та, которая имеет отношение к изучаемой теме. Положения, взятые из литературных источников лучше не цитировать, а излагать своими словами, сохраняя при этом смысловую идею. Обязательно надо указывать фамилию, инициалы автора, ссылку на произведение (в скобках). Для этого, необходимо правильно оформлять выписки из текста, чтобы в дальнейшем ими легко было пользоваться. Избегайте простого изложения и констатации фактов. Стремитесь определить и выразить свою точку зрения на высказывания авторов.
Глава I. ЭЛЕМЕНТЫ ЛОГИКИ

§ 1. Множества и операции над ними

Изучая математику, необходимо усвоить определенную систему понятий, предложений и доказательств.
Изучение этого материала связано с овладением теоретико-множественным языком.
В конце XIX века возникла новая область математики – теория множеств, одним из создателей которой был немецкий математик Георг Кантор. Знания в этой области нужны учителю начальных классов для понимания содержания начального курса математики и для освоения таких важных понятий, как взаимно однозначное соответствие, отношение, число, геометрическая фигура.

Лекция 1. Понятие множества
План:
1. Понятие множества. Элемент множества. Пустое множество. Примеры конечных и бесконечных множеств.
2. Способы задания множеств. Равные множества.
3. Отношения между множествами. Подмножество. Универсальное множество. Круги Эйлера. Числовые множества.

1. Понятие множества и элемента множества
В математике часто рассматриваются те или иные группы объектов как единое целое: натуральные числа, треугольники, квадраты и др. Все эти различные совокупности называют множествами.
Понятие множества является одним из основных понятий математики и поэтому не определяется через другие. Его можно пояснить на примерах: множество гласных букв русского языка, множество натуральных чисел, множество треугольников.
Математический смысл слова «множество» отличается от того, как оно используется в обыденной речи, где его связывают с большим числом предметов. В математике этого не требуется. Здесь можно рассматривать множество, состоящее из одного объекта, и множество, не содержащее ни одного объекта.
Множества принято обозначать прописными буквами латинского алфавита: A, B, C, D, , Z. Множество, не содержащее ни одного объекта, называется пустым и обозначается символом
·.
Объекты, из которых образовано множество, называются элементами.
Элементы множества принято обозначать строчными буквами латинского алфавита: а, b, c,, z.
Предложение «Объект а принадлежит множеству А» можно записать, используя символы: а
· А». Предложение «Объект а не принадлежит множеству А» можно записать так: а
· А.
Например, если А – множество однозначных чисел, то утверждение «Число 3 – однозначное» можно записать в таком виде: 3
· А. Запись 12
· А означает, что «Число 12 не является однозначным», или «Число 12 не принадлежит множеству А», или «Множество А не содержит числа 12».
В геометрии точки обозначают заглавными буквами. «Точка Р лежит на отрезке АВ» можно записать: Р
· АВ или Р
· Х.
Множества бывают конечные и бесконечные. Конечные: множество дней недели, множество месяцев в году. Бесконечные: множество точек на прямой, множество натуральных чисел.
Для ряда числовых множеств в математике приняты стандартные обозначения:
N – множество натуральных чисел;
Z – множество целых чисел;
Q – множество рациональных чисел;
R – множество действительных чисел.

2. Способы задания множеств

Понятие множества мы используем без определения. Но как узнать, является та или иная совокупность множеством или не является?
Считают, что множество определяется своими элементами, т.е. множество задано, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит.
1. Множество можно задать, перечислив все его элементы. Запись: А = {3, 4, 5, 6.
2. Если множество бесконечно, то его элементы перечислить нельзя. В таких случаях указывают характеристическое свойство его элементов.
Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит.
Например: А = {х
· х – двузначные числа}
Случается, что одно и то же множество можно задать, указав различные характеристические свойства его элементов. Например, множество квадратов можно задать как множество прямоугольников с равными соседними сторонами и как множество ромбов с прямыми углами.
Очень важно умение переходить от одного способа задания множества к другому.

3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.

В математике изучают не только те или иные множества, но и отношения, взаимосвязи между ними. Например, нам известно, что все натуральные числа являются целыми. Понятие множества позволяет обобщить конкретные случаи взаимосвязи между различными совокупностями, позволяет посмотреть на них с единой точки зрения.
Если множества А и В имеют общие элементы, т.е. элементы, принадлежащие одновременно А и В, то говорят, что эти множества пересекаются.
Например, если А ={a, b, c, d, e}, В = {b, d, k, m}, С = {х, у, z}, то можно утверждать, что множества А и В пересекаются, а множества А и С, В и С не пересекаются.
Рассмотрим множества А ={a, b, c, d, e} и В = {с, d, е}. Они пересекаются, и, кроме того, каждый элемент множества В является элементом множества А. В этом случае говорят, что множество В включается в множество А или что множество В является подмножеством А и пишут: В
·А.
Определение: Множество В является подмножеством А, если каждый элемент множества В является также элементом множества А. Пустое множество считают подмножеством любого множества. Любое множество является подмножеством самого себя.
Верно:
·
·А и А
·А. В этом случае множества
· и А называют несобственными.
Образуем, например, все подмножества множества А = {2, 3, 4}. Среди них будут одноэлементные подмножества: {2}, {3},{4}, двухэлементные {2, 3}, {2, 4}, {3, 4}, а также само множество А и пустое множество
·. Таким образом, данной трехэлементное множество А имеет 8 подмножеств.
Доказано, что если множество содержит n элементов, то у него 2 различных подмножеств.
Если рассматриваются подмножества одного и того же множества U, то в этом случае U называют универсальным. Так множество четырехугольников универсально для множества ромбов, квадратов, трапеций, прямоугольников, параллелограммов.
Определение. Множества А и В называются равными, если А
·В и В
·А.
Из определения следует, что равные множества состоят из одних и тех же элементов и что порядок записи элементов множества не существен.
Отношения между множествами наглядно представляют при помощи особых чертежей, называемых кругами Эйлера. Возможны следующие отношения между двумя множествами:

А В А В А=В А В
13 SHAPE \* MERGEFORMAT 1415
а) б) в) г) д)
Пересекаются - а); В
·А - б), А
·В - в), А = В - г), А и В не пересекаются
Понятие подмножества является обобщением понятия части и целого, которые осваивают младшие школьники, выполняя разные задания. Например: «Назови среди данных чисел четные», «Среди данных четырехугольников найди прямоугольники».

Лекция 2. Операции с множествами
План:
1. Пересечение множеств
2. Объединение множеств
3. Свойства пересечения и объединения множеств

4. Пересечение множеств
Определение. Пересечением множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А и множеству В.





Пересечение обозначается знаком
·: А
·В = {х/х
·А и х
·В}. Например, А = {2, 4, 6, 8}, В = {5, 6, 7, 8, 9}, А
·В = {6, 8}.
Если изобразить множества А и В при помощи кругов Эйлера, то пересечением данных множеств является их общая часть.
А В А В А=В А В
13 SHAPE \* MERGEFORMAT 1415
а) б) в) г) д)
Множества А и В пересекаются – а), б), в, г; множества А и В не пересекаются – д).
В том случае, когда множества А и В не имеют общих элементов, говорят, что их пересечение пусто и пишут: А
·В =
·.
Выясним, как находить пересечение множеств в конкретных случаях. Если множества заданы перечислением элементов, то достаточно перечислить их общие элементы. Если множества заданы характеристическими свойствами, то характеристическое свойство пересечения составляется из характеристических свойств множеств и союза «и».
Например, А – четные натуральные числа, В – двузначные числа. А
·В – четные и двузначные числа.
Рассмотрим случай, когда находят пересечение множества А и его подмножества В. Легко видеть, что тогда А
· В = В и, следовательно, характеристическое свойство элементов множества А
· В будет таким, как и свойство элементов множества В.
Умение вычленять множества в задачах и операции, которые над ними выполняются, - важный этап в их решении. Например, чтобы правильно выбрать действие, с помощью которого решается задача: «М – множество однозначных чисел, Р – множество нечетных натуральных чисел. Какие числа будут общими?», надо понять, что в задаче требуется найти число элементов в пересечении этих множеств.

5. Объединение множеств
Пусть даны множества А = {2, 4, 6, 8}, В = {5, 6, 7, 8, 9}. Образуем множество D,
в которое включим элементы, принадлежащие хотя бы одному из данных множеств, т.е. множеству А или множеству В: D = {2, 4, 6, 8, 5, 7, 9}. Полученное множество называют объединением множеств А и В.
Определение: Объединением множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А или множеству В.
Объединение обозначают А
· В. По определению А
· В = {х
· х
·А или х
·В}.
Если изобразить множества А и В при помощи кругов Эйлера, то объединение данных множеств изобразится заштрихованной областью.






Выясним, как находить объединение множеств в конкретных случаях.
Если элементы множеств А и В перечислены, то, чтобы найти А
· В, достаточно перечислить элементы, которые принадлежат множеству А или множеству В.
Если множества заданы характеристическими свойствами, то характеристическое свойство множества А
· В составляется с помощью союза «или» из характеристических свойств множеств А и В. Например: множество А – четных натуральных чисел, множество В – двузначных чисел. Тогда множество А
· В – множество чисел, характеристическое свойство которых – «быть четным натуральным или двузначным числом».
Рассмотрим случай, когда находят объединение множества А и его подмножества В. Легко видеть, что тогда А
· В = А и, следовательно, характеристическое свойство элементов множества А
· В будет таким, как и свойство элементов множества А.
Умение вычленять множества в текстовых задачах и операции, которые над ними выполняются, - важный этап в их решении. Например, чтобы правильно выбрать действие, с помощью которого решается задача: «В букете 3 ромашки и 4 колокольчика. Сколько всего цветков в букете?», надо понять, что в задаче рассматриваются два множества – множество ромашек (3 элемента) и множество колокольчиков (4 элемента); эти множества объединены в одно и требуется найти число элементов в этом объединении.



6. Свойства пересечения и объединения множеств
Из школьного курса математики известно, что операция, при помощи которой находят сумму чисел, называется сложением. Над числами выполняются и другие операции, например, умножение, вычитание, деление; при этом результаты называют произведением, разностью, частным соответственно. Для операций и результатов выполнения этих операций существуют разные термины. Для рассмотренных операций над множествами и сама операция, и ее результат носят одно название.
Из школьного курса математики нам известно, что операции над числами обладают рядом свойств. Например, сложение действительных чисел обладает переместительным и сочетательным свойствами: для любых действительных чисел а и b справедливо равенство а + b = b + а, а для любых чисел а, b и с справедливо равенство (а + b) + с = а + (b + с).
Перечислим другие свойства:
а b = b а; (а b) с = а (b с); (а + b) с = а с + b с.
Выясним, обладают ли «похожими» свойствами пересечение и объединение множеств.
Доказано, что операции над множествами обладают следующими свойствами:
А
· В = В
· А и А
· В = В
· А – коммутативное свойство для операций пересечения и объединения.

· В)
· С = А
· (В
· С) и (А
· В)
· С = А
· (В
· С) ассоциативное свойство для операций пересечения и объединения.

· В)
· С = (А
· С)
· (В
· С)– пересечение дистрибутивно относительно объединения множеств и

· В)
· С = (А
· С)
· (В
· С) – объединение дистрибутивно относительно пересечения множеств.
Заметим, что если в выражении есть знаки пересечения и объединения множеств, и нет скобок, то сначала выполняют пересечение, так как считают, что пересечение более «сильная» операция, чем объединение.
Убедиться в справедливости сформулированных свойств можно путем доказательства, а также проиллюстрировать с помощью кругов Эйлера.
Заметим, что 1-3 свойства имеют аналоги во множестве действительных чисел, над которыми производят действия сложения и умножения. А вот аналога четвертому свойству нет. Действительно, равенство а b + с = (а + b) ( b + с) – неверное.
Понятие пересечения и объединения множеств можно обобщить на любое конечное число множеств:
А
·А
·
·Аn = {х/х
· А и х
· А и и х
·Аn},
А
·А
·
·Аn = {х/х
· А или х
· А или или х
·Аn}.
Аналогично можно поступить и по отношению к рассмотренным свойствам данных операций.

Лекция 3. Операции с множествами
План:
1. Вычитание множеств. Дополнение множества до универсального
2. Понятие разбиения множества на классы с помощью одного, двух, трех свойств.
3. Декартово произведение множеств

7. Вычитание множеств. Дополнение множества до универсального
Если заданы два множества, то можно не только найти их пересечение и объединение, но и вычесть из одного множества другое. Результат вычитания называют разностью и определяют следующим образом.
Определение. Разностью множеств А и В называют множество, содержащее все элементы, которые принадлежат множеству А и не принадлежат множеству В.
Разность множеств А и В обозначают А \ В. По определению: А \ В ={х/х
·А и х
·В}.
В школьном курсе математики чаще всего приходится выполнять вычитание множеств в случае, когда одно из них является подмножеством другого, при этом разность множеств А \ В называют дополнением множества В до множества А, и обозначают символом ВґА, а наглядно изображают так:







Определение: Пусть В
· А. Дополнением множества В до множества А называется множество, содержащее все элементы множества А, которые не принадлежат множеству В.
По определению: ВґА ={х/х
·А и х
·В}.
Выясним, как находить дополнение подмножества на конкретных примерах.
Если элементы множеств А и В перечислены и В
· А, достаточно перечислить элементы, принадлежащие множеству А и не принадлежащие множеству В. Например, А = {1, 2, 3, 4, 5}, В = {2, 4}, то ВґА = {1, 3, 5}.
В том случае, когда указаны характеристические свойства элементов множеств А и В и известно, что В
· А, то множество ВґА задают также с помощью характеристического свойства, общий вид которого «х
·А и х
·В». Так, если А – множество четных чисел, а В – множество кратных 4 чисел, то ВґА - это множество, содержащее такие четные числа, которые не делятся на 4. Например, 22
· ВґА.
Вычитание – это третья операция над множествами. Условились считать, что пересечение – более «сильная» операция, чем вычитание. Что касается вычитания и объединения, то их считают равноправными.
Вычитание множеств обладает рядом свойств. В частности можно доказать, что для любых множеств А, В и С справедливы следующие равенства:
1) (А \ В) \ С = (А \ С) \ В);
2) (А
· В) \ С = (А \ С)
· (В \ С);
(А \ В)
· С = (А
· С) \ (В
· С);
А \ (В
· С) = (А \ В)
· (А \ С);
А \ (В
· С) = (А \ В)
· (А \ С).

8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств

Понятия множества и операций над множествами позволяют уточнить наше представление о классификации – действии распределения объектов по классам.
Классификацию мы выполняем достаточно часто. Так, натуральные числа представляем как два класса – четные и нечетные. Углы на плоскости разбиваем на три класса: прямые, острые и тупые.
Любая классификация связана с разбиением некоторого множества объектов на подмножества. При этом считают, что множество Х разбито на классы Х, Х, , Хn,, если:
подмножества Х, Х, , Хn, попарно не пересекаются;
объединение подмножеств Х, Х, , Хn, совпадает с множеством Х.
Если не выполнено хотя бы одно из условий, классификацию считают неправильной. Например, если из множества Х треугольников выделить подмножества равнобедренных, равносторонних и разносторонних треугольников, то разбиения мы не получим, поскольку подмножества равнобедренных и равносторонних треугольников пересекаются (все равносторонние треугольники являются равнобедренными). В данном случае не выполнено первое условие разбиения множества на классы.
Так как разбиение множества на классы связано с выделением его подмножеств, то классификацию можно выполнять при помощи свойств элементов множеств.
Рассмотрим, например, множество натуральных чисел. Его элементы обладают различными свойствами. Положим,. что нас интересуют числа, обладающие свойством «быть кратным 3». Это свойство позволяет выделить из множества натуральных чисел подмножество, состоящее из чисел, кратных 3. Тогда про остальные натуральные числа можно сказать, что они не кратны 3, т.е. получаем еще одно подмножество множества натуральных чисел. Так как выделенные подмножества не пересекаются, а их объединение совпадает с множеством натуральных чисел, то имеем разбиение этого множества на два класса.
N N
13 SHAPE \* MERGEFORMAT 1415

Вообще, если на множестве Х задано одно свойство, то это множество разбивается на два класса. Первый – это класс объектов, обладающий этим свойством, а второй – дополнение первого класса до множества Х. Во втором классе содержатся такие объекты множества Х, которые заданным свойством не обладают. Такую классификацию называют дихотомической.
Рассмотрим ситуацию, когда для элементов множества заданы два свойства. Например, «быть кратным 3» и «быть кратным 5». При помощи этих свойств из множества натуральных чисел можно выделить два подмножества: А – подмножество чисел, кратных 3, и В – подмножество чисел, кратных 5. Эти множества пересекаются, но ни одно из них не является подмножеством другого. Проанализируем получившийся рисунок (справа). Конечно, разбиения множества натуральных чисел на подмножества А и В не произошло. Но круг, изображающий множество N, можно рассматривать как состоящий из четырех непересекающихся областей – на рисунке они пронумерованы. Каждая область изображает некоторое подмножество множества N. Подмножество I состоит из чисел, кратных 3 и 5; подмножество II – из чисел, кратных 3 и не кратных 5; подмножество III – из чисел, кратных 5 и не кратных 3; подмножество IY – из чисел, не кратных 3 и не кратных 5. Объединение этих четырех подмножеств есть множество N.
Таким образом, выделение двух свойств привело к разбиению множества N натуральных чисел на четыре класса.
Не следует думать, что задание двух свойств элементов множества всегда приводит к разбиению этого множества на четыре класса. Например, при помощи двух таких свойств «быть кратным 3» и «быть кратным 6» множество натуральных чисел разбивается на три класса: I – класс чисел, кратных 6; II – класс чисел, кратных 3; но не кратных 6; III - класс чисел, не кратных 3.

13 SHAPE \* MERGEFORMAT 1415

9. Декартово произведение множеств
Используя две цифры, например, 3 и 5, можно записать четыре двузначных числа: 35, 53, 33 и 55. Несмотря на то, что числа 35 и 53 записаны с помощью одних и тех же цифр, эти числа различные. В том случае, когда важен порядок следования элементов, в математике говорят об упорядоченных наборах элементов. В рассмотренном примере мы имели дело с упорядоченными парами.
Упорядоченную пару, образованную из элементов а и b, принято записывать, используя круглые скобки: (а; b). Элемент а называют первой координатой (компонентой) пары, а элемент b – второй координатой (компонентой) пары.
Пары (а; b) и (с; d) равны в том и только в том случае, когда а = с и b = d.
В упорядоченной паре (а; b) может быть, что а = b. Так, запись чисел 33 и 55 можно рассматривать как упорядоченные пары (3; 3) и (5; 5).
Упорядоченные пары можно образовывать как из элементов одного множества, так и двух множеств. Пусть, например, А = {1, 2, 3}, В = {3, 5}. Образуем упорядоченные пары так, чтобы первая компонента принадлежала множеству А, а вторая компонента – множеству В. Если мы перечислим все такие пары, то получим множества:
{(1; 3), (1; 5) (2; 3), (2; 5), (3; 3), (3; 5)}.
Видим, что, имея два множества А.и В, мы получили новое множество, элементами которого являются упорядоченные пары чисел. Это множество называют декартовым произведением множеств А и В.
Определение. Декартовым произведением множеств А и В называется множество всех пар, первая компонента которых принадлежит множеству А, а вторая компонента принадлежит множеству В.
Декартово произведение множеств А и В обозначают А х В. Используя это обозначение, записывают:
А х В = {х; у) / х
· А и у
· В}.
Выясним, какими свойствами обладает операция нахождения декартова произведения. Так как декартовы произведения А х В и В х А состоят из различных элементов, то операция нахождения декартова произведения множеств свойством коммутативности не обладает.
Аналогично рассуждая, можно доказать, что для этой операции не выполняется и свойство ассоциативности. Но она дистрибутивна относительно объединения и вычитания множеств, т.е. для любых множеств А, В и С выполняются равенства:

·В) х С = (А х С)
· (В х С),
(А / В) х С = (А х С) / (В х С).
Доказывать эти свойства мы не будем, но проверить их можно на конкретных примерах.
Выясним теперь, как можно наглядно представить декартово произведение множеств.
Если множества А и В конечны и содержат небольшое количество элементов, то его можно изобразить при помощи графа или таблицы. Например, декартово произведение множеств
А = {1, 2, 3} и В = {3, 5} можно представить так, как показано на рисунке.

А В
13 SHAPE \* MERGEFORMAT 1415

Декартово произведение двух числовых множеств (конечных и бесконечных) можно изобразить на координатной плоскости, так как каждая пара чисел может быть единственным образом изображена точкой на этой плоскости. Например, декартово произведение выше названных множеств на координатной плоскости будет выглядеть так:

13 SHAPE \* MERGEFORMAT 1415
1 2 3
Заметим, что элементы множества А мы изобразили на оси Ох, а элементы множества В – на оси Оу.
Такой способ наглядного изображения декартова произведения множеств удобно использовать в случае, когда хотя бы одно из них бесконечное.
В математике и других науках рассматривают не только упорядоченные пары, но и упорядоченные наборы из трех, четырех и т.д. элементов. Например, запись числа 367 – это упорядоченный набор из трех элементов, а запись слова «математика» - это упорядоченный набор из 10 элементов.
Упорядоченные наборы часто называют кортежами и различают по длине. Длина кортежа – это число элементов, из которых он состоит. Например, (3; 6; 7) – это кортеж длины 3, (м, а, т, е, м, а, т, и, к, а) – это кортеж длины 10.
Рассматривают в математике и декартово произведение трех, четырех и вообще n множеств.
Определение. Декартовым произведением множеств А, А, , Аn называется множество всех кортежей длины n, первая компонента которых принадлежит множеству А, вторая – множеству А, , n-я - множеству Аn.
Декартово произведение множеств А, А, , Аn обозначают так:
А х А х х Аn.

Лекция 4. Число элементов множеств
План:
1. Число элементов в объединении и разности конечных множеств
2. Число элементов в декартовом произведении конечных множеств
3. Основные выводы

10. Число элементов в объединении и разности конечных множеств
Нам известно, как находят объединение двух конечных непересекающихся множеств. Например, если А = {х, у, z}, а В = {k, l, m, p}, то А
·В ={х, у, z, k, l, m, p}. Чтобы ответить на вопрос: «Сколько элементов в полученном множестве?», достаточно пересчитать их.
А как определить число элементов в объединении конечных множеств, не образуя его и не обращаясь к пересчету элементов?
Условимся предложение «Множество А содержит а элементов» записывать в таком виде: n(А) = а. Например, если А = {х, у, z}, то утверждение «Множество А содержит три элемента можно записать так: n(А) = 3.
Можно доказать, что в множестве А содержится а элементов, а в множестве В – b элементов и множества А и В не пересекаются, то в объединении множеств А и В содержится а + b элементов, т.е.
n(А
·В) = n(А) + n(В) = в + b. (1)
Это правило нахождения числа элементов в объединении двух конечных непересекающихся множеств, его можно обобщить на случай t попарно непересекающихся множеств, т.е. если множества А, А, , Аt попарно не пересекаются, то n(А
· А
·
· Аt) = n(А) + n (А) + + n(Аt).
Для выше описанных множеств n(А) = 3, n(В) = 4. Видим, что А
· В =
·. Тогда n(А
·В) = n(А) + n(В) = 3 + 4 = 7.
Нетрудно убедиться в том, что если В
· А, то n (ВґА) = n(А) - n(В), т.е. число элементов дополнения подмножества В до конечного множества А равно разности численностей этих множеств.
Пусть, например, А = {х, у, z, p, t }, а В = { х, p, t}. Получаем n(А) = 5, n(В) = 3. Тогда n (ВґА) = n(А) - n(В) = 5 – 3 = 2.
Формула (1) позволяет находить число элементов в объединении конечных непересекающихся множеств. А если множества А и В имеют общие элементы, то как найти число элементов в их объединении?
Пусть, например, А = {х, у, z}, а В = {х, z, р, s, k}. Тогда А
· В = {х, у, z, р, s, k}, т.е. n(А) = 3, n(В) = 5, а n(А
· В) = 2 и, значит, общие элементы множеств А и В в объединении этих множеств записаны только один раз.
В общем виде правило подсчета элементов в объединении двух конечных множеств может быть представлено в виде формулы:
n(А
·В) = n(А) + n(В) - n(А
· В). (2)
Полученные формулы для подсчета числа элементов в объединении двух и более множеств можно использовать для решения текстовых задач следующего вида.
Задача. Из 40 студентов курса 32 изучают английский язык, 21 – немецкий язык, а 15 – английский и немецкий языки. Сколько студентов курса не изучает ни английский, ни немецкий языки?
Решение. Пусть А – множество студентов курса, изучающих английский язык, В – множество студентов курса, изучающих немецкий язык, С – множество всех студентов курса. По условию задачи: n(А) = 32, n(В) = 21, n(А
· В) = 15, n(С) = 40. Требуется найти число студентов курса, не изучающих ни английского, ни немецкого языка.
1 способ.
1) Найдем число элементов в объединении данных множеств А и В. Для этого воспользуемся формулой (2):
n(А
·В) = n(А) + n(В) - n(А
· В) = 32 + 21 – 15 = 38.
2) Найдем число студентов курса, которые не изучают ни английский, ни немецкий языки: 40 – 38 = 2.
2 способ.
1) Изобразим данные множества при помощи кругов Эйлера и определим число элементов в каждом из непересекающихся подмножеств (рисунок).
13 SHAPE \* MERGEFORMAT 1415
Так как в пересечении множеств А и В содержится 15 элементов, то студентов, изучающих только английский язык, будет 32 – 15 = 17, а студентов, изучающих только немецкий язык, 21 – 15 = 6. Тогда n(А
·В) = 17 + 15 + 6 = 38, и, следовательно, число студентов курса, которые не изучают ни английский, ни немецкий языки, будет 40 – 38 = 2.

11. Число элементов в декартовом произведении конечных множеств
Нам известно, как находят декартово произведение конечных множеств. Например, если А = {х, у, z}, а В = {m, p}, то А х В = {(х, m), (х, р), (у, m), (у, р ), (z, m), (z, р)}. Чтобы ответить на вопрос: «Сколько элементов в полученном множестве?», достаточно пересчитать их. А как определить число элементов в декартовом произведении множеств, не образуя его и не обращаясь к пересчету элементов?
Можно доказать, что если в множестве А содержится а элементов, а в множестве В – b элементов, то в декартовом произведении множеств А и В содержится а b элементов, т.е.
n(А х В) = n(А) n(В) = а b. (3)
Правило распространяется на случай t множеств, т.е.
n(А х А х х Аt) = n(А)n(А) n(Аt).
Например, если в множестве А содержится 3 элемента, в множестве В – 4 элемента, в множестве С – 5 элементов, то в их декартовом произведении будет содержаться 345 = 60 упорядоченных наборов из трех элементов.
Полученные формулы можно использовать при решении задач.
Задача 1. У Маши 3 различных юбки и 4 различных кофты. Сколько различных комплектов, состоящих из юбки и кофты, она может составить?
Решение. Пусть А – множество юбок у Маши, В – множество кофт. Тогда, по условию задачи, n(А) = 3, n(В) = 4. Требуется найти число возможных пар, образованных из элементов множества А и В, т.е. n(А х В). Но согласно правилу n(А х В) = n(А) n(В) = 3 4 = 12. Таким образом, из 3 юбок и 4 кофт Маша может составить 12 различных комплектов.
Задача 2. Сколько двузначных чисел можно записать, используя цифры 5, 4 и 7?
Решение. Запись любого двузначного числа состоит из двух цифр и представляет собой упорядоченную пару. В данном случае эти пары образуются из элементов множества А = {5, 4, 7}. В задаче требуется узнать число таких пар, т.е число элементов в декартовом произведении А х А. Согласно правилу n(А х А) = n(А) n(А) = 3 3 = 9. Значит, двузначных чисел, записанных с помощью цифр 5, 4 и 7, будет 9.
Часто при решении задач, аналогичных рассмотренным выше, требуется не только ответить на вопрос о том, сколько существует возможных вариантов ее решения, но и осуществить перебор этих вариантов. Например, в задаче 2 можно предложить записать все двузначные числа, используя цифры 4, 5 и 7.
Существует единый подход к осуществлению такого перебора – строится схема, называемая деревом возможных вариантов. Она будет иметь вид:
13 SHAPE \* MERGEFORMAT 1415
12. Основные понятия:
Множество, элемент множества, характеристическое свойство элементов множества, подмножество, равные множества, пересечение множеств, объединение множеств, вычитание множеств, дополнение подмножества, декартово произведение множеств.

Лекция 5. Математические понятия
План:
1. Объем и содержание понятия. Отношения между понятиями
2. Определение понятий. Определяемые и неопределяемые понятия.
3. Способы определения понятий.
4. Основные выводы

§ 2. Математические понятия
Понятия, которые изучаются в начальном курсе математики, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнения и др. Третью группу составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.
Чтобы изучать все разнообразие понятий, надо иметь представление о понятии как логической категории и особенностях математических понятий.
В логике понятия рассматривают как форму мысли, отражающую объекты (предметы и явления) в их существенных и общих свойствах. Языковой формой понятия является слово (термин) или группа слов.
Составить понятие об объекте – это значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная заключается в том, что математические объекты, о которых необходимо составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие свойства: цвет, массу, твердость и т.д. От всего этого абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура».
Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».
Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.
К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира, математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс. В математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. Например, общее понятие функции как соответствия является обобщением понятий конкретных функции, т.е. абстракцией от абстракций.

Объем и содержание понятия. Отношения между понятиями
Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.
Среди свойств объекта различают существенные и несущественные. Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Например, для квадрата существенными являются все свойства, названные выше. Несущественно для квадрата АВСD свойство «сторона АВ горизонтальна».
Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду все геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат».
Вообще, объем понятия – это множество всех объектов, обозначаемых одним термином.
Любое понятие имеет не только объем, но и содержание.
Содержание понятия – это множество всех существенных свойств объекта, отраженных в этом понятии.
Рассмотрим, например, понятие «прямоугольник».
Объем понятия – это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.
Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот. Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны» и др.).
Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.
Отношения между понятиями тесно связаны с отношениями между их объемами, т.е. множествами.
Условимся понятия обозначать строчными буквами латинского алфавита: а, b, c, d, , z.
Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В.
Если А
· В (А
· В), то говорят, что понятие а – видовое по отношению к понятию b, а понятие b – родовое по отношению к понятию а.
Например, если а – «прямоугольник», b – «четырехугольник», то их объемы А и В находятся в отношении включения (А
· В и А
· В), поэтому всякий прямоугольник является четырехугольником. Поэтому можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник».
Если А = В, то говорят, что понятия А и В тождественны.
Например, тождественны понятия «равносторонний треугольник» и «равнобедренный треугольник», так как их объемы совпадают.
Рассмотрим подробнее отношение рода и вида между понятиями.
1. Во-первых, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. Например, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник».
2. Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди указанных можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм».
3. В-третьих, видовое понятие обладает всеми свойствами родового понятия. Например, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.
Так как объем понятия – множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера.
Установим, например, отношения между следующими парами понятий а и b, если:
а – «прямоугольник», b – «ромб»;
а – «многоугольник», b – «параллелограмм»;
а – «прямая», b – «отрезок».
Отношения между множествами отображены на рисунке соответственно

А В А А В
13 SHAPE \* MERGEFORMAT 1415

1) 2) 3)

2. Определение понятий. Определяемые и неопределяемые понятия.
Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение.
Определением обычно называют предложение, разъясняющее суть нового термина (или обозначения). Как правило, делают это на основе ранее введенных понятий. Например, прямоугольник можно определить так: «Прямоугольником называется четырехугольник, у которого все углы прямые». В этом определении есть две части – определяемое понятие (прямоугольник) и определяющее понятие (четырехугольник, у которого все углы прямые). Если обозначить через а первое понятие, а через b – второе, то данное определение можно представить в таком виде:
а есть (по определению) b.
Слова «есть (по определению)» обычно заменяют символом , и тогда определение выглядит так:
а b.
опр.
Читают: «а равносильно b по определению». Можно прочитать эту запись еще и так: «а тогда и только тогда, когда b.
Определения, имеющие такую структуру, называются явными. Рассмотрим их подробнее.
Обратимся ко второй части определения «прямоугольник».
В нем можно выделить:
1) понятие «четырехугольник», которое является родовым по отношению к понятию «прямоугольник».
2) свойство «иметь все углы прямые», которое позволяет выделить из всевозможных четырехугольников один вид – прямоугольники; поэтому его называют видовым отличием.
Вообще видовое отличие – это свойства (одно или несколько), которые позволяют выделить определяемые объекты из объема родового понятия.
Итоги нашего анализа можно представить в виде схемы:

13 SHAPE \* MERGEFORMAT 1415
Знак «+» используется как замена частица «и».
Нам известно, что любое понятие имеет объем. Если понятие а определено через род и видовое отличие, то о его объеме – множестве А – можно сказать, что в нем содержатся такие объекты, которые принадлежат множеству С (объему родового понятия с) и обладают свойством Р:
А = {х/ х
· С и Р(х)}.
Так как определение понятия через род и видовое отличие является по существу условным соглашением о введении нового термина для замены какой-либо совокупности известных терминов, то об определении нельзя сказать, верное оно или неверное; его не доказывают и не опровергают. Но, формулируя определения, придерживаются ряда правил. Назовем их.
1. Определение должно быть соразмерным. Это означает, что объемы определяемого и определяющего понятий должны совпадать.
2. В определении (или их системе) не должно быть порочного круга. Это означает, что нельзя определять понятие через само себя.
3. Определение должно быть ясным. Требуется, например, чтобы значения терминов, входящих в определяющее понятие, были известны к моменту введения определения нового понятия.
4. Одно и то же понятие определить через род и видовое отличие, соблюдая сформулированные выше правила, можно по-разному. Так, квадрат можно определить как:
а) прямоугольник, у которого соседние стороны равны;
б) прямоугольник, у которого диагонали взаимно перпендикулярны;
в) ромб, у которого есть прямой угол;
г) параллелограмм, у которого все стороны равны, а углы прямые.
Различные определения одного и того же понятия возможны потому, что из большого числа свойств, входящих в содержание понятия, в определение включаются только некоторые. И тогда из возможных определений выбирают одно, исходят из того, какое из них проще и целесообразнее для дальнейшего построения теории.
Назовем ту последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определение знакомого понятия или построить определение нового:
1. Назвать определяемое понятие (термин).
2. Указать ближайшее родовое понятие (по отношению к определяемому) понятие.
3. Перечислить свойства, выделяющие определяемые объекты из объема родового, т.е сформулировать видовое отличие.
4. Проверить, выполнены ли правила определения понятия (соразмерно ли оно, нет ли порочного круга и т.д.).

3. Способы определения понятий

Рассмотрим виды определений.
1. При изучении математики в начальных классах определения через род и видовое отличие используется не всегда. Но понятий в начальном курсе математики изучается много. Как же их определяют?
2. Неявные определения: контекстуальные и остенсивные.
В контекстуальных определениях содержание нового понятия раскрывается через отрывок текста, через контекст, через анализ конкретной ситуации. Пример – определение уравнения в традиционном курсе математики.
Остенсивные определения – это определения путем показа. Они используются для введения терминов путем демонстрации объектов, которые этими терминами обозначают. Например, таким образом вводятся понятия равенства и неравенства в начальном курсе математики.

4. Основные выводы

Уточнены представления о математических понятиях:
- это понятия об идеальных объектах;
- каждое математическое понятие имеет название (термин), объем и содержание;
- математические понятия могут находиться в отношении рода и вида, если их объемы находятся в отношении включения, но не совпадают;
- математические понятия могут быть тождественными, если их объемы совпадают;
- понятиям дают определения; они могут быть явными и неявными; к неявным относят контекстуальные и остенсивные определения; среди явных чаще используются определения через род и видовое отличие;
- при воспроизведении или конструировании определений через род и видовое отличие необходимо соблюдать ряд правил: определение должно быть соразмерным, в нем не должно быть порочного круга, оно должно быть ясным.

Лекция 6. Высказывания и высказывательные формы (Математические предложения)
План:
1. Высказывания и высказывательные формы (предикат)
2. Конъюнкция и дизъюнкция высказываний
3. Конъюнкция и дизъюнкция высказывательных форм

§ 3. Математические предложения
Изучая реальные процессы, математика описывает их, используя как естественный словесный язык, так и свой символический. Описание строится при помощи предложений. Но чтобы математические знания правильно отражали окружающую нас реальность, эти предложения должны быть истинными.
Каждое математическое предложение характеризуется содержанием и логической формой (структурой), причем содержание неразрывно связано с формой, и нельзя осмыслить первое, не понимая второго.
Высказывания и высказывательные формы
Относительно понятий и отношений между ними можно высказывать различные суждения. Языковой формой суждений являются повествовательные предложения. Например, в начальном курсе математики можно встретить такие предложения:
1) число 12 – четное;
2) 2 + 5 > 8;
3) х + 5 = 8;
4) В числе 15 один десяток и 5 единиц;
5) От перестановки множителей произведение не изменяется;
6) Некоторые числа делятся на 3.
Видим, что предложения, используя в математике, могут быть записаны как на естественном (русском) языке, так и на математическом, с использованием символов. Далее, о предложениях 1, 4, 5 и 6 можно сказать, что они несут верную информацию, а предложение 2 – ложную. Относительно предложения х + 5 = 8 вообще нельзя сказать: истинное оно или ложное. Взгляд на предложение с позиции – истину или ложь оно нам сообщает – привел к понятию высказывания.
Определение. Высказыванием в математике называют предложение, относительно которого имеет смысл вопрос: истинно оно или ложно.
Например, предложения 1, 2, 4, 5 и 6 – высказывания, причем предложения 1, 4, 5 и 6 – истинные, а 2 – ложное.
Высказывания принято обозначать прописными буквами латинского алфавита: А, В, С, , Z. Если высказывание А истинно, то записывают: А – «и», если же высказывание А – ложно, то пишут: А – «л».
«Истина» и «ложь» называются значениями истинности высказывания. Каждое высказывание либо истинно, либо ложно, быть одновременно тем и другим оно не может.
Предложение х + 5 = 8 не является высказыванием, так как о нем нельзя сказать: истинно оно или ложно. Однако при подстановке конкретных значений переменной х оно обращается в высказывание: истинное или ложное. Предложение х + 5 = 8 называется высказывательной формой. Оно порождает множество высказываний одной и той же формы.
По числу переменных, входящих в высказывательную форму, различают одноместные, двухместные и т.д. высказывательные формы и обозначают: А(х), А(х, у) и т.д. Например, предложение «Прямая х параллельна прямой у» - двухместная.
Определение. Одноместной высказывательной формой, заданной на множестве Х, называется предложение с переменной, которое обращается в высказывание при подстановке в него значений переменной из множества Х.
Множество Х – множество, из которого выбираются значения переменной.
Среди всех возможных значений переменной нас в первую очередь интересуют те, которые обращают высказывательную форму в истинное высказывание. Множество таких значений переменных называют множеством истинности высказывательной формы. Например, множеством истинности высказывательной формы х > 5, заданной на множестве действительных чисел, будет промежуток (5;
·). Множество истинности высказывательной формы х + 5 = 8, заданной на множестве целых неотрицательных чисел, состоит из одного числа 3.
Условимся обозначать множество истинности высказывательной формы буквой Т. Тогда, согласно определению, всегда Т
·Х.
Предложения, которые мы рассматривали, были простыми, но можно привести примеры суждений, языковой формой которых будут сложные предложения. Например: «Если треугольник равнобедренный, то углы при основании в нем равны». Естественно возникает вопрос: как определить значение истинности таких высказываний и находить множество истинности таких высказывательных форм?
Чтобы ответить на эти вопросы, необходимо познакомиться с некоторыми логическими понятиями.
В логике считают, что из двух данных предложений можно образовать новые предложения, используя для этого союзы «и», «или», «если , то», «тогда и только тогда, когда», а также частица «не» или словосочетание «неверно, что». Слова «и», «или», «если, то», «тогда и только тогда, когда», а также частица «не» называют логическими связками. Предложения, образованные из других предложений с помощью логических связок, называют составными. Предложения, не являющиеся составными, называют элементарными.
Приведем примеры составных предложений.
1) Число 28 четное и делится на 7.
2) Число х меньше или равно 8.
3) Число 14 не делится на 4.
Эти предложения, являясь с логической точки зрения составными, по своей грамматической структуре – простые.
Как определить значение истинности составного высказывания, например, «число 28 делится на 7 и на 9»? Значение истинности высказываний определяется с помощью определенных правил. Но для этого нужно уметь выявлять логическую структуру высказывания.
Для этого нужно установить:
1) из каких элементарных предложений образовано данное составное предложение;
2) с помощью каких логических связок оно образовано.

Конъюнкция и дизъюнкция высказываний
Определение. Конъюнкцией высказываний А и В называется высказывание А
·В, которое истинно, когда оба высказывания истинны, и ложно, когда хотя бы одно из высказываний ложно.
Обозначают А
·В (читают: «А и В»).
Определение конъюнкции можно записать с помощью таблицы, называемой таблицей истинности.
А
В
А
·В

и
и
и

и
л
л

л
и
л

л
л
л


Используя данное определение, найдем значение истинности высказывания «число 28 делится на 7 и на 9», которое, как было установлено раньше, состоит из двух элементарных высказываний, соединенных союзом «и», т.е. является конъюнкцией.. Так как первое высказывание истинно, а второе ложно, то, согласно определению конъюнкции, высказывание «число 28 делится на 7 и на 9» будет ложным.
Определение. Дизъюнкцией высказываний А и В называется высказывание А
·В, которое истинно, когда истинно хотя бы одно из этих высказываний, и ложно, когда оба высказывания ложны.
Высказывание образовано с помощью союза «или»: А
·В (читают А или В).
Используя данное определение, найдем значение истинности высказывания «число 28 делится на 7 или на 9». Так как это предложение является дизъюнкцией двух высказываний, одно из которых истинно, то, согласно определению дизъюнкции, высказывание «число 28 делится на 7 и на 9» будет истинным.
В математике союз «или» используется как неразделительный.
Образование составного высказывания с помощью логической связки называется логической операцией.
Определения конъюнкции и дизъюнкции можно обобщить на t составляющих их высказываний.
Конъюнкцией t высказываний называется предложение вида А
· А
·
· Аt, которое истинно тогда и только тогда, когда истинны все составляющие его высказывания
Дизъюнкцией t высказываний называется предложение вида А
· А
·
· Аt, которое ложно тогда и только тогда, когда ложны все составляющие его высказывания

Конъюнкция и дизъюнкция высказывательных форм
В математике рассматривают не только конъюнкцию и дизъюнкцию высказываний, но и выполняют соответствующие операции над высказывательными формами.
Конъюнкцию одноместных высказывательных форм А(х) и В(х), заданных на множестве Х, обозначают А(х)
· В(х). С появлением этого предложения возникает вопрос, как найти его множество истинности, зная множества истинности высказывательных форм А(х) и В(х). Другими словами, при каких значениях х из области определения Х высказывательная форма А(х)
· В(х) обращается в истинное высказывание? Очевидно, что это возможно при тех и только тех значениях х, при которых обращаются в истинное высказывание обе высказывательные формы А(х) и В(х). Если обозначить ТА – множество истинности предложения А(х), ТВ – множество истинности предложения В(х), а множество истинности их конъюнкции Т А
·В, то, по всей видимости, Т А
·В = ТА
· ТВ.
Докажем это равенство.
1. Пусть а – произвольный элемент множества Х и известно, что а
· Т А
·В. По определению множества истинности это означает, что высказывательная форма А(х)
· В(х) обращается в истинное высказывание при х = а, т.е. высказывание А(а)
· В(а) истинно. Так как данное высказывание конъюнкция, то получаем, что каждое из высказываний А(а) и В(а) также истинно. Это означает, что а
· Т А и а
· ТВ. Следовательно, по определению пересечения множеств, а
· ТА
· ТВ. Таким образом, мы показали, что Т А
·В
· ТА
· ТВ.
2. Докажем обратное утверждение. Пусть а – произвольный элемент множества Х и известно, что а
· ТА
· ТВ. По определению пересечения множества это означает, что а
· Т А и а
· ТВ, откуда получаем, что А(а) и В(а) – истинные высказывания, поэтому конъюнкция высказываний А(а)
· В(а) также будет истинна. А это означает, что элемент а принадлежит множеству истинности высказывательной формы А(х)
· В(х), т.е.
а
· Т А
·В. Таким образом, мы доказали, что ТА
· ТВ
· Т А
·В.
Из 1 и 2 в силу определения равных множеств вытекает справедливость равенства
Т А
·В = ТА
· ТВ, что и требовалось доказать.
Заметим, что полученное правило справедливо и для высказывательных форм, содержащих более одной переменной.
Дизъюнкцию одноместных высказывательных форм А(х) и В(х), заданных на множестве Х, обозначают А(х)
· В(х), Это предложение будет обращаться в истинное высказывание при тех и только тех значениях х из области определения Х, при которых обращается в истинное высказывание хотя бы одна из высказывательных форм, т.е.
Т А
·В = ТА
· ТВ. Доказательство этого равенства аналогично рассмотренному выше.
Приведем пример. Решим уравнение (х – 2) (х + 5) = 0. Известно, что произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Это означает, что данное уравнение равносильно дизъюнкции: х – 2 = 0
· х + 5 = 0 и поэтому множество его решений может быть найдено как объединение множеств решения первого и второго уравнений, т.е {2}
·{-5} ={-5, 2}.
Заметим, что дизъюнкцию уравнений (неравенств) называют также совокупностью.
Рассматривая конъюнкцию и дизъюнкцию высказывательных форм, мы установили их тесную связь с пересечением и объединением множеств.
А
·В = {х\ х
·А
· х
·В }, А
·В = {х\ х
·А
· х
·В }, причем каждое свойство представляет собой высказывательную форму.
Решение задач на распознавание объектов
С введением понятия конъюнкции и дизъюнкции высказывательных форм появились условия для рассмотрения вопросов, связанных с решением определенного вида задач, так называемых задач на распознавание объектов.
В задачах на распознавание объектов требуется ответить на вопрос: принадлежит тот или иной объект объему данного понятия или не принадлежит.
Пример 1. «Установите, какие из фигур являются квадратами, а какие нет».
13 SHAPE \* MERGEFORMAT 1415
Решают такие задачи, используя определение соответствующего понятия. При этом важно понимать, что если понятие а определено через родовое понятие с и видовое отличие Р, то его объем А можно представить в таком виде: А = {х\ х
·С и Р(х) } Эта запись показывает, что характеристическое свойство элементов, принадлежащих объему понятия а, представляет собой конъюнкцию двух свойств:
принадлежности объекта х объему С родового понятия (х
·С);
свойства Р(х).
Пример 2. «Выяснить, в каком случае луч ВD является биссектрисой угла АВС».
Воспользуемся таким определением биссектрисы угла: «Биссектрисой угла называется луч, выходящий из вершины угла и делящий этот угол пополам». Из него следует, что для того, чтобы луч был биссектрисой угла, он должен обладать двумя свойствами: «выходить из вершины угла» и «делить этот угол пополам».
А D С А D С
13 SHAPE \* MERGEFORMAT 1415
В В
а) б)
Луч ВD на рисунке а) не является биссектрисой угла АВС, поскольку он не делит данный угол пополам. Луч ВD на рисунке б) является биссектрисой угла АВС, поскольку он делит данный угол пополам и выходит из вершины угла.
Если видовое отличие представляет собой конъюнкцию свойств, т.е. Р = Р
·Р
·
·Рn, то распознавание проводится по следующему правилу: проверяют поочередно наличие у объекта каждого из свойств Р, Р, , Рn; если окажется, что он не обладает каким-либо из этих свойств, то проверку прекращают и делают вывод о том, что объект не обладает свойством Р; если же окажется, что все свойства Р, Р, , Рn присущи данному объекту, то заключают, что объект обладает свойством Р.
Если видовое отличие представляет собой дизъюнкцию свойств, т.е. Р = Р
·Р
·
·Рn, то распознавание проводится по следующему правилу: проверка проводится до тех пор, пока не будет установлено, что хотя бы одно из свойств присуще данному объекту, на основании чего заключают, что объект обладает свойством Р. Если окажется, что он не обладает ни одним из свойств Р, Р, , Рn, то проверку прекращают и делают вывод о том, что объект не обладает свойством Р.

Лекция 7. Высказывания с кванторами
План:
1. Высказывания с кванторами
2. Отрицание высказываний и высказывательных форм

Высказывания с кванторами
В формулировках математических предложений часто встречаются слова: «каждый», «все», «некоторые», «хотя бы один». Например, свойство противоположных сторон прямоугольника формулируется так: «В любом прямоугольнике противоположные стороны равны», а о свойстве натуральных чисел мы говорили, что «некоторые натуральные числа кратны 3». Выясним, каков смысл этих слов и как они используются в математике.
Если задана высказывательная форма, то, чтобы превратить ее в высказывание, достаточно вместо каждой из переменных, входящих в форму, подставить ее значение. Например, если на множестве N натуральных чисел задана высказывательная форма А(х) – «число х кратно 5», то, подставив в нее вместо х число 20, мы получим истинное высказывание «число 20 кратно 5». Если же в эту высказывательную форму подставить вместо х число 17, мы получим ложное высказывание «число 17 кратно 5».
Однако существуют и другие способы получения высказываний из высказывательных форм.
Если перед высказывательной формой «число х кратно 5» поставить слово «всякое», то получится предложение «всякое число х кратно 5».Относительно этого предложения можно задать вопрос, истинно оно или ложно. Значит, оно является высказыванием, причем ложным.
Выражение «для всякого х» в логике называется квантором общности по переменной х (переменная может быть обозначена и другой буквой) и обозначается символом
·х.
Запись (
·х.) А(х) означает: «для всякого значения х предложение А(х) – истинное высказывание.». Иногда эту запись дополняют обозначением множества Х, на котором задана высказывательная форма А(х), и тогда предложение можно читать:
а) для всякого х из множества Х истинно А(х);
б) всякий элемент из множества Х обладает свойством А.
Выражение «существует х такое, что» в логике называется квантором существования по переменной х (переменная может быть обозначена и другой буквой) и обозначается символом
·х.
Запись (
·х) А(х) означает: «существует такое значение х, что А(х) – истинное высказывание». Иногда эту запись дополняют обозначением множества Х, на котором задана высказывательная форма А(х), и тогда предложение (
·х) А(х) можно читать:
а) существует такое х из множества Х, что истинно А(х);
б) хотя бы один элемент х из множества Х обладает свойством А.
Заметим, что в математике наряду со словом «всякий» употребляют слова «каждый», «любой», а вместо слова «существует» используют слова «некоторые», «найдется», «есть», «хотя бы один».
Итак, если задана одноместная высказывательная форма А(х), то чтобы превратить ее в высказывание, достаточно связать квантором общности или существования содержащуюся в ней переменную. Если же высказывательная форма содержит несколько переменных, то перевести ее в высказывание можно, если связать квантором каждую переменную. Например, если дана высказывательная форма «х > у», то для получения высказывания надо связать квантором обе переменные: например, (
·х) (
·у) х > у или (
·х) (
·у) х > у.
Однако важно уметь не только переходить от высказывательной формы к высказыванию с помощью кванторов, но и распознавать их логическую структуру. Дело в том, что кванторы содержатся в формулировках определений, теорем и других математических предложений, хотя часто только подразумеваются. Например, в формулировке теоремы «Вертикальные углы равны» квантора в явном виде нет, но предполагается, что данное утверждение справедливо для всех вертикальных углов. Записывая коммутативное свойство сложения в виде а + b = b + а, подразумевают, что оно справедливо для любых чисел а и b.
Задача 1. Выявить логическую структуру следующих высказываний:
а) Некоторые нечетные числа делятся на 5.
б) Произведение двух любых последовательных натуральных чисел кратно 2.
в) В прямоугольнике диагонали равны.
Решение: а) (
·х
·Х) х
·5; б) (
·х
· N) х(х+1)
·2; в) (
·х
· Х) А(х).
Выясним теперь, как устанавливают значения истинности высказываний, содержащих кванторы.
Рассмотрим высказывание с квантором общности - (
·х
· Х) А(х). Чтобы убедиться в истинности этого высказывания, надо показать, что множество истинности ТА высказывательной формы А(х) совпадает с множеством Х (ТА = Х). Чтобы убедиться в ложности высказывания (
·х
· Х) А(х), достаточно показать, что ТА
· Х, т.е. показать, что существует такое значение х
· Х, при котором высказывательная форма обращается в ложное высказывание.
Задача 2. Установить, истинны или ложны следующие высказывания:
а) Для каждого х из множества {0, 1, 4} значение выражения (4 –х):( 2х + 1) есть число целое.
б) Произведение двух любых последовательных натуральных чисел кратно 2.
в) Всякое натуральное число делится на 5.
Решение.
а) Путем перебора всех возможных случаев установлено, что при заданных значениях х выражение принимает целое значение, т.е. высказывание истинное.
б) Высказывание истинно.
в) Высказывание ложно. Для этого достаточно привести хотя бы один пример.
В математике говорят, что в ложности данного высказывания мы убедились, приведя контрпример.
Вообще истинность высказывания с квантором общности устанавливается путем доказательства. Показать ложность таких высказываний можно, приведя контрпример.
Задача 3. Установить, истинны или ложны следующие высказывания:
а) Среди треугольников есть прямоугольные.
б) Некоторые прямоугольные треугольники являются равносторонними.
а) Высказывание истинное.
б) Высказывание ложное.
Вообще истинность высказывания с квантором существования устанавливается при помощи конкретного примера. Показать ложность таких высказываний можно, проведя доказательство.

Отрицание высказываний и высказывательных форм
Пусть предложение А – высказывание. Если перед сказуемым данного предложения поставить частицу «не» либо перед всем предложением поставить слова «неверно, что», то получится новое предложение, которое называется отрицанием данного и обозначается
· (читают: «не А» или «неверно, что А).
Определение. Отрицанием высказывания А называется высказывание
·, которое ложно, когда высказывание А истинно, и истинно, когда высказывание А – ложно.
Таблица истинности отрицания имеет вид:
А

·

и
л

л
и


Из данного определения следует, что предложение и его отрицание не могут быть ни одновременно истинны, ни одновременно ложны.
Построим отрицание ложного высказывания «число 28 делится на 9:
А) Число 28 не делится на 9.
Б) Неверно, что число 28 делится на 9.
Высказывания, которые мы получили, истинные. Значит, отрицание данного предложения построено правильно.
Рассмотрим теперь правила построения отрицания конъюнкции и дизъюнкции высказываний. Если перед всем составным высказыванием поставим слова «неверно, что», то, безусловно, получим его отрицание. А как быть с частицей «не»? Можно ли поставить перед сказуемым составного предложения и получить его отрицание? На примере можно показать, что нельзя.
Можно доказать, что отрицанием конъюнкции двух высказываний А и В является дизъюнкция их отрицаний. Для этого надо убедиться в том, что значения истинности высказываний вида А
·В и А
· В совпадают при любых значениях истинности высказываний А и В. Сделать это можно при помощи таблицы истинности:



А

В

А
·В

А
·В

А

В

А
· В

и
и
и
л
л
л
л

и
л
л
и
л
и
и

л
и
л
и
и
л
и

л
л
л
и
и
и
и


Про высказывания вида А
·В и А
· В говорят, что они равносильны, и пишут
А
·В А
· В.
Аналогично можно доказать, что имеет место равносильность
А
·В А
· В.
Эти равносильности носят название законов де Моргана.
Из них вытекает следующее правило построения отрицания конъюнкции и дизъюнкции: чтобы построить отрицание конъюнкции (дизъюнкции), достаточно заменить отрицаниями составляющие ее высказывания, а союз «и» («или») заменить союзом «или» («и).
Задача 1. Построить отрицание высказывания «число 28 делится на 9 или на 6».
1 способ: «неверно, что число 28 делится на 9 или на 6».
2 способ: воспользуемся законом де Моргана: «число 28 не делится на 9 и не делится на 6».
Как быть, если высказывания содержат кванторы? Строить отрицания высказываний при помощи частицы «не» перед сказуемым нельзя. Остается другой путь – перед всем предложением ставим слова «неверно, что». Например, дано высказывание всякий прямоугольный треугольник является равнобедренным». Его отрицанием будет высказывание «неверно, что всякий прямоугольный треугольник является равнобедренным». Это предложение имеет тот же смысл, что и предложение «некоторые прямоугольные треугольники не являются равнобедренными».
Отрицанием высказывания «некоторые прямоугольные треугольники не являются равнобедренными» является высказывание «неверно, что некоторые прямоугольные треугольники не являются равнобедренными», которое имеет тот же смысл, что и предложение «все прямоугольные треугольники не являются равнобедренными».
Вообще, если дано предложение
·(х) А(х), то его отрицанием будут предложения
(
·х) А(х) и (
·х) А(х), имеющие один и тот же смысл (и одно и то же значение истинности).
Если дано предложение (
·х) А(х), то его отрицанием будут предложения (
·х) А(х) и
(
·х) А(х), также имеющие один и тот же смысл (и одно и то же значение истинности).
Получаем две равносильности:

(
·х) А(х) (
·х) А(х);

(
·х) А(х) (
·х) А(х),
Из них вытекает правило: для того чтобы построить отрицание высказывания, начинающегося с квантора общности (существования), достаточно заменить его кантором существования (общности) и построить отрицание предложения, стоящего после квантора.
Задача 2. Построить отрицание высказывания «некоторые однозначные числа делятся на 10».
1) «неверно, что некоторые однозначные числа делятся на 10»
2) «все однозначные числа не делятся на 10».
Последнее, о чем пойдет речь, - это отрицание высказывательных форм.
Пусть на множестве Х задана высказывательная форма А(х). Ее отрицание

обозначим А(х) (читают: «не А(х) или неверно, что А(х)». Предложение А(х) будет обращаться в истинное высказывание лишь при тех значениях х из множества Х, при которых А(х) – ложно. Таким образом, Т
· = Тґ А – множество истинности предложения

А(х), а Т ґ А – дополнение множества Т А до множества Х.
Доказательство этого равенства мы опускаем.
Пусть, например, на множестве натуральных чисел задана высказывательная форма А(х) – «число х кратно 5». Тогда ее отрицанием будет предложение «число х не кратно 5» (или «неверно, что число х кратно 5»), истинное при всех значениях х, которые не кратны 5.

Лекция 8. Теоремы
План:
1. Отношения следования и равносильности между предложениями
2. Структура теоремы. Виды теорем
3. Необходимые и достаточные условия. Рассуждения от противного. Правильные и неправильные рассуждения.
4. Основные выводы

Отношения следования и равносильности между предложениями

Рассмотрим две высказывательные формы: «число х кратно 4» и «число х кратно 2», заданные на множестве N натуральных чисел.
Как связаны между собой эти два предложения?
Можно сказать так: из того, что число х кратно 4, следует, что х кратно 2. Это мы можем утверждать, потому что знаем – при всех значениях х, при которых истинно предложение «число х кратно 4», будет истинно и предложение «число х кратно 2». В этом случае говорят, что данные предложения находятся в отношении логического следования.
Определение. Высказывательная форма В(х) следует из высказывательной формы А(х), если В(х) обращается в истинное высказывание при всех тех значениях х, при которых А(х) истинна.
Если А и В – высказывания, тогда говорят, что из А следует В, если всякий раз, когда А истинно, истинно и В.
Для обозначения отношения логического следования используется знак . Соединяя две высказывательные формы А(х) и В(х) таким знаком, мы получаем высказывание А(х) В(х), прочитать которое можно по разному:
1) Из А(х) следует В(х).
2) Всякое А(х) есть В(х).
3) Если А(х), то В(х).
4) В(х) есть следствие А(х).
5) А(х) есть достаточное условие для В(х).
6) В(х) есть необходимое условие для А(х).
Например, утверждение о том, что из предложения «число х кратно 4», следует предложение «число х кратно 2», можно сформулировать еще так:
- Всякое число, которое кратно 4, кратно и 2.
- Если число кратно 4, то оно кратно и 2.
- Кратность число 2 есть следствие кратности его 4.
- Кратность числа 4 есть достаточное условие для его кратности 2.
- Кратность числа 2 есть необходимое условие для его кратности 4.
Последние два предложения часто формулируют в следующей форме:
- Для того чтобы число было кратно 2, достаточно, чтобы оно было кратно 4.
- Для того чтобы число было кратно 4, необходимо, чтобы оно было кратно 2

Так как одно и то же утверждение «из А(х) следует В(х)» можно прочитать по-разному, надо уметь переходить от одной его формулировки к другой, не меняя смысла.
Задача 1. Данные предложения переформулируйте, используя различные способы прочтения утверждения А(х) В(х):
Всякий квадрат является прямоугольником.
Решение.
А(х) – «четырехугольник – квадрат» и В(х) – «четырехугольник – прямоугольник».
1) Из того, что четырехугольник – квадрат, следует, что он прямоугольник.
2) Если четырехугольник – квадрат, то он прямоугольник
3) Четырехугольник является прямоугольником – это следствие того, что четырехугольник – квадрат.
4) Для того чтобы четырехугольник был прямоугольником, достаточно, чтобы он был квадратом.
5) Для того чтобы четырехугольник был квадратом, необходимо, чтобы он был прямоугольником.
Как и любое высказывание, предложение А(х) В(х) может быть истинным или ложным. Но так как оно может быть сформулировано в виде «всякое А(х) есть В(х)», то его истинность устанавливается путем доказательства, а с помощью контрпримера – что оно ложно.
Определение. Предложения А(х) и В(х) равносильны, если из предложения А(х) следует предложение В(х), а из предложения В(х) следует предложение А(х).
Для обозначения отношения равносильности используется знак . Соединяя две высказывательные формы А(х) и В(х) таким знаком, мы получаем высказывание А(х) В(х), прочитать которое можно по-разному:
1) А(х) равносильно В(х).
2) А(х) тогда и только тогда, когда В(х).
3) А(х) – необходимо и достаточное условие для В(х).
4) В(х) - необходимое и достаточное условие для А(х).
Например, утверждение о том, что предложение «число делится на 3» и «сумма цифр в записи числа делится на 3» равносильны, можно сформулировать еще так:
- Число делится на 3 тогда и только тогда, когда сумма цифр в его записи делится на 3.
- Для того чтобы число делилось на 3, необходимо и достаточно, чтобы сумма цифр в его записи делилась на 3.
С теоретико-множественной точки зрения высказывание А(х) В(х) означает, что если ТА – множество истинности высказывательной формы А(х), а ТВ – множество истинности высказывательной формы В(х), то ТА = ТВ.
Например, уравнения 3х(х-2) = 0 и 3х(х-2)(х+3) = 0 равносильны на множестве целых неотрицательных чисел, потому что множество их решений {0, 2}.
Заметим, что мы рассматриваем понятия логического следования и равносильности для одноместных высказывательных форм. Для предложений, содержащих две и более переменных, эти понятия определяются аналогично.
Отметим также, что знак мы использовали раньше, в частности, рассматривая логическую структуру явных определений понятий. Мы установили, что ее можно представить в виде а в. Определение порождает два равносильных предложения.
Знак используют в записи правил построения отрицания высказываний. Например, А
·В А
·В. В этом случае речь идет о равносильности высказываний определенной формы. При этом считают, что предложения равносильны, если они одновременно истинны, либо одновременно ложны. Другими словами, если их значения истинности совпадают при одинаковых наборах значений высказываний А и В.

Структура теоремы. Виды теорем.
Понятие логического следования позволяет уточнить ряд вопросов, связанных с предложениями, которые в математике называют теоремами.
Теорема – это высказывание, истинность которого устанавливается посредством рассуждения (доказательства).
С логической точки зрения теорема представляет собой высказывание вида А В, где А и В – высказывательные формы с одной или несколькими переменными. Предложение А называют условием теоремы, а предложение В – ее заключением.
Например, условием теоремы «если четырехугольник является прямоугольником, то в нем диагонали раны» является предложение «четырехугольник – прямоугольник, а заключением – предложение «в таком четырехугольнике диагонали равны».
В рассмотренном примере теорема была сформулирована с помощью слов «если , то ». Но, как нам известно, утверждение А В можно сформулировать и по-другому. Например, рассмотренную теорему можно сформулировать так: «во всяком прямоугольнике диагонали равны» или «для того, чтобы четырехугольник был прямоугольником, необходимо, чтобы его диагонали были равны». Есть и другие способы, но удобнее теорему формулировать в виде «если , то », поскольку сразу видно ее условие (что дано) и заключение (что надо доказать).
В математике кроме теорем используются предложения, называемые правилами и формулами. Выясним, чем они отличаются от теоремы.
Рассмотрим, например, такую теорему из школьного курса алгебры: «если а – любое число и k, n – натуральные число, то справедливо равенство аа
· = а
·». Для того чтобы этой теоремой удобнее было пользоваться, при выполнении различных преобразований ее формулируют в виде правила: «при умножении степеней с одинаковыми основаниями показатели складываются» или записывают только формулу.
Учитель должен уметь разворачивать изучаемые в начальной школе правила (формулы) и формулировать соответствующие им теоремы. Например, правило деления суммы на число: «для того чтобы разделить сумму на число, можно разделить на это число каждое из слагаемых и полученные результаты сложить». К этой формулировке иногда добавляют формулу: (а + b): с = а : с + b: с. Так как этот материал изучают в начальной школе, то надо отчетливо понимать, что числа могут быть только целыми неотрицательными, причем с
· 0. Кроме того, воспользоваться правой частью этого равенства можно при условии, что а кратно с и b кратно с.

Для всякой теоремы вида «если А, то В» можно сформулировать предложение «если В, то А», которое называют обратным данному. Однако не всегда это предложение является теоремой. Рассмотрим, например, теорему: «если четырехугольник является прямоугольником, то в нем диагонали равны». Построим предложение, обратное данному: «если в четырехугольнике диагонали равны, то четырехугольник является прямоугольником». Это высказывание ложное, в чем можно убедиться, приведя контрпример: в равнобедренной трапеции диагонали равны, но трапеция не является прямоугольником.
Рассмотрим теперь теорему «в равнобедренном треугольнике углы при основании равны». Обратное ей предложение таково: «если в треугольнике углы при основании равны, то этот треугольник – равнобедренный». Оно, как известно, истинное и поэтому является теоремой. Ее называют теоремой, обратной данной.
Для всякой теоремы вида «если А, то В» можно сформулировать предложение «если не А, то не В», которое называют противоположным. Но не всегда это предложение является теоремой. Например, предложение, противоположное теореме «если четырехугольник является прямоугольником, то в нем диагонали равны», будет ложным: «если четырехугольник не является прямоугольником, то в нем диагонали не равны».
В том случае, если предложение, противоположное данному, будет истинно, его называют теоремой, противоположной данной.
Таким образом, если для теоремы А В сформулировать обратное или противоположное предложения, то их надо доказывать (и тогда их можно называть соответственно обратной и противоположной теоремами) или опровергать.
Для всякой теоремы вида «если А, то В» можно сформулировать предложение «если не В, то не А», которое называют обратным противоположному. Например, для теоремы «если четырехугольник является прямоугольником, то в нем диагонали равны» предложение, обратное противоположному, будет таким: «если в четырехугольнике диагонали не равны, то он не является прямоугольником». Это, как известно, предложение истинное и, следовательно, является теоремой. Ее называют обратно противоположной данной.
Вообще для какой бы теоремы мы ни формулировали предложение, обратное противоположному, оно всегда будет теоремой, потому что имеется следующая равносильность: (А В) (В А).
Эту равносильность называют законом контрапозиции. Мы принимаем его без доказательства. Согласно этому закону, предложение, обратно противоположное какой-либо теореме, также является теоремой, и, значит, вместо данной теоремы можно доказывать теорему, обратно противоположную данной.
Кроме того, из закона контрапозиции следует, что предложение, обратное данному, и предложение, противоположное данному, одновременно истинны либо одновременно ложны. Поэтому, рассматривая их, достаточно доказать (или опровергнуть) какое-нибудь одно; тем самым будет доказано (опровергнуто) другое.
Заметим, что если для данной теоремы А В существует обратная В А, то их можно соединить в одну А В, и тогда в формулировке будут использованы слова «необходимо и достаточно», «тогда и только тогда, когда». Например: «треугольник будет равнобедренным тогда и только тогда, когда в нем углы при основании равны».
С другой стороны, если теорема имеет вид А В, то это значит, что она состоит из двух взаимно обратных теорем А В и В А и, следовательно, ее доказательство сводится к доказательству двух указанных теорем.
Заметим также, что если условие или заключение данной теоремы представляет собой конъюнкцию или дизъюнкцию, то, чтобы получить предложение, противоположное данному, нужно учитывать правила построения отрицания конъюнкции или дизъюнкции. Например, дана теорема «если число делится на 3 и 4, то оно делится на 12». Предложение, противоположное данному, можно сформулировать так: «если число не делится на 12, то оно не делится на 3 или не делится на 4».

Основные выводы
Основные понятия: высказывание, значение истинности высказывания, высказывательная форма, область определения высказывательной формы, множество истинности высказывательной формы, элементарные высказывания, логические связки, составные высказывания, конъюнкция высказываний и высказывательных форм, дизъюнкция высказываний и высказывательных форм, квантор общности, квантор существования, отрицание высказываний и высказывательных форм, отношение логического следования между предложениями, отношение равносильности между предложениями.


Лекция 9. Математическое доказательство
План:
1. Умозаключения и их виды
2. Схемы дедуктивных умозаключения

§ 4. Математическое доказательство
Большую часть знаний об окружающей нас действительности мы получаем с помощью рассуждений. Выводы в них будут истинными, если они являются результатами правильных рассуждений, а такими считают рассуждения, построенные по правилам логики. Рассуждения лежат в основе доказательства, без которого трудно представить математику. Но тех представлений о доказательстве, которые возникли у вас в процессе конкретных доказательств, конечно, недостаточно, чтобы обучать доказательству младших школьников. Учителю нужны более глубокие знания о тех правилах, в соответствии с которыми строятся правильные рассуждения, нужны знания о структуре и способах доказательства, о взаимосвязи индукции и дедукции.

Умозаключения и их виды
В логике вместо термина «рассуждения» чаще используется (как его синоним) слово «умозаключение», им и будем пользоваться.
Умозаключение – это способ получения нового знания на основе некоторого имеющегося. При этом мы не обращаемся к исследованию предметов и явлений самой действительности, а открываем такие связи и отношения между ними, которые невозможно увидеть непосредственно.
Умозаключение состоит из посылок и заключения.
Посылки – это высказывание, содержащее исходное знание.
Заключение – это высказывание, содержащее новое знание, полученное из исходного. В умозаключении из посылок выводится заключение.
Рассмотрим примеры умозаключений, которые выполняют младшие школьники, изучая математику.
Пример 1. Ученику предлагается объяснить, почему число 23 можно представить в виде суммы 20 + 3. Он рассуждает: «Число 23 – двузначное. Любое двузначное число можно представить в виде суммы разрядных слагаемых. Следовательно, 23 = 20 + 3».
Первое и второе предложения в этом умозаключении посылки, причем одна посылка общего характера – это высказывание «любое двузначное число можно представить в виде суммы разрядных слагаемых», а другая – частная, она характеризует только число 23 – оно двузначное. Заключение – это предложение, которое стоит после слова «следовательно», - также носит частный характер, так как в нем речь идет о конкретном числе 23.
Пример 2. Один из приемов ознакомления младших школьников с переместительным свойством умножения заключается в следующем. Используя различные средства наглядности, школьники вместе с учителем устанавливают, что, например, 63 = 36, 52 = 25, 73 = 37. А затем на основе полученных равенств делают вывод: :для всех натуральных чисел а и b верно равенство а b = b а.
В данном умозаключении посылками являются первые три равенства, в них утверждается, что для конкретных натуральных чисел выполняется такое свойство. Заключением в данном примере является утверждение общего характера – переместительное свойство умножения натуральных чисел.
Пример 3. При обучении делению на однозначное число используется такой прием. Сначала выясняется: чтобы найти значение выражения 12:4, следует узнать, на какое число надо умножить делитель 4, чтобы получить делимое, т.е. 12. Известно, что 4 3= 12. Значит, 12 : 4 = 3.
Затем учащимся предлагается, рассуждая так же, найти, например, частное 8 : 4. И они сначала находят число, на которое надо умножить 4, чтобы получить 8. Получают число 2 и делают вывод – 8 : 4 = 2.
Далее, используя тот же способ рассуждений, находят частные 9 : 3, 20 : 5 и др.
Видим, что умозаключения бывают разные. В примере 1 заключение логически следует из посылок, и мы не сомневаемся в его истинности. Такие умозаключения называют в логике дедуктивными.
Определение. Дедуктивным называется умозаключение, в котором посылки и заключение находятся в отношении логического следования.
Если посылки дедуктивного умозаключения обозначить буквами А, А, , Аn, а заключение – буквой В, то схематично само умозаключение можно представить так: А, А, , Аn В. Часто запись пишут в виде дроби.
Дедуктивным является умозаключение, которое рассмотрено в примере 1.
Умозаключения из примера 2 называют неполной индукцией.
Определение. Неполная индукция – это умозаключение, в котором на основании того, что некоторые объекты класса обладают определенным свойством, делается вывод о том, что этим свойством обладают все объекты данного класса.
Неполная индукция не является дедуктивным умозаключением, поскольку, рассуждая по такой схеме, можно прийти к ложному выводу. Они нуждаются в проверке.
Несмотря на то, что неполная индукция не всегда приводит к истинным выводам, роль таких умозаключений в процессе познания велика. Многие общие положения и, в частности, научные законы были открыты с помощью умозаключений, называемых неполной индукцией.
Третий пример – это пример рассуждения по аналогии.
Слово «аналогия» в переводе с греческого означает «соответствие, сходство».
Вообще под аналогией понимают умозаключение, в котором на основании сходства двух объектов в некоторых признаках и при наличии дополнительного признака у одного из них делается вывод о наличии такого же признака у другого признака.
Аналогия помогает открывать новые знания, способы деятельности или использовать усвоенные способы деятельности в измененных условиях.
Вывод по аналогии носит характер предположения, гипотезы и поэтому нуждается либо в доказательстве, либо в опровержении.
Широко используется аналогия в обучении математике младших школьников. Это происходит при изучении свойств объектов, отношений между ними и действий с ними.
Примеры. Аналогию можно использовать для «открытия» новых свойств изучаемых объектов. При изучении нумерации установлено, что в классе единиц три разряда – единицы, десятки, сотни, а в классе тысяч также три разряда – единицы тысяч, десятки тысяч, сотни тысяч – этот вывод можно сделать по аналогии.
Аналогия может быть использована и для выводов о способе действия на основе изучения другого способа. Так, после рассмотрения способа умножения двузначного числа на однозначное на примере умножения 27 на 3 ( 273 = (20+7) 3 = 203+73=81) детям предлагается умножить 721 на 3. Действуют по аналогии. Затем устанавливают, как умножить 6289 на 3. Следующим шагом может быть обобщение, т.е. получение правила умножения многозначного числа на однозначное, т.е. использование неполной индукции.

26. Схемы дедуктивных умозаключений.
Рассмотрим подробнее дедуктивные (правильные) умозаключения. Согласно определению (п. 25), в дедуктивном умозаключении посылки и заключение находятся в отношении логического следования. Это означает, что в нем всегда из истинных посылок следует истинное заключение. Но как строить такие умозаключения и проверять их правильность?
В логике считают, что правильность умозаключения определяется его формой и не зависит от конкретного содержания входящих в него утверждений. И в логике предлагаются такие правила, соблюдая которые, можно строить дедуктивные умозаключения. Эти правила называют правилами вывода или схемами дедуктивных (правильных) умозаключений. Правил много, но наиболее часто используются следующие:
А(х) В(х), А(а) - правило заключения
В(а)

А(х) В(х), В(а) - правило отрицания

А(а)

А(х) В(х), В(х) С(х) - правило силлогизма.
А(х) С(х)
Выясним, что обозначают все знаки, использованные в записи этих правил; как их применять на практике.
Рассмотрим, например, правило заключения. В нем обозначено две посылки А(х) В(х) и А(а). Первую называют общей посылкой, это может быть теорема, определение и, вообще, предложение вида А(х) В(х). Вторую посылку А(а) называют частной, она получается из условия А(х) при х = а. Предложение В(а) – это заключение, оно получается из В(х) при х = а. Посылки отделены от заключения чертой, которая заменяет слово «следовательно».
Приведем пример умозаключения, выполненного по правилу заключения:
Если запись числа х оканчивается цифрой 5, то число х делится на 5. Запись числа 135 оканчивается цифрой 5. Следовательно, число 135 делится на 5.
В качестве общей посылки в этом умозаключении выступает утверждение вида «если А(х), то В(х), где А(х) – это «запись числа х оканчивается цифрой 5», а В(х) – «число х делится на 5». Частная посылка представляет собой высказывание, которое получилось из условия общей посылки при х = 135 (т.е. это А(135)). Заключение является высказыванием, полученным из В(х) при х = 135 (т.е. это В(135)).
Приведем теперь пример умозаключения, выполненного по правилу отрицания:
Если запись числа х оканчивается цифрой 5, то число х делится на 5. Число 177 не делится на 5. Следовательно, оно не оканчивается цифрой 5.
Видим, что в этом умозаключении общая посылка такая же, как и в предыдущем, а частная представляет собой отрицание высказывания «число 177 делится на 5» (т.е. это неверно, что В(177)). Заключение – это отрицание предложения «Запись числа 177 не оканчивается цифрой 5» (т.е. неверно, что А(177)).
И наконец, рассмотрим пример умозаключения, построенного по правилу силлогизма.
Если число х кратно 12, то оно кратно 6. Если число х кратно 6, то оно кратно 3. Следовательно, если число х кратно 12, то оно кратно 3.
В этом умозаключении две посылки вида «если А(х), то В(х)» и «если В(х), то С(х)», где А(х) – это предложение «х кратно 12», В(х) – предложение «х кратно 6» и С(х) – предложение «х кратно 3». Заключение представляет собой высказывание «если А(х), то С(х)».
Конечно, возникает вопрос, почему умозаключения, выполнены по правилам заключения, отрицания и силлогизма, будут дедуктивными (правильными)? Дело в том, что, выполняя рассуждения по этим правилам, мы всегда будем получать истинное заключение, что и требовалось в дедуктивном умозаключении. Убедиться в этом можно, если воспользоваться кругами Эйлера.
В логике существуют различные способы проверки правильности умозаключений. Рассмотрим тот, который предполагает использование кругов Эйлера. Сначала данное умозаключение можно записать на теоретико-множественном языке, затем посылки изобразить на кругах Эйлера, считая их истинными. После этого надо выяснить, всегда ли при таких посылках истинно заключение. Если оказывается, что всегда, то говорят, что данное умозаключение правильное, дедуктивное. Если же возможен рисунок, из которого видно, что заключение может быть ложным, то говорят, что всякое умозаключение, выполненное по такой схеме, является недедуктивным, неправильным.
Покажем, что умозаключение, выполненное по правилу заключения, является дедуктивным. Сначала запишем это правило на теоретико-множественное языке.
Посылка А(х) В(х) может быть записана в виде ТА
· ТВ, где ТА и ТВ – множества истинности высказывательных форм А(х) и В(х).
Частная посылка А(а) означает, что а
· ТА, а заключение В(а) показывает, что а
· ТВ. Все умозаключение, построенное по правилу заключения, запишется на теоретико-множественном языке так:
ТА
· ТВ, а
· ТА .
а
· ТВ
Изобразив на кругах Эйлера множества ТА и ТВ, мы увидим, что а
· ТА а
· ТВ.

ТВ
13 SHAPE \* MERGEFORMAT 1415
Аналогичным образом можно проверить и другие правила дедуктивных умозаключений. Кроме того, такой способ проверки правильности умозаключений можно использовать и в тех случаях, когда умозаключение выполнено по схеме, отличной от рассмотренных.
Задача. Правильно ли следующее умозаключение: «если запись числа оканчивается цифрой 5, то число делится на 5. Число 125 делится на 5. Следовательно, запись числа 125 оканчивается цифрой 5».
Ответ: заключение может быть истинным, а само умозаключение не быть дедуктивным, правильным.

Лекция 10. Способы математического доказательства
План:
1. Способы математического доказательства
2. Прямые и косвенные доказательства. Доказательство методом от противного.
3. Основные выводы

Способы математического доказательства
В обыденной жизни часто, когда говорят о доказательстве, имеют в виду просто проверку высказанного утверждения. В математике проверка и доказательство – это разные вещи, хотя и связанные между собой. Пусть, например, требуется доказать, что если в четырехугольнике три угла прямые, то он – прямоугольник.
Если мы возьмем какой-либо четырехугольник, у которого три угла прямые, и, измерив четвертый, убедимся в том, что он действительно прямой, то эта проверка сделает данное утверждение более правдоподобным, но еще не доказанным.
Чтобы доказать данное утверждение, рассмотрим произвольный четырехугольник, в котором три угла прямые. Так как в любом выпуклом четырехугольнике сумма углов 360, то и в данном она составляет 360. Сумма трех прямых углов равна 270 (903 = 270), и, значит, четвертый имеет величину 90 (360 - 270). Если все углы четырехугольника прямые, то он – прямоугольник Следовательно, данный четырехугольник будет прямоугольником. Что и требовалось доказать.
Заметим, что сущность проведенного доказательства состоит в построении такой последовательности истинных утверждений (теорем, аксиом, определений), из которых логически следует утверждение, которое нужно доказать.
Вообще доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений.
В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и последние.
Таким образом, основой математического доказательства является дедуктивный вывод. А само доказательство – это цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.
Например, в приведенном выше доказательстве можно выделить следующие умозаключения:
1. В любом выпуклом четырехугольнике сумма углов равна 360; данная фигура – выпуклый четырехугольник, следовательно, сумма углов в нем 360.
2. Если известна сумма всех углов четырехугольника и сумма трех из них, то вычитанием можно найти величину четвертого; сумма всех углов данного четырехугольника равна 360, сумма трех 270 (903 = 270), то величина четвертого 360 - 270 = 90.
3. Если в четырехугольнике все углы прямые, то этот четырехугольник – прямоугольник; в данном четырехугольнике все углы прямые, следовательно, он прямоугольник.
Все приведенные умозаключения выполнены по правилу заключения и, следовательно, являются дедуктивными.
Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 6 < 8.
Итак, говоря о структуре математического доказательства, мы должны понимать, что она, прежде всего, включает в себя утверждение, которое доказывается, и систему истинных утверждений, с помощью которых ведут доказательство.
Следует еще заметить, что математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

По способу ведения (по форме) различают прямые и косвенные доказательства. Рассмотренное ранее доказательство было прямым – в нем, основываясь на некотором истинном предложении и с учетом условия теоремы, строилась цепочка дедуктивных умозаключений, которая приводила к истинному заключению.
Примером косвенного доказательства является доказательство методом от противного. Сущность его состоит в следующем. Пусть требуется доказать теорему
А В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение «не В» к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А. Как только такое противоречие устанавливают, процесс доказательства заканчивают и говорят, что полученное противоречие доказывает истинность теоремы
А В.
Задача 1. Доказать, что если а + 3 > 10, то а
· 7. Метод от противного.
Задача 2. Доказать, что если хІ - четное число, то х – четно. Метод от противного.
Задача 3. Даны четыре последовательных натуральных числа. Верно ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.
Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.
Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.
Задача 5. Верно ли, что если натуральное число n не кратно 3, то значение выражения nІ + 2 кратно 3? Метод полной индукции.

Основные выводы
В этом пункте познакомились с понятиями: умозаключение, посылка и заключение, дедуктивные (правильные) умозаключения, неполная индукция, аналогия, прямое доказательство, косвенное доказательство, полная индукция.
Мы выяснили, что неполная индукция и аналогия тесно связаны с дедукцией: выводы, полученные с помощью неполной индукции и аналогии, надо либо доказывать, либо опровергать. С другой стороны, дедукция не возникает на пустом месте, а является результатом предварительного индуктивного изучения материала.
Дедуктивные умозаключения позволяют из уже имеющегося знания получать новые истины, и притом с помощью рассуждения, без обращения к опыту, интуиции и т.д.
Мы выяснили, что математическое доказательство – это цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Познакомились с простейшими из них: правилом заключения, правилом отрицания, правилом силлогизма. Узнали, что проверять правильность умозаключений можно с помощью кругов Эйлера.

§5. ТЕКСТОВАЯ ЗАДАЧА И ПРОЦЕСС ЕЕ РЕШЕНИЯ

Лекция 11. Текстовая задача и процесс ее решения
План:
1. Структура текстовой задачи
2. Методы и способы решения текстовых задач
3. Этапы решения задачи и приемы их выполнения

Кроме различных понятий, предложений, доказательств в любом математическом курсе есть задачи. В обучении математике младших школьников преобладают такие, которые называют арифметическими, текстовыми, сюжетными. Эти задачи сформулированы на естественном языке (их называют текстовыми): в них обычно описывается количественная сторона каких-то явлений, событий (поэтому их часто называют арифметическими или сюжетными); они представляют собой задачи на разыскание искомого и сводятся к вычислению неизвестного значения некоторой величины (поэтому их иногда называют вычислительными).
В данном пособии мы будем применять термин «текстовые задачи», поскольку он чаще других используется в методике обучения математике младших школьников.
Решению текстовых задач при начальном обучении уделяется огромное внимание. Связано это с тем, что такие задачи часто являются не только средством формирования многих математических понятий, но и главное - средством формирования умений строить математические модели реальных явлений, а также средством развития мышления детей.
Существуют различные методические подходы к обучению детей решению текстовых задач. Но какую бы методику обучения ни вы брал учитель, ему надо знать, как устроены такие задачи, и уметь их решать различными методами и способами.
29. Структура текстовой задачи
Как было сказано выше, любая текстовая задача представляет собой описание какого-либо явления (ситуации, процесса). С этой точки зрения текстовая задача есть словесная модель явления (ситуации, процесса). И, как во всякой модели, в текстовой задаче описывается не все явление в целом, а лишь некоторые его стороны, главным образом, его количественные характеристики. Рассмотрим, например, такую задачу: «Автомобиль выехал из пункта А со скоростью 60 км/ч. Через 2 ч вслед за ним выехал второй автомобиль со скоростью 90 км/ч. На каком расстоянии от А второй автомобиль догонит первый?»
В задаче описывается движение двух автомобилей. Как известно, любое движение характеризуется тремя величинами: пройденным расстоянием, скоростью и временем движения. В данной задаче известны скорости первого и второго автомобилей (60 км/ч и 90 км/ч), известно, что они прошли одно и то же расстояние от пункта А до места встречи, количественную характеристику которого и надо найти. Кроме того, известно, что первый автомобиль был в пути на 2 ч больше, чем второй.
Обобщая, можно сказать, что текстовая задача есть описание на естественном языке некоторого явления (ситуации, процесса) с требованием дать количественную характеристику какого-либо компонента этого явления, установить наличие или отсутствие некоторого отношения между компонентами или определить вид этого отношения.
Рассмотрим еще одну задачу из начального курса математики: «Свитер, шапку и шарф связали из I кг 200 г шерсти. На шарф потребовалась на 100 г шерсти больше, чем на шапку, и на 400 г меньше, чем на свитер. Сколько шерсти израсходовали на каждую вещь?»
В задаче речь идет о расходовании шерсти на свитер, шапку и шарф. Относительно этих объектов имеются определенные утверждения и требования.
Утверждения:
Свитер, шапка и шарф связаны из 1200 г шерсти.
На шарф израсходовали на 100 г больше, чем на шапку.
На шарф израсходовали на 400 г меньше, чем на свитер.
Требования:
Сколько шерсти израсходовали на свитер?
Сколько шерсти израсходовали на шапку?
Сколько шерсти израсходовали на шарф?
Утверждения задачи называют условиями (или условием, как в начальной школе). В задаче обычно не одно условие, а несколько элементарных условий. Они представляют собой количественные или качественные характеристики объектов задачи и отношений между ними. Требований в задаче может быть несколько. Они могут быть сформулированы как в вопросительной, так и утвердительной форме. Условия и требования взаимосвязаны.
Систему взаимосвязанных условий и требований называют высказывательной моделью задачи.
Таким образом, чтобы понять, какова структура задачи, надо выявить ее условия и требования, отбросив все лишнее, второстепенное, не влияющее на ее структуру. Иными словами, надо построить высказывательную модель задачи.
Чтобы получить эту модель, надо текст задачи развернуть (сделать это можно письменно или устно), так как текст задачи, как правило, дается в сокращенном, свернутом виде. Для этого можно перефразировать задачу, построить ее графическую модель, ввести какие-либо обозначения и т.д.
Кроме того, вычленение условий задачи можно производить с разной глубиной. Глубина анализа условий и требований задачи зависит главным образом от того, знакомы ли мы с видом задач, к которому принадлежит заданная, и знаем ли мы способ решения таких задач.
Пример 1. Сформулируйте условия и требования задачи:
Две девочки одновременно побежали навстречу друг другу по спортивной дорожке, длина которой 420 м. Когда они встретились, первая пробежала на 60 м больше, чем вторая. С какой скоростью бежала каждая девочка, если они встретились через 30 с?
В задаче речь идет о движении двух девочек навстречу друг другу. Как известно, движение характеризуется тремя величинами: расстоянием, скоростью и временем.
Условия задачи:
Две девочки бегут навстречу друг другу.
Движение они начали одновременно.
Расстояние, которое они пробежали, - 420 м.
Одна девочка пробежала на 60 м больше, чем другая.
Девочки встретились через 30 с.
Скорость движения одной девочки больше скорости движения другой.
Требования задачи:
С какой скоростью бежала 1-я девочка?
С какой скоростью бежала 2-я девочка?
По отношению между условиями и требованиями различают:
а) определенные задачи - в них заданных условий столько, сколько необходимо и достаточно для выполнения требований;
б) недоопределенные задачи - в них условий недостаточно для получения ответа;
в) переопределенные задачи - в них имеются лишние условия.
В начальной школе недоопределенные задачи считают задачами с недостающими данными, а переопределенные - задачами с избыточными данными.
Например, задача «Возле дома росло 5 яблонь, 2 вишни и 3 березы. Сколько фруктовых деревьев росло возле дома?» является переопределенной, так как содержит лишнее условие.
Задача «Из зала вынесли сначала 12 стульев, потом еще 5. Сколько стульев осталось в зале?» является недоопределенной - в ней условий недостаточно, чтобы ответить на поставленный вопрос.
Уточним теперь смысл термина «решение задачи». Так сложилось, что этим термином обозначают разные понятия:
решением задачи называют результат, т.е. ответ на требование задачи;
решением задачи называют процесс нахождения этого результата, причем этот процесс рассматривают двояко: и как метод нахождения результата (например, говорят о решении задачи арифметическим способом) и как последовательность тех действий, которые выполняет решающий, применяя тот или иной метод (т.е. в данном случае под решением задачи понимается вся деятельность человека, решающего задачу).

Упражнения
1. В следующих задачах выделите условия и требования:
а) Два автобуса отправились одновременно из города в село, расстояние до которого 72 км. Первый автобус прибыл в село на 15 мин раньше второго. С какой скоростью шел каждый автобус, если скорость одного из них на 4 км/ч больше скорости другого?
б) Сумма двух чисел равна 199. Найдите эти числа, если одно из них больше другого на 61.
Задачи из упражнения 1 сформулируйте таким образом, чтобы предложение, содержащее требование, не содержало условий.
В задачах из упражнения 1 повелительную форму требований замените вопросительной, вопросительную - повелительной.
Решите задачи из упражнения I.
5. Даны условия задачи: «Собрали 42 кг огурцов и 5/7 всех огурцов засолили».
Из нижеследуемого списка выберите требования к данному условию и решите полученную задачу:
а) Сколько килограммов огурцов осталось незасоленными?
б) Сколько килограммов помидор осталось незасоленными?
в) Что больше - масса огурцов, которые посолили или масса огурцов, которые остались незасоленными?
6. Сформулируйте возможные требования к условию задачи:
а) Купили 12 м ткани и третью часть ткани израсходовали на платье.
б) Из деревни вышел пешеход, а через 2 ч вслед за ним выехал велосипедист. Скорость велосипедиста 10 км/ч, а скорость пешехода 5 км/ч.
7. Какие данные необходимы для ответа на следующее требование задачи:
а) Какая часть урока использована на решение задачи?
б) Сколько платьев сшили из купленной ткани?
в) Найдите периметр прямоугольника.
8. Ученику была предложена задача: «Велосипедист ехал 2 часа с некоторой скоростью. После того как он проедет 60 км с такой же скоростью, его путь станет равным 48 км. С какой скоростью ехал велосипедист?» Он решил ее так:
1)60-48= 12 (км)
2) 12:2 = 6 (км/ч)
Ответ: 6 км/ч - скорость велосипедиста.
Согласны ли вы с таким решением данной задачи?
9. Можете ли вы дать ответ на требование следующей задачи:
а) За 3 м ткани заплатили 60000 р. Во второй раз купили 6 м ткани. Сколько денег заплатили за ткань, купленную во второй раз?
б) Два мотоциклиста едут навстречу друг другу. Скорость одного них 62 км/ч, а скорость другого 54 км/ч. Через сколько часов мотоциклисты встретятся?
В случае если нельзя ответить на требование задачи, дополните ее условие и решите задачу.
10. Есть ли среди нижеприведенных задачи с лишними данными:
а) Объем комнаты равен 72 мі. Высота комнаты 3 м. Найдите площадь пола комнаты, если ее длина 6 м.
5) Для посадки леса выделили участок, площадь которого 300 га. Ду6ы посадили на 7/10 участка, а сосны на 3/10 участка. Сколько гектаров занято дубами и соснами?
В случае если в задаче есть лишние данные, то исключите их и решнте задачу.
30. Методы и способы решения текстовых задач
Основными методами решения текстовых задач являются арифметический и алгебраический.
Решить задачу арифметическим методом - это значит найти ответ а требование задачи посредством выполнения арифметических действий над числами.
Одну и ту же задачу можно решить различными арифметическими способами. Они отличаются друг от друга логикой рассуждений, выполняемых в процессе решения задачи.
Решим, например, различными арифметическими способами такую задачу: «Сшили 3 платья, расходуя на каждое по 4 м ткани. Сколько кофт можно было сшить из этой ткани, если расходовать на одну кофту 2 м?»
1 способ
1) 4(3= 12 (м) - столько было ткани;
2) 12:2 = 6 (кофт) - столько кофт можно сшить из 12 м ткани.
2 способ
1) 4:2 = 2 (раза) - во столько раз больше идет ткани на платье, чем на кофту;
2) 3(2 = 6 (кофт) - столько кофт можно сшить.
Решить задачу алгебраическим методом - это значит найти ответ на требование задачи, составив и решив уравнение или систему уравнений.
Если для одной и той же задачи можно составить различные уравнения (системы уравнений), то это означает, что данную задачу можно решить различными алгебраическими способами.
Например, задачу о массе шерсти, израсходованной на свитер, шапку и шарф (с. 106), можно решить тремя различными способами.
1 способ
Обозначим через х (г) массу шерсти, израсходованной на шапку. Тогда на шарф будет израсходовано (х + 100) г, а на свитер ((х + 100) + 400) г. Так как на все три веши израсходовано 1200 г, то можно составить уравнение
х + (х + 100) + ((х + 100) + 400) = 1200.
Выполнив преобразования, получим, что х = 200. Таким образом, на шапку было израсходовано 200 г, на шарф - 300 г, так как 200 + 100 = = 300, на свитер - 700 г, так как (200 + 100) + 400 = 700.
2 способ
Обозначим через х (г) массу шерсти, израсходованной на шарф. Тогда на шапку будет израсходовано (х - 100) г, а на свитер - (х + 400) г. Поскольку на все три вещи израсходовано 1200 г, то можно составить уравнение:
х + (х - 100) + (х + 400) = 1200.
Выполнив преобразования, получим, что х = 300. Таким образом, если на шарф израсходовали 300 г, то на шапку 200 г (300 - 100 = 200), а на свитер 700 г (300 + 400 = 700).
3 способ
Обозначим через х (г) массу шерсти, израсходованной на свитер. Тогда на шарф будет израсходовано (х - 400) г, а на шапку (х - 400 - 100) г. Поскольку на все три вещи израсходовано 1200 г, то можно составить уравнение:
х + (х - 400) +(х - 500)= 1200.
Выполнив преобразования, получим, что х = 700. Таким образом, если на свитер израсходовано 700 г, то на шарф пошло 300 г (700 - 400 = 300), а на шапку - 200 г (700 - 400 - 100 = 200).
Упражнения
Решите различными алгебраическими способами задачу о девочках, которые бегут навстречу друг другу (с. 107).
Ниже приведены два арифметических способа решений этой же задачи. Дайте пояснения к каждому действию.
1 способ 2 способ
420 - 60 = 360 (м) 1) 420 + 60 = 480 (м)
360 : 2 = 180 (м) 2) 480 : 2 = 240 (м)
180 : 30 = 6 (м/с.) 3) 240 : 30 = 8 (м/с)
180 + 60 = 240 (м) 4) 240 – 60 = 180 (м)
240 : 30 = 8 (м/с) 5) 180:30 = 6 (м/с)
3. Решите различными арифметическими способами задачи:
а) Ученик затратил на подготовку уроков 1 ч 50 мин. Занятия русским языком заняли на 15 мин больше, чем географией, и на 20 мин меньше, чем математикой. Сколько времени ушло на подготовку каждого предмета отдельно.
б) Расстояние между двумя городами по железной дороге 720 км. Два поезда одновременно выходят навстречу друг другу и встречаются через 10 ч. Скорость одного поезда на 8 км/ч больше скорости второго поезда. Найдите скорость каждого поезда.
в) Боковая сторона равнобедренного треугольника на 10 см больше основания. Периметр треугольника равен 26 см. Найдите основание треугольника
31. Этапы решения задачи и приемы их выполнения
Решение любой задачи процесс сложной умственной деятельности. Чтобы овладеть им, надо знать основные лапы решения задачи и некоторые приемы их выполнения.
Деятельность по решению задачи арифметическим методом включает следующие основные этапы:
Анализ задачи.
Поиск плана решения задачи.
Осуществление плана решения задачи.
Проверка решения задачи.
В реальном процессе решения задачи названные этапы не имеют четких границ и не всегда выполняются одинаково полно. Все зависит от уровня знаний и умений решающего. Например, если после прочтения задачи вы обнаружили, что она известного вам вида и вы знаете, как ее решать, то, конечно, поиск плана не вычленяется в отдельный этап. Однако полное, логически завершенное решение обязательно содержит все указанные этапы, а знание приемов их выполнения делает процесс решения любой задачи осознанным и целенаправленным, а значит, и более успешным.
1. Анализ задачи
Основное назначение этого этапа - понять в целом ситуацию, описанную в задаче; выделить условия и требования: назвать известные и искомые объекты, выделить все отношения (зависимости) между ними.
Производя анализ задачи, вычленяя ее условия, мы должны соотносить этот анализ с требованиями задачи, Другими словами, анализ задачи всегда направлен на ее требования.
Известно несколько приемов, которые можно использовать при анализе задачи.
Разобраться в содержании задачи, вычленить условия и требования можно, если задать специальные вопросы и ответить на них:
О чем задача, т.е. о каком процессе (явлении, ситуации) идет речь в задаче, какими величинами характеризуется этот процесс?
Что требуется найти в задаче?
Что обозначают те или иные слова в тексте задачи:
Что в задаче известно о названных величинах?
Что неизвестно?
Что является искомым?
Рассмотрим, например, задачу: «По дороге в одном и том же направлении идут два мальчика. Вначале расстояние между ними было 2 км, но так как скорость идущего впереди мальчика 4 км/ч, а скорость второго 5 км/ч, то второй нагоняет первого. С начала движения и до того, как второй мальчик догонит первого, между ними бегает собака со скоростью 8 км/ч. От идущего позади мальчика она бежит к идущему впереди, добежав, возвращается обратно и так бегает до тех пор, пока мальчики не окажутся рядом. Какое расстояние пробежит за все это время собака?»
Воспользуемся указанным приемом
1) О чем эта задача?
- Задача о движении двух мальчиков и собаки. Оно характеризуется для каждого из участников движения скоростью, временем и пройденным расстоянием.
2) Что требуется найти в задаче?
- В задаче требуется найти расстояние, которое пробежит собака за все время от начала движения, пока мальчики не окажутся рядом, т.е. второй не догонит первого.
3) Что в задаче известно о движении каждого из его участников9
- В задаче известно, что: а) мальчики идут в одном направлении;
б) до начала движения расстояние между мальчиками было 2 км;
в) скорость первого мальчика, идущего впереди. 4 км/ч; г) скорость второго мальчика, идущею позади, 5 км/ч: д) скорость, с которой бежит собака, 8 км/ч; е) время движения, когда расстояние между мальчиками было 2 км, до момента встречи.
4) Что в задаче неизвестно?
- В задаче неизвестно время, за которое второй мальчик догонит первого, т.е. неизвестно время движения всех его участников. Неизвестно также, с какой скоростью происходит сближение мальчиков. И неизвестно расстояние, которое пробежала собаки, это требуется узнать в задаче.
5) Что является искомым: число, значение величины, вид некоторого отношения?
Искомым является значение величины расстояния, которое пробежала собака за время от начала движения мальчиков до момента встречи
Большую помощь в осмыслении задачи оказывает другой прием - перефразировка текста задачи. Он заключается в замене данного в задаче описания некоторой ситуации другим, сохраняющим все отношения, связи, качественные характеристики, но более явно их выражающим. Это достигается в результате отбрасывания несущественной, излишней информации, замены описания некоторых понятий соответствующими терминами и. наоборот, замены некоторых терминов описанием содержания соответствующих понятий; преобразование текста задачи в форму, удобную для поиска плана решения.
Особенно эффективно использование данного приема в сочетании с разбиением текста на смысловые части.
Результатом перефразировки должно быть выделение основных ситуаций.
Поскольку в задаче, рассмотренной выше, речь идет о движении, ее можно перефразировать следующим образом:
«Скорость одного мальчика 4 км/ч, а скорость догоняющего его второго мальчика 5 км/ч (это первая часть). Расстояние, на которое мальчики сблизились, 2 км (вторая часть). Время движения мальчиков - это время, в течение которого второй мальчик догонит первого, т.е. в течение которого второй мальчик пройдет на 2 км больше, чем первый (третья часть). Скорость, с которой бежит собака, 8 км/ч. Время движения собаки равно времени движения мальчиков до встречи (четвертая часть). Требуется определить расстояние, которое пробежала собака».
Перефразированный текст часто бывает полезно записать в таблице.
Например, рассматриваемую задачу можно записать с помощью таблицы такого вида:

Скорость
Время
Расстояние

1-й мальчик 4 км/ч 2-й мальчик 5 км/ч Собака 8 км/ч
??
? Одинаковое
?
?
? На 2 км больше 1-го мальчика
?

Построением схематического чертежа может быть завершен анализ задачи о массе шерсти, израсходованной на шапку, шарф и свитер. Для этого условимся массу шерсти, израсходованной на шапку, изобразить в виде отрезка произвольной длины. Тогда массу шерсти, израсходованной на шарф и свитер, можно изобразить так, как показано на рисунке 39.


1200 г
Рис. 39
И таблица, и схематический чертеж являются вспомогательными моделями задачи. Они служат формой фиксации анализа текстовой задачи и являются основным средством поиска плана ее решения.
После построения вспомогательной модели необходимо проверить:
все ли объекты задачи и их величины показаны на модели;
все ли отношения между ними отражены;
все ли числовые данные приведены;
есть ли вопрос (требование) и правильно ли он указывает искомое?
2. Поиск и составление плана решения задачи
Назначение этого этапа: установить связь между данными и искомыми объектами, наметить последовательность действий.
План решения задачи - это лишь идея решения, его замысел. Может случиться, что найденная идея неверна. Тогда надо вновь возвращаться к анализу задачи и начинать все сначала.
Как искать план решения текстовой задачи? Односложного ответа на этот вопрос нет. Поиск плана решения задачи является трудным процессом, который точно не определен. Можно только указать некоторые приемы, которые позволят осуществлять этот этап. Одним из наиболее известных приемов поиска плана решения задачи арифметическим способом является разбор задачи по тексту или по ее вспомогательной модели.
Разбор задачи проводится в виде цепочки рассуждений, которая может начинаться как от данных задачи, так и от ее вопросов.
При разборе задачи от данных к вопросу решающий выделяет в тексте задачи два данных и на основе знания связи между ними (такие знания должны быть получены при анализе задачи) определить, какое неизвестное может быть найдено по этим данным и с помощью какого арифметического действия. Затем, считая это неизвестное данным, решающий вновь выделяет два взаимосвязанных данных, определяет неизвестное, которое может быть найдено по ним и с помощью какого действия и т.д., пока не будет выяснено, какое действие приводит к получению искомого в задаче объекта. Проведем такой разбор по тексту задачи:
«На поезде, который шел со скоростью 56 км/ч, турист проехал 6 ч. (осле этого ему осталось проехать в 4 раза больше, чем проехал. Каков весь путь туриста?»
Рассуждения ведем от данных к вопросу: известно, что 6 ч турист проехал на поезде, который шел со скоростью 56 км/ч; по этим данным можно узнать расстояние, которое проехал турист за 6 ч, для этого достаточно скорость умножить на время. Зная пройденную часть расстояния и то, что оставшееся расстояние в 4 раза больше, можно найти, ему оно равно. Для этого пройденное расстояние нужно умножить на 4 (увеличить в 4 раза). Зная, сколько километров турист проехал и сколько ему осталось ехать, можем найти весь путь, выполнив сложение найденных отрезков пути. Итак, первым действием будем находить расстояние, которое турист проехал на поезде; вторым действием расстояние, которое ему осталось проехать; третьим - весь путь.
При разборе задачи от вопроса к данным нужно обратить внимание на вопрос задачи и установить (на основе информации, полученной при анализе задачи), что достаточно узнать для ответа на этот вопрос. Для чего нужно обратиться к условиям и выяснить, есть ли для этого необходимые данные. Если таких данных нет или есть только одно данное, то установить, что нужно знать, чтобы найти недостающее данное (недостающие данные), и т.д. Потом составляется план решения задачи. Рассуждения при этом проводятся в обратном порядке.
Проведем такой разбор той же задачи о движении туриста, строя цепочку рассуждений от вопроса к данным: «В задаче требуется узнать весь путь туриста. Мы установили, что путь состоит из двух частей. значит, для выполнения требования задачи достаточно знать, сколько километров турист проехал и сколько километров ему осталось проехать. И то, и другое неизвестно. Чтобы найти пройденный путь, достаточно знать время и скорость, с которой ехал турист. Это в задаче неизвестно. Умножив скорость на время, узнаем путь, который турист проехал. Оставшийся путь можно найти, увеличив пройденный путь в 4 раза (умножив на 4). Итак, вначале можно узнать пройденный путь, затем оставшийся, после чего сложением найти весь путь».
Поиск плана решения задачи может проводиться по вспомогательной модели, выполненной при анализе задачи.
Покажем, как можно осуществить поиск плана решения задачи о массе шерсти, израсходованной на шарф, шапку и свитер, по схематическому чертежу (рис. 39).
По чертежу видно, на сколько больше израсходовали на свитер, чем, например, на шарф; если из всей массы шерсти вычесть 400 г, то мы узнаем, сколько бы всего израсходовали шерсти, если бы на свитер израсходовали столько же, сколько на шарф. Далее, если к этой массе шерсти прибавить 100 г, то мы узнаем, сколько бы всего израсходовали шерсти, если бы на шапку израсходовали столько же, сколько на шарф. Разделив полученное число на 3, найдем массу шерсти, израсходованную на шарф. Вычтя из полученного результата 100 г, а затем прибавив к нему 400 г, найдем массу шерсти, использованную на шапку и на свитер.
Заметим, что поиск плана решения данной задачи по схематическому чертежу может быть проведен иначе (сделайте это самостоятельно), - в результате мы получим различные арифметические способы ее решения.
3. Осуществление плана решения задачи
Назначение данного этапа найти ответ на требование задачи, выполнив все действия в соответствии с планом.
Для текстовых задач, решаемых арифметическим способом, используются следующие приемы:
запись по действиям (с пояснением, без пояснения, с вопросами);
запись в виде выражения.
Приведем примеры различных записей плана решения задачи: «На поезде, скорость которого 56 км/ч, турист проехал 6 ч. После этого ему осталось проехать в 4 раза больше, чем он проехал. Каков весь путь туриста?»
1. Запись решения по действиям с пояснением к каждому выполненному действию.
56
· 6 = 336 (км) - турист проехал за 6 ч
336
· 4 = 1344 (км) - осталось проехать туристу
336 + 1344 = 1680 (км) - должен был проехать турист.
Если пояснения даются в устной форме (или совсем не даются), то запись будет следующей: 1)56
· 6 = 336 (км) 2)336
· 4= 1344 (км) 3)336+ 1344= 1680 (км)
2. Запись решения по действиям с вопросами:
Сколько километров проехал турист на поезде? 56
· 6 = 336 (км)
Сколько километров осталось проехать туристу? 336
· 4= 1344 (км)
Сколько километров турист должен был проехать? 336 + 1344 = 1680(км)
3. Запись решения в виде выражения.
Запись решения в этой форме осуществляется поэтапно. Сначала записываются отдельные шаги в соответствии с планом, затем составляется выражение и находится его значение. Так как обычно это значение записывают, поставив после числового выражения знак равенства, то запись становится числовым равенством, в левой части которого - выражение, составленное по условию задачи, а в правой -- его значение, оно-то и позволяет сделать вывод о выполнении требований задачи.
Так, для рассматриваемой задачи эта форма записи имеет вид:
56 6 (км) - расстояние, которое проехал турист на поезде за 6 ч
5664 (км) - расстояние, которое осталось проехать туристу
566 + 5664 (км) - путь, который должен проехать турист
566 + 5664 = 1680 (км)
Пояснения к действиям можно не записывать, а давать их в устной форме. Тогда запись решения задачи примет вид: 566 + 5664 = 1680 (км)
4. Проверка решения задачи
Назначение данного этапа установить правильность или ошибочность выполненного решения.
Известно несколько приемов, помогающих установить, верно ли решена задача. Рассмотрим основные.
1. Установление соответствия между результатом и условиями задачи.
Для этого найденный результат вводится в текст задачи и на основе рассуждений устанавливается, не возникает ли при этом противоречия.
Проверим, используя данный прием, правильность решения задачи о движении туриста.
Мы установили, что турист должен был всего проехать 1680 км. Пусть теперь этот результат будет одним из данных задачи. Далее, как известно, за 6 ч турист проедет 336 км (56( 6 = 336) и ему останется проехать 1680 - 336 = 1344 (км). Согласно условию задачи это расстояние должно быть в 4 раза больше того, которое турист проехал на поезде за 6 ч. Проверим это, разделив 1344 на 336. Действительно, 1344:336 = 4. Следовательно, если найденный результат подставить в условие задачи, то противоречий с другими данными, а именно отношением «быть больше в 4 раза», не возникает. Значит, задача решена верно.
Заметим, что при использовании данного приема проверяются все отношения, имеющиеся в задаче, и если устанавливается, что противоречия не возникает, то делают вывод о том, что задача решена верно.
2. Решение задачи другим способом.
Пусть при решении задачи каким-то способом получен некоторый результат. Если ее решение другим способом приводит к тому же результату, то можно сделать вывод о том, что задача была решена верно.
Заметим, что если задача решена первоначально арифметическим способом, то правильность ее решения можно проверить, решив задачу алгебраическим методом.
Не следует также думать, что без проверки нет решения текстовой задачи. Правильность решения обеспечивается прежде всего четкими и логичными рассуждениями на всех других этапах работы над задачей.
5. Моделирование в процессе решения текстовых задач
Рассматривая процесс решения текстовой задачи, мы неоднократно использовали термин «модель», «моделирование». Это не случайно. Во всех науках модели выступают как мощное орудие познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому более простую, чем эта реальность.
Ранее мы установили, что текстовая задача - это словесная модель некоторого явления (ситуации, процесса). Чтобы решить такую задачу, надо перевести ее на язык математических действий, т.е. построить ее математическую модель.
Вообще, математическая модель - это описание какого-либо реального процесса на математическом языке.
Математической моделью текстовой задачи является выражение (либо запись по действиям), если задача решается арифметическим методом, и уравнение (либо система уравнений), если задача решается алгебраическим методом.
В процессе решения задачи четко выделяются три этапа математического моделирования:
I этап - это перевод условий задачи на математический язык; при этом выделяются необходимые для решения данные и искомые и математическими способами описываются связи между ними;
II этап – внутримодельное решение (т.е. нахождение значения выражения, выполнение действий, решение уравнения);
III этап - интерпретация, т.е. перевод полученного решения на тот язык, на котором была сформулирована исходная задача.
Проиллюстрируем сказанное на примере решения алгебраическим методом следующей задачи: «В одном вагоне электропоезда было пассажиров в 2 раза больше, чем в другом. Когда из первого вагона вышли 3 человека, а во второй вагон вошли 7 человек, то в обоих вагонах пассажиров стало поровну. Сколько пассажиров было в каждом вагоне первоначально?»
Обозначим через х первоначальное число пассажиров во втором вагоне. Тогда число пассажиров в первом вагоне – 2х. Когда из первого вагона вышли 3 человека, в нем осталось 2х - 3 пассажира. Во второй вагон вошли 7 человек, значит, в нем стало х + 7 пассажиров. Так как в обоих вагонах пассажиров стало поровну, то можно записать, что 2х - 3 = х + 7. Получили уравнение - это математическая модель данной задачи.
Следующий этап - решение полученного уравнения вне зависимости от того, что в нем обозначает переменная х: переносим в левую часть члены уравнения, содержащие х, а в правую - не содержащие х, причем у переносимых членов знаки меняем на противоположные: 2х – х = 7 + 3. Приводим подобные члены и получаем, что х = 10.
Последний, третий этап - используем полученное решение, чтобы ответить на вопрос задачи: во втором вагоне было первоначально 10 человек, а в первом - 20 (10-2 = 20).
Наибольшую сложность в процессе решения текстовой задачи представляет перевод текста с естественного языка на математический, т.е. I этап математического моделирования. Чтобы облегчить эту процедуру, строят вспомогательные модели - схемы, таблицы и др. Тогда процесс решения задачи можно рассматривать как переход от одной модели к другой: от словесной модели реальной ситуации, представленной в задаче, к вспомогательной (схемы, таблицы, рисунки и т.д.); от нее - к математической, на которой и происходит решение задачи.
Такой подход к процессу решения задачи разделяют и психологи. Они считают, что процесс решения задачи есть сложный процесс поиска системы моделей и определенной последовательности перехода от одного уровня моделирования к другому, более обобщенному, что решение задачи человеком есть процесс ее переформулирования. При этом используется такая операция мышления, как анализ через синтез, когда объект в процессе мышления включается во все новые связи и в силу этого выступает во все новых качествах. Главным средством переформулирования является моделирование.
Прием моделирования заключается в том, что для исследования какого-либо объекта (в нашем случае текстовой задачи) выбирают (или строят) другой объект, в каком-то отношении подобный тому, который исследуют. Построенный новый объект изучают, с его помощью решают исследовательские задачи, а затем результат переносят на первоначальный объект.
Модели бывают разные, и поскольку в литературе нет единообразия в их названиях, уточним терминологию, которую будем использовать в дальнейшем.
Все модели можно разделить на схематизированные и знаковые по видам средств, используемых для их построения.
Схематизированные модели, в свою очередь, делятся на вещественные и графические в зависимости от того, какое действие они обеспечивают. Вещественные (или предметные) модели текстовых задач обеспечивают физическое действие с предметами. Они могут строиться из каких-либо предметов (пуговиц, спичек, бумажных полосок и т.д.), они могут быть представлены разного рода инсценировками сюжета задач. К этому виду моделей причисляют и мысленное воссоздание реальной ситуации, описанной в задаче, в виде представлений.
Графические модели используются, как правило, для обобщенного, схематического воссоздания ситуации задачи. К графическим следует отнести следующие виды моделей:
рисунок;
условный рисунок;
чертеж;
схематичный чертеж (или просто схема).
Разъясним суть этих моделей на примере задачи: «Лида нарисовала 4 домика, а Вова на 3 домика больше. Сколько домиков нарисовал Вова?»
Рисунок в качестве графической модели этой задачи имеет вид (рис. 40).
13 SHAPE \* MERGEFORMAT 1415
Чертеж как графическая модель выполняется при помощи чертежах инструментов с соблюдением заданных отношений (рис. 42).
Схематический чертеж (схема) может выполняться от руки, на нем указываются все данные и искомые (рис. 43).

Рис. 43
Знаковые модели могут быть выполнены как на естественном, так и на математическом языке. К знаковым моделям, выполненным на естественном языке, можно отнести краткую запись задачи, таблицы. Например, краткая запись задачи о домиках Лиды и Вовы может быть такой:
Л. - 4 д.
В. - ?, на 3 д. больше, чем Л. Таблица как вид знаковой модели используется главным образом тогда, когда в задаче имеется несколько взаимосвязанных величин, каждая из которых задана одним или несколькими значениями. Пример такой таблицы см. на с. 113.
Знаковыми моделями текстовых задач, выполненными на математическом языке, являются: выражение, уравнение, система уравнений, запись решения задачи по действиям. Поскольку на этих моделях происходит решение задачи, их называют решающими моделями. Остальные модели, все схематизированные и злаковые, выполненные на естественном языке, - это вспомогательные модели, которые обеспечивают переход от текста задачи к математической модели.
Не следует думать, что всякая краткая запись или чертеж, выполненные для данной задачи, являются ее моделями. Так как модель – это своеобразная копия задачи, то на ней должны быть представлены все ее объекты, все отношения между ними, указаны требования.
Для большинства текстовых задач приходится строить различные вспомогательные модели. С одной стороны, эти модели представляют собой результат анализа задачи, но с другой - построение таких моделей организует и направляет детальный и глубокий анализ задачи.
Рассмотрим процесс решения арифметическим методом текстовой задачи о пассажирах в двух вагонах.
Предварительный анализ задачи позволяет выделить ее объекты - это пассажиры в двух вагонах поезда. О них известно, что:
В первом вагоне в 2 раза больше пассажиров, чем во втором.
Из первого вагона вышли 3 пассажира.
Во второй вошли 7 пассажиров.
В первом и втором вагонах пассажиров стало поровну. В задаче два требования:
1) Сколько пассажиров было первоначально в первом вагоне?
2) Сколько пассажиров было первоначально во втором вагоне? Построим графическую модель данной задачи в виде схематического чертежа (рис. 44).

По схеме сразу видно, что математическая модель данной задачи имеет вид:
7 + 3 - это число пассажиров во II вагоне, а
(7 + 3)(2 - это число пассажиров в 1 вагоне.
Рис. 44
Произведя вычисления, получаем ответ на вопрос задачи: во II вагоне было 10 пассажиров, а в I - 20 пассажиров.
Упражнения
1. Используя материал данного параграфа, заполните следующую таблицу при условии, что решение задачи (РЗ) выполняется арифметическим методом,

Название этапа РЗ
Цель этапа
Приемы выполнении этапа

Анализ задачи



Поиск плана решения



Осуществление плана решения



Проверка



2. Выполните анализ нижеприведенных задач, используя различные приемы:
а) Ученик купил тетрадей в клетку в 3 раза больше, чем тетрадей в линейку, причем их было на 18 больше, чем тетрадей в линейку.
Сколько всего тетрадей купил ученик?
б) В трех классах всего 83 учащихся. В первом классе на 4 ученика больше, чем во втором, и на 3 меньше, чем в третьем. Сколько учеников в каждом классе?
в) Мальчики полили 8 яблонь и 4 сливы, принеся 140 ведер воды. Сколько ведер воды вылили под яблони, а сколько под сливы, если на полив одной яблони уходит воды в 3 раза больше, чем на полив одной сливы.
Выполните поиск плана решения арифметическим методом задачи а) из упражнения 2 по модели, а поиск плана решения задачи в) по тексту.
Запишите решение задачи из упражнения 2 по действиям с пояснением.
Какие из задач упражнения 2 вы можете решить различными арифметическими способами?
Каким образом можно проверить правильность найденного результата для задачи а) из упражнения 2?
Решите арифметическим методом задачи, выделяя этапы решения и приемы их выполнения:
а) Ручка в два раза дороже карандаша, а резинка в три раза дешевле карандаша. Ручка, карандаш и резинка стоят вместе 4000 р. Сколько стоит резинка?
б) Сын на 24 года младше мамы, а папа на 3 года старше мамы. Сколько лет папе, если сыну 10 лет?
в) Один кусок проволоки на 54 м длиннее другого. После того как от каждого из кусков отрезали по 12 м, второй кусок оказался в 4 раза короче первого. Найдите первоначальную длину каждого куска проволок!)..
8. Дана задача: «Два велосипедиста одновременно выехали навстречу друг другу из двух поселков, расстояние между которыми 76 км. Через 2 ч они встретились. Какова скорость каждого велосипедиста. если известно, что скорость одного из них на 3 км/ч меньше другого»
Сравните разные способы ее решения.
1 способ 2 способ
1)76:2 = 38 (км/ч) 1)3
·2 = 6 (км)
38 - 3 = 35 (км/ч) 2) 76 - 6 = 70 (км)
35:2 = 17,5 (км/ч) 3) 70:2 = 35 (км)
17,5 + 3 = 20,5 (км/ч) 4) 35:2. = 17,5 (км/ч)
5)17,5 +3 = 20,5 (км/ч)
При каком способе рассуждения проще?


Лекция 12. Текстовая задача и процесс ее решения
План:
1. Решение задач «на части»
2. Решение задач на движение
3. Основные выводы
32. Решение задач «на части»
Само название вида задач говорит о том, что рассматриваемые в них величины состоят из частей. В некоторых из них части представлены явно, в других эти части надо суметь выделить, приняв подходящую величину за 1 часть и определив, из скольких таких частей состоят другие величины, о которых идет речь в задаче.
При решении таких задач арифметическим методом чаше всего используют вспомогательные модели, выполненные с помощью отрезков или прямоугольников.
Задача 1. Для варки варенья из вишни на 2 части ягод берут 3 части сахара. Сколько сахара надо взять па 10 кг ягод?
Решение. В задаче речь идет о массе ягод и массе сахара, необходимых для варки варенья. Известно, что всего ягод 10 кг и что на 2 части ягод надо брать 3 части сахара. Требуется найти массу сахара. чтобы сварить варенье из 10 кг ягод.
Изобразим при помощи отрезка данную массу ягод (рис. 45). Тогда половина этого отрезка представляет собой массу ягод, которая приходится на 1 часть.
В 10 кг
13 SHAPE \* MERGEFORMAT 1415
С ?
Рис. 45
Сахара, по условию задачи, надо 3 таких части. Запишем решение по действиям с пояснением:
1) 10:2 = 5 (кг) - столько килограммов ягод приходится на каждую часть;
2) 5 (3 = 15 (кг) - столько надо взять сахара. Вспомогательную модель к данной задаче можно было выполнить при помощи прямоугольников (рис. 46).
10 кг ?

Рис. 46
Задача 2. В первой пачке было на 10 тетрадей больше, чем во второй. Всего было 70 тетрадей. Сколько тетрадей было в каждой пачке?
Решение. В задаче рассматриваются две пачки тетрадей. Всего тетрадей 70. В одной пачке тетрадей на 10 больше, чем во второй. Требуется узнать, сколько тетрадей было в каждой пачке.
Изобразим при помощи отрезка количество тетрадей во второй пачке. Тогда тетради в первой пачке можно представить в виде отрезка, который больше второго (рис. 47). По чертежу видно, что если тетради
10 т.
13 SHAPE \* MERGEFORMAT 1415
Рис. 47
во второй пачке составляют 1 часть всех тетрадей, то тетради в первой составляют также 1 часть и еще 10 тетрадей.
Если эти 10 тетрадей убрать из первой пачки, то в пачках тетрадей станет поровну - столько, сколько во второй пачке.
Запишем решение задачи по действиям с пояснением.
70-10 = 60 (тетр.) - столько тетрадей приходится на 2 равные части, или столько было бы тетрадей в двух пачках, если бы их было поровну - столько, сколько во второй пачке.
60:2 = 30 (тетр.) - столько тетрадей приходится на 1 часть, или столько тетрадей было во второй пачке.
3) 30 +10 40 (тетр.) - столько тетрадей было в первой пачке. Вспомогательная модель подсказывает и второй способ решения данной задачи. Если за I часть принять тетради в первой пачке, то чтобы во второй стало столько же, надо к ней добавить 10 тетрадей. И тогда решение будет таким:
1) 70+10 = 80 (тетр.)
2) 80:2 = 40 (тетр.)
3) 40-10 = 30 (тетр.)
Существует и третий арифметический способ решения данной задачи. Разделим 10 тетрадей пополам и одну половину оставим к первой пачке, а другую добавим во вторую. Тогда тетрадей в пачках станет поровну и можно, разделив 70 на 2 равные части, узнать, сколько тетрадей в каждой такой пачке, а затем их первоначальное количество в каждой пачке.
10:2 = 5 (тетр.) - столько тетрадей надо переложить из первой пачки во вторую, чтобы в них тетрадей стало поровну.
70:2 = 35 (тетр.) - столько тетрадей в каждой пачке, если из первой переложить во вторую 5 тетрадей.
35 + 5 = 40 (гетр.) - столько тетрадей в первой пачке.
4) 35-5 = 30 (тетр.) - столько тетрадей во второй пачке. Задача 3. Сумма двух чисел 96, а разность 18. Найдите эти числа. Решение. В этой задаче требуется найти два числа по их сумме и разности. Так как разность искомых чисел равна 18, то одно число больше другого на 18. Получаем задачу, аналогичную задаче 2: «Одно число больше другого па 18. Сумма чисел равна 96. Найти эти числам Решить ее можно тремя арифметическими способами.
Задача 4. В двух кусках ткани одинаковое количество материи. После того как от одного куска отрезали 18 м, а от другого 25 м, в первом куске осталось вдвое больше ткани, чем во втором. Сколько метров ткани было в каждом куске первоначально?
Решение. Объекты задачи - два куска ткани одинаковой длины От первого отрезали 18 м, от второго 25 м. После этого в первом осталось вдвое больше ткани, чем во втором. Требование задачи - найти первоначальное количество метров ткани в каждом куске.
Изобразим куски ткани при помощи отрезков одинаковой длины, а затем покажем на них то количество ткани, которое отрезали
18 м
I

II
Рис. 48
и которое осталось. Если количество ткани, которое осталось во втором куске, - это 1 часть, то количество оставшейся ткани в первом куске - это 2 таких части По чертежу (рис. 48) видно, что на 1 часть приходится количество ткани, которое легко найти. Запишем найденное решение по действиям:

25-18 = 7 (м) - на столько больше ткани отрезали от второго куска, или количество ткани, которое осталось во втором куске
7 + 25 -- 32 (м) - столько ткани было первоначально во втором куске (и, следовательно, в первом) куске.
Упражнения
1. Изобразите при помощи отрезков ситуации:
а) купили р кг яблок, а груш на 1 кг больше;
б) купили р кг яблок, а груш в 2 раза больше.
Какими могут быть требования к данным ситуациям? Для каждого случая постройте модель и обозначьте на ней требования.
2. Требуется смешать 3 части песка и 2 части цемента. Сколько цемента и песка в отдельности надо взять, чтобы получить 30 кг смеси?

3, Установите соответствие между вспомогательными моделями и следующими задачами; используя модели, решите задачи:
а) В двух пакетах было 15 яблок. Когда из одного пакета взяли 3 яблока, в нем осталось в 2 раза меньше яблок, чем в другом. Сколько яблок было в каждом пакете?
б) В трех пакетах лежит 20 яблок, причем в одном пакете их в 2 раза меньше, чем в каждом из двух других. Сколько яблок в каждом пакете?
в) У двух мальчиков было 8 яблок. Когда один съел одно яблоко, а другой 3 яблока, у них осталось яблок поровну. Сколько яблок было у каждого?
4. Решите следующие задачи, построив на этапе анализа вспомогательные модели; решение запишите по действиям с пояснением:
а) Мама дала трем девочкам 12 конфет и предложила разделить их так, чтобы младшая получила в 3 раза, а средняя в 2 раза больше старшей. Сколько конфет достанется каждой?
б) На двух тарелках лежало 9 яблок. Когда с одной тарелки взяли одно яблоко, то на этой тарелке осталось яблок в 3 раза больше, чем на другой. Сколько яблок было на каждой тарелке?
в) У моего брата было в 6 раз больше орехов, чем у меня. После того как он отдал 10 орехов сестре, у нас орехов стало поровну. Сколько орехов было у меня и у брата первоначально?
г) Полсотни яблок разложили в корзину и два пакета. В корзину положили на 14 яблок больше, чем в каждый пакет. Сколько яблок в корзине и в пакете?
д) Школьник прочитал 18 страниц за три дня. Если бы он в первый день прочитал на одну страницу больше, а во второй день на 4 страницы меньше, то каждый день он читал бы поровну. По сколько страниц читал школьник каждый день?
5. Постройте вспомогательные модели и с их помощью найдите решения следующих задач:
а) На одной полке на 6 книг больше, чем на другой. Сколько книг нужно переложить с одной полки на другую, чтобы книг стало поровну?
6} Если с одной полки переложить на другую 6 книг, то на обеих полках книг будет поровну. На сколько книг на одной полке больше, чем на другой?
в) На одной полке на 6 книг больше, чем на другой. На сколько книг будет больше на одной полке, чем на другой, если с первой полки переложили на другую 10 книг?
г) На первой полке на 6 книг больше, чем на второй. На сколько книг будет на первой полке больше, если со второй полки переложить на первую 10 книг?
6. Поиск плана решения проведите по вспомогательной модели; решение запишите по действиям; выполните проверку найденного решения:
а) В двух бидонах 28 л краски. Если из одного взять 3 л, а в другой добавить 2 л, то в первом станет на 7 л краски больше, чем во втором. Сколько краски в каждом бидоне?
б) На складе в три раза больше муки, чем в магазине. Если со склада взять 850 т муки, а магазином будет продано 50 т муки, то и на складе, и в магазине муки останется поровну. Сколько муки на складе и сколько в магазине?
в) У Наташи на 15 открыток больше, чем у Сережи. Детям подарили еще по 6 открыток У Наташи стало в 2 раза больше открыток, чем у Сережи. Сколько открыток было у каждого первоначально?
7. Решите различными арифметическими способами:
а) В двух книжных шкафах было 1536 книг. Когда из одного взяли 156 книг, а из другого в три раза больше, то книг в шкафу стало поровну. Сколько книг было в каждом шкафу первоначально?
б) Площадь земли, засеянная пшеницей, в 6 раз больше площади, засеянной ячменем, а площадь, засеянная рожью, в 3 раза меньше площади, засеянной пшеницей. Сколько гектаров земли засеяно каждой культурой, если пшеницей засеяно на 480 га больше, чем рожью?
33. Решение задач на движение
Движение является темой для самых разнообразных задач, в том числе и для задач на части. Но наряду с этим существует и самостоятельный тип задач на движение. Он объединяет такие задачи, которые решаются па основании зависимости между тремя величинами, характеризующими движение: скоростью, расстоянием и временем. Во всех случаях речь идет о равномерном прямолинейном движении.
Итак, движение, рассматриваемое в текстовых задачах, характеризуют три величины: пройденный путь (s), скорость (v), время (t); основное отношение (зависимость) между ними: s = v
· t.
Рассмотрим особенности решения основных видов задач на движение.
Задачи на встречное движение двух тел
Пусть движение первого тела характеризуется величинами s, v, t , движение второго - s, v, t, . Такое движение можно представить на схематическом чертеже (рис. 50):

Рис. 50
Если два объекта начинают движение одновременно навстречу друг другу, то каждое из них с момента выхода и до встречи затрачивает одинаковое время, т.е. t, = t = t вапр.
Расстояние, на которое сближаются движущиеся объекты за единицу времени, называется скоростью сближения, т.е. vсбл. = v + v.
Все расстояние, пройденное движущимися телами при встречном движении, может быть подсчитано по формуле: s = vсбл.
· t вапр
Задача 1. Два пешехода одновременно вышли навстречу друг другу из двух пунктов, расстояние между которыми 18 км. Скорость одного из них 5 км/ч, а другого - 4 км/ч. Через сколько часов они встретились?
Решение. В задаче рассматривается движение навстречу друг другу двух пешеходов. Один идет со скоростью 5 км/ч, а другой - 4 км/ч. Путь, который они должны пройти, 18 км. Требуется найти время, через которое






они встретятся, начав движение одновременно. Вспомогательные модели, если они нужны, могут быть разными - схематический чертеж (рис. 51) или таблица.
Поиск плана решения в данном случае удобно вести, рассуждая от данных к вопросу. Так как скорости пешеходов известны, можно найти их скорость сближения. Зная скорость сближения пешеходов и все расстояние, которое им надо пройти, можем найти время, через которое пешеходы встретятся. Запишем решение задачи по действиям:
1)5+ 4 = 9 (км/ч)
2) 18:9 = 2(ч) Таким образом, пешеходы встретятся через 2 ч от начала движения.
Задача 2. Два автомобиля выехали одновременно навстречу друг другу из двух пунктов, расстояние между которыми 600 км, и через 5 ч встретились. Один их них ехал быстрее другого на 16 км/ч. Определите скорости автомобилей.
Решение. В задаче рассматривается движение навстречу друг другу двух автомобилей. Известно, что движение они начали одновременно и встретились через 5 часов. Скорости автомобилей различны один ехал быстрее другого на 16 км/ч. Путь, который проехали автомобили -600 км. Требуется определить скорости движения.



s
v
t

I
II
600 км
?
? на 16 км/ч больше
5 ч
5 ч



Вспомогательные модели, если они нужны, могут быть различными: схематический чертеж (рис. 52) или таблица.
Поиск плана решения задачи будем вести, рассуждая от данных к вопросу. Так как известно все расстояние и время встречи, можно найти скорость сближения автомобилей. Затем, зная, что скорость одного на 16 км/ч больше скорости другого, можно найти скорости автомобилей. При этом можно воспользоваться вспомогательной моделью.
Запишем решение:
600:5= 120 (км/ч) – скорость сближения автомобилей
120 - 16 = 104 (км/ч) – скорость сближения, если бы скорость автомобилей была одинаковой
104:2 =52 (км/ч) – скорость первого автомобиля.
52 + 16 = 68 (км/ч) – скорость второго автомобиля.
Есть и другие арифметические способы решения данной задачи, вот два из них.
1) 600:5= 120 (км/ч) 1) 16-5 = 80 (км)
120 + 16 = 136 (км/ч) 2) 600 - 80 = 520 (км)
136:2 = 68 (км/ч) 3) 520:2 = 260 (км)
68 -16 = 52 (км/ч) 4) 260:5 = 52 (км/ч)
5)52+ 16 = 68 (км/ч)
Дайте устные пояснения к выполненным действиям и попытайтесь найти другие способы решения данной задачи.
Задачи на движение двух тел в одном направлении
Среди них следует различать два типа задач:
движение начинается одновременно из разных пунктов;
движение начинается в разное время из одного пункта.
Рассмотрим случай, когда движение двух тел начинается одновременно в одном направлении из разных пунктов, лежащих на одной прямой. Пусть движение первого тела характеризуется величинами s, v, t , движение второго - s, v, t, .
Такое движение можно представить на схематическом чертеже (рис 54):

Рис. 54
Если при движении в одном направлении первое тело догоняет второе, то v > v. Кроме того, за единицу времени первый объект приближается к другому на расстояние
v - v.. Это расстояние называют скоростью сближения: vсбл. = v - v..
Расстояние s , представляющее длину отрезка АВ, находят по формулам:
s = s - s и s = vсбл.
· tвстр.


Задача 3. Из двух пунктов, удаленных друг от друга на 30 км, выехали одновременно в одном направлении два мотоциклиста. Скорость одного - 40 км/ч, другого - 50 км/ч. Через сколько часов второй мотоциклист догонит первого?
Решение. В задаче рассматривается движение двух мотоциклистов. Выехали они одновременно из разных пунктов, находящихся на расстоянии 30 км. Скорость одного 40 км/ч, другого - 50 км/ч. Требуется узнать, через сколько часов второй мотоциклист догонит первого.



Вспомогательные модели, если они нужны, могут быть разными: схематический чертеж или таблица.
Сравнение скоростей мотоциклистов говорит о том, что в течение часа первый мотоциклист приближается ко второму на 10 км Расстояние, которое ему надо пройти до встречи со вторым, на 30 км больше, чем расстояние, которое за такое же время пройдет второй мотоциклист. Поэтому первому потребуется столько времени, сколько раз 10 км укладываются в 30 км. Запишем решение задачи по действиям:
50 - 40 = 10 (км/ч) - скорость сближения мотоциклистов
30:10 = 3 (ч) - за это время первый мотоциклист догонит второго. Наглядно этот процесс представлен на рисунке 56, где единичный отрезок изображает расстояние, равное 10 км.
40 км/ч

Задача 4. Всадник выезжает из пункта А и едет со скоростью 12 км/ч; в это же время из пункта В, отстоящего от А на 24 км, вышел пешеход со скоростью 4 км/ч. Оба движутся в одном направлении На каком расстоянии от В всадник догонит пешехода?
Решение. В задаче рассматривается движение в одном направлении всадника и пешехода. Движение началось одновременно из разных пунктов, расстояние между которыми 24 км, и с разной скоростью: у всадника - 12 км/ч, у пешехода - 4 км/ч. Требуется узнать расстояние от пункта, из которого вышел пешеход, до момента встречи всадника и пешехода.
Вспомогательные модели: схематический чертеж (рис. 57) или таблица.
24 км
Чтобы ответить на вопрос задачи, надо найти время, которое будет находиться в пути пешеход или всадник, - время их движения до встречи одинаковое. Как найти это время, подробно рассказано в предыдущей задаче. Поэтому, чтобы ответить на вопрос задачи, необходимо выполнить следующие действия:
12-4 = 8 (км/ч) - скорость сближения всадника и пешехода.
24:8 = 3 (ч) - время, через которое всадник догонит пешехода
4
· 3 - 12 (км) - расстояние от В, на котором всадник догонит пешехода.
Задача 5. В 7 ч из Москвы со скоростью 60 км/ч вышел поезд. В 13 ч следующего дня в том же направлении вылетел самолет со скоростью 780 км/ч. Через какое время самолет догонит поезд?
Решение. В данной задаче рассматривается движение поезда и самолета в одном направлении из одного пункта, но начинается оно в разное время. Известны скорости поезда и самолета, а также время начала их движения. Требуется найти время, через которое самолет догонит поезд.
Из условия задачи следует, что к моменту вылета самолета поезд прошел определенное расстояние. И если его найти, то данная задача становится аналогичной задаче 3, рассмотренной выше.
Чтобы найти расстояние, которое прошел поезд до момента вылета самолета, надо подсчитать, сколько времени находился в пути поезд. Умножив время на скорость поезда, получим расстояние, пройденное поездом до момента вылета самолета. А дальше как в задаче 3.
24 - 7 - 17 (ч) - столько времени был в пути поезд в тот день, когда он вышел из Москвы.
17 + 13 = 30 (ч) - столько времени был в пути поезд до момента вылета самолета.
60
· 30 - 1800 (км) - путь, пройденный поездом до момента вылета самолета.
780 - 60 = 720 (км/ч) - скорость сближения самолета и поезда.
1800:720 = 2(ч)-время, через которое самолет догонит поезд.
Задачи на движение двух тел в противоположных направлениях
В таких задачах два тела могут начинать движение в противоположных направлениях из одной точки: а) одновременно; б) в разное время. А могут начинать свое движение из двух разных точек, находящихся на заданном расстоянии, и в разное время.
Общим теоретическим положением для них будет следующее: vудал. = v + v.. соответственно скорости первого и второго тел, а vудал. - это скорость удаления, т.е. расстояние, на которое удаляются друг от друга движущиеся тела за единицу времени.
Задача 6. Два поезда отошли одновременно от одной станции в противоположных направлениях. Их скорости 60 км/ч и 70 км/ч. На каком расстоянии друг от друга будут эти поезда через 3 часа после выхода?
Решение. В задаче рассматривается движение двух поездов. Они выходят одновременно от одной станции и идут в противоположных направлениях. Известны скорости поездов (60 км/ч и 70 км/ч) и время их движения (3 ч). Требуется найти расстояние, на котором они будут находиться друг от друга через указанное время.

Вспомогательные модели, если они нужны, могут быть такими: схематический чертеж или таблица.
Чтобы ответить на вопрос задачи, достаточно найти расстояния, пройденные первым и вторым поездом за 3 ч, и полученные результаты сложить:
1)60
· 3= 180 (км)
2) 70
· 3 = 210 (км)
3) 180 + 210 = 390 (км) Можно решить эту задачу другим способом, воспользовавшись понятием скорости удаления:
60 + 70 = 130 (км/ч) - скорость удаления поездов
130
·3 = 390 (км) - расстояние между поездами через 3 ч. Задача 7. От станции Л отправился поезд со скоростью 60 км/ч
Через 2 ч с этой же станции в противоположном направлении вышел другой поезд со скоростью 70 км/ч. Какое расстояние будет между поездами через 3 ч после выхода второго поезда?
Решение. Эта задача отличается от задачи 6 тем, что движение поездов начинается в разное время. Вспомогательная модель задачи представлена на рис. 59. Решить ее можно двумя арифметическими способами.
60 км/ч 70 км/ч


Рис, 59
1 способ
2 + 3 = 5 (ч) - столько времени в пути был первый поезд.
60 5
· 300 (км) - расстояние, которое за 5 ч прошел этот поезд.
70
· 3 - 210 (км) - расстояние, которое прошел второй поезд.
300 + 210 = 510 (км) - расстояние между поездами.
2 способ
60 + 70 = 130 (км/ч) - скорость удаления поездов.
130
· 3 = 390 (км) расстояние, на которое удалились поезда за 3 ч.
60
· 2 = 120 (км) - расстояние, пройденное первым поездом за 2 ч.
390 + 120 = 510 (км) - расстояние между поездами.
Задачи на движение по реке
При решении таких задач различают: собственную скорость движущегося тела, скорость течения реки, скорость движения тела по течению и скорость движения тела против течения. Зависимость между ними выражается формулами:
vпо теч. = vсбл. + vтеч.р.;
vпр. теч. = vсбл. – vтеч.р.
vсбл. = (vтеч.р + vпр. теч.) : 2.
Задача 8. Расстояние 360 км катер проходит за 15 ч, если двигается против течения реки, и за 12 ч, если двигается по течению. Сколько времени потребуется катеру, чтобы проплыть 135 км по озеру?
Решение. В данном случае удобно все данные, неизвестные и искомое, записать в таблицу.


s
v
t

по течению
360 км
7
12 ч

против течения
360 км
9
15 ч

по реке
135 км
?
9

Таблица подсказывает последовательность действий: найти сначала скорость движения катера по течению и против течения, затем, используя формулы, - собственную скорость катера и, наконец, время, за которое он проплывет 135 км по озеру:
360:12 = 30 (км/ч) - скорость катера по течению реки.
360:15 24 (км/ч) - скорость катера против течения реки.
24 + 30 - 54 (км/ч) - удвоенная собственная скорость катера.
54:2 = 27 (км/ч) - собственная скорость катера
135: 27 = 5 (ч) - время, за которое проплывет катер 135 км.

Р е ш е н и е з а д а ч, с в я з а н н ы х с р а з л и ч н ы м и
п р о ц е с с а м и (работа, наполнение бассейнов и др.)
Задача 9. Двум рабочим дано задание изготовить 120 деталей. Один рабочий зготавливает 7 деталей в час, а другой - 5 деталей в час. За сколько часов рабочие выполнят задание, работая вместе?
Решение. В задаче рассматривается процесс выполнения двумя рабочими задания по изготовлению 120 деталей. Известно, что одни рабочий делает в час 7 деталей, а другой - 5. Требуется узнать время, за которое рабочие сделают 120 деталей, работая вместе. Чтобы найти ответ на это требование, надо знать, что процесс, о котором идет речь в задаче, характеризуется тремя величинами:
- общим количеством произведенных деталей это результат процесса; обозначим его буквой К;
- количеством изготовленных деталей за единицу времени (это производительность труда или скорость протекания процесса); обозначим его буквой к;
- временем выполнения задания (это время протекания процесса), обозначим его буквой t.
Зависимость между данными величинами выражается формулой К=кt.
Чтобы найти ответ на вопрос задачи, т.е. время t надо найти количество деталей, изготавливаемых рабочими за 1 ч при совместной работе, а затем разделить 120 деталей на полученную производительность. Таким образом, будем иметь: к = 7 + 5 = 12 (деталей в час):,
T = 120:12= 10 (ч).
Задача 10. В одном резервуаре 380 м3 воды, а в другом - 1500 м 3. В первый резервуар каждый час поступает 80 м3 воды, а из второго каждый час выкачивают по 60 м3 воды. Через сколько часов в резервуарах воды станет поровну?

Решение. В данной задаче рассматривается процесс заполнения водой одного резервуара и выкачивания воды из другого. Этот процесс характеризуется следующими величинами:
- объемом воды в резервуарах; обозначим его буквой V;
- скоростью поступления (накачивания) воды; об о з н а ч и м его б у к в о й v;
- временем протекания процесса; обозначим его буквой t



380 м3 1500 м3

Зависимость между названными величинами выражается формулой V = v
· t
Процесс, описанный в данной задаче, аналогичен движению двух объектов навстречу друг другу. Это можно наглядно представить, построив вспомогательную модель (рис. 60).
Чтобы ответить на вопрос задачи, надо найти скорость «сближения» уровней воды в резервуарах и объем воды, при котором происходит выравнивание этих уровней, а затем разделить этот объем на скорость «сближения». Запишем решение задачи по действиям:
1)80 + 60 = 140 (мЗ);
1500 – 380 = 1120 (м3):
1120:140 = 8(ч).
Чтобы убедиться в правильности полученного ответа, выполним проверку.
За 8 ч в первый резервуар поступит 640 м3 (80
· 8 = 640), а из второго выкачают
480 м3 (60
· 8 = 480). Тогда в первом воды будет 1020 м3 (380 + 640 = 1020), и во втором - столько же (1500 - 480 = 1020), что удовлетворяет условию задачи.
Упражнения
1. С противоположных концов катка длиной 180 м бегут навстречу друг другу два мальчика. Через сколько секунд они встретятся, если начнут бег одновременно и если один пробегает 9 м в секунду, а другой 6 м в секунду?
Объясните, используя условия данной задачи, смысл следующих выражений:
а)9 + 6; 6)180:9; в) 180:6; г) 180:(9 + 6).
Какое из этих выражений является решающей моделью данной задачи?
2. Запишите решение задачи в виде выражения:
а) Самолет пролетел за 2 ч а км. Сколько километров он пролетит за 5 ч?
б) Из двух городов, расстояние между которыми 9 км, одновременно навстречу друг другу выехали легковой автомобиль и грузовик и встретились через / ч. Скорость легкового автомобиля у км/ч. Найдите скорость грузовика.
в) Из двух городов одновременно навстречу друг другу выехали автомобиль и мотоцикл и встретились через t ч. Найдите расстояние между городами, если скорость автомобиля v км/ч, а скорость мотоцикла v км/ч.
3. Два пассажира метро, начавшие одновременно один спуск, а другой подъем на движущихся лестницах метро, поравнялись через 30 с. Вычислите длину лестницы, если скорость ее движения 1 м/с.
Решите задачу двумя арифметическими способами.
4. Расстояние между городами А и В 520 км. В 8 ч из А в В выехал автобус со скоростью 56 км/ч, а в 11 ч того же дня из В в А выехал грузовой автомобиль со скоростью 32 км/ч. На каком расстоянии от А встретятся машины?
Решение задачи запишите по действиям и в виде выражения.
5. Из двух городов, расстояние между которыми 960 км, вышли одновременно навстречу друг другу два поезда и встретились через 8 ч после выхода. Найдите скорость каждого поезда, если один проходил в час на 16 км больше другого.
Объясните, используя условия данной задачи, смысл следующих выражений:
а) 16
·8; д) (960-16
·8):2:8 + 16;
б) 960-16
·8; е) (960 -16
·8):8;
в) (960 -16
·8):2; ж) (960 -16
·8):8:2.
г) (960-16
· 8):2:8;
Запишите решение данной задачи по действиям. Дайте пояснения к каждому действию такого решения данной задачи:
1)960:8= 120 (км/ч);
120 -16= 104 (км/ч);
104:2 = 52 (км/ч);
52 +16 = 68 (км/ч).
6. Решите нижеприведенные задачи арифметическим методом; решение запишите по действиям с пояснениями.
а) Из А в В выехал мотоциклист, проезжавший в час 48 км. Через 45 мин из В в А выехал другой мотоциклист, скорость которого была 50 км/ч. Зная, что расстояние АВ равно 330 км, найдите, на каком расстоянии от В мотоциклисты встретятся.
б) Из двух городов, расстояние между которыми 484 км, выехали одновременно навстречу друг другу велосипедист и мотоциклист. Через 4 ч расстояние между ними оказалось 292 км. Определите скорость велосипедиста и мотоциклиста, если скорость мотоциклиста в 3 раза больше скорости велосипедиста.
7. Установите, достаточно ли данных для ответа на требование за дачи:
а) Из двух сел, расстояние между которыми 36 км, вышли одно временно навстречу друг другу два пешехода и встретились. Скорость одного пешехода 4 км/ч. С какой скоростью шел другой пешеход?
б) Расстояние между станциями 780 км. Одновременно навстречу друг другу с этих станций вышли два поезда и через 6 ч встретились. Найдите скорость каждого поезда, если скорость одного из них на 10 км/ч больше скорости другого.
В случае если нельзя ответить на требование задачи, дополните ее условие недостающими данными и решите задачу.
8. Есть ли среди нижеприведенных задачи с лишними данными:
а) Расстояние между плотом и катером, которые движутся по реке навстречу друг другу, 52 км. Скорость плота 4 км/ч, а скорость катера 9 км/ч. Как изменится расстояние между ними через час?
б) Почтальон живет на расстоянии 24 км от почтового отделения. Путь от дома до почты он проехал за 3 ч на велосипеде со скоростью 8 км/ч, а обратный путь по той же дороге он проехал со скоростью 6 км/ч. На какой путь почтальон потратил меньше времени и на сколько часов?
В случае если в задаче есть лишние данные, то исключите их и решите получившуюся задачу.
9. Два теплохода отправились одновременно от пристани в одном и том же направлении. Скорость одного теплохода 25 км/ч, другого - 20 км/ч. Первый пришел к конечной остановке на 4 ч раньше, чем второй. Найдите расстояние между пристанью и конечной остановкой.
Постройте вспомогательную модель задачи, используя таблицу.
Объясните, используя условие данной задачи, смысл следующих выражений:
а) 20
·4; 6) 25-20; в) (20
·4):(25 - 20).
Есть ли среди этих выражений решающая модель задачи? Запишите решение задачи в виде выражения и найдите его значение. Выполните проверку, решив задачу алгебраическим методом.
10. Решите следующие задачи арифметическим методом; решение запишите по действиям и выполните проверку:
а) Из двух городов, расстояние между которыми 260 км, одновременно выехали два поезда в одном направлении. Скорость шедшего впереди поезда 50 км/ч, а второго - 70 км/ч. Через какое время один поезд догонит другой?
б) Из пункта А выехал автобус со скоростью 40 км/ч и через 12 мин нагнал пешехода, который вышел из пункта В одновременно с началом движения автобуса из пункта А. Скорость пешехода 5 км/ч. Каково расстояние между пунктами А и В?
в) Скорость одного конькобежца на 2 м/с больше скорости другого. Если второй начнет движение на 20 с раньше первого, то первый, стартуя с того же места, что и второй, догонит его через 80 с. Определите скорости спортсменов. Два самолета вылетели одновременно из одного города в два различных пункта. Кто из них долетит до места назначения быстрее, если первому из них нужно пролететь вдвое большее расстояние, но зато он летит в два раза быстрее, чем второй?
11. Два самолета вылетели одновременно из одного города в два различных пункта. Кто из них долетит до места назначения быстрее, если первому из них нужно пролететь вдвое большее расстояние, но зато он летит в два раза быстрее, чем второй?
12. Решите задачи арифметическим методом, установив предварительно, о каких процессах в них идет речь, какие величины рассматриваются и в каких зависимостях они находятся:
а) Длина прямоугольного поля 1536 м, а ширина 625 м. Один тракторист может вспахать это поле за 16 дней, а другой за 12 дней. Какую площадь вспашут оба тракториста, работая вместе в течение 5 дней?
б) В мастерской было два куска ткани: один длиной 104 м, другой - 84 м. Из всей ткани сшили одинаковые платья, причем из первого куска получилось на 5 платьев больше, чем из второго. Сколько всего платьев сшили из этой ткани ?
в) Один экскаватор вынимает на 60 м3 в час больше земли, чем другой. Оба экскаватора вынули вместе 10320 м3 земли, причем первый работал 20 ч, а второй -18 ч. С какой производительностью работал каждый экскаватор?
г) Два человека чистили картофель. Один очищал в минуту 2 картофелины, а второй -- 3 картофелины. Вместе они очистили 400 штук. Сколько времени работал каждый, если второй проработал на 25 мин больше первого?
д) Бассейн вмещает 2700 м3 воды и наполняется тремя трубами. Первая и вторая трубы вместе могут наполнить бассейн за 12 ч, а первая и третья наполняют его вместе за 15 ч. За сколько часов каждая труба в отдельности наполняет бассейн, если третья труба действует вдвое медленнее второй?
13. От двух пристаней, расстояние между которыми по реке 640 км, вышли одновременно навстречу друг другу два теплохода. Собственная скорость теплоходов одинакова. Скорость течения реки 2 км/ч. Теплоход, идущий по течению, за 9 ч проходит 198 км. Через сколько часов теплоходы встретятся?
Объясните, используя условия данной задачи, смысл следующих выражений:
а) 198:9 г) 198:9 + (198:9 - 4)
б) 198:9-2 д) 640:(198:9 + (198:9 - 4))
в) 198:9-2-2
Есть ли среди этих выражений решающая модель данной задачи? Запишите решение данной задачи по действиям с пояснениями и выполните проверку.
14. Решите следующие задачи арифметическим методом; решение запишите по действиям с пояснением:
а) На путь по течению реки моторная лодка затратила 6 ч, а на обратный путь - 10 ч. Скорость лодки в стоячей воде 16 км/ч. Какова скорость течения реки?
б) Собственная скорость моторной лодки в 8 раз больше скорости течения реки. Найдите собственную скорость лодки и скорость течения реки, если, двигаясь по течению, лодка за 4 ч проплыла 108 км.
в) На школьных соревнованиях по плаванию один ученик проплыл некоторое расстояние по течению реки за 24 с и то же расстояние против течения за 40 с. Определите собственную скорость пловца, считая ее постоянной от начала и до конца заплыва, если скорость течения реки равна 0,25 м/с.
15. Есть ли среди следующих задач задачи с недостающими или избыточными данными:
а) Турист проехал поездом и на лошади 288 км, причем на лошади он проехал 48 км. Поездом он ехал 4 ч, а на лошади - 3 ч. С какой скоростью ехал турист на лошади, если скорость поезда 60 км/ч?
б) Турист проехал поездом и на лошади 288 км. Поездом он ехал 4 ч, а на лошади - 3 ч. С какой скоростью ехал турист на лошади?
в) Турист проехал поездом и на лошади 288 км. Поездом он ехал 4 ч, а на лошади - 3 ч. С какой скоростью ехал турист на лошади, если поезд шел со скоростью 60 км/ч?


34. Основные выводы.
Установили, что любая текстовая задача состоит из взаимосвязанных условий и требований.
Основными методами решения таких задач являются арифметический и алгебраический, а процесс решения задачи включает следующие основные этапы:
1) анализ; 2) поиск плана решения; 3) осуществление плана решения; 4) проверка найденного решения.
Рассмотрены некоторые приемы выполнения этих этапов. Главный прием – это моделирование. Прежде всего, решить текстовую задачу – это значит построить ее математическую модель (выражение или уравнение). Но чтобы облегчить поиск математической модели, нужны модели вспомогательные. Они могут быть графическими (рисунок, условный рисунок, чертеж, схематический чертеж), знаковыми (краткая запись, таблица) и др.






§6. КОМБИНАТОРНЫЕ ЗАДАЧИ И ИХ РЕШЕНИЕ

Лекция 13. Комбинаторные задачи и их решение
План:
1. Правила суммы и произведения
2. Размещения, перестановки с повторениями и без повторений. Сочетания без повторений. Число подмножеств конечного множества. Бином Ньютона.
3. Выводы


В обыденной жизни нам нередко встречаются задачи, которые имеют несколько различных вариантов решения. Чтобы сделать правильный выбор, важно не упустить ни один из них. Для этого надо уметь осуществлять перебор всех возможных вариантов или подсчитывать их число. Задачи, требующие такого решения, называются комбинаторными.
С теоретико-множественной точки зрения решение комбинаторных задач связано с выбором из некоторого множества подмножеств, обладающих определенными свойствами, и упорядочением множеств. Область математики, в которой изучают комбинаторные задачи, называется комбинаторикой
Комбинаторика возникла в ХVI веке и первоначально в ней рассматривались задачи, связанные с азартными играми. В процессе изучения таких задач были выработаны некоторые общие подходы к их решению, получены формулы для подсчета числа различных комбинаций.
В настоящее время комбинаторика является одним из важных разделов математической науки. Ее методы широко используются для решения практических и теоретических задач. Установлены связи комбинаторики с другими разделами математики.
В начальном обучении математике роль комбинаторных задач постоянно возрастает, поскольку в них заложены большие возможности не только для развития мышления учащихся, но и для подготовки учащихся к решению проблем, возникающих в повседневной жизни.
Комбинаторные задачи в начальном курсе математики решаются, как правило, методом перебора. Для облегчения этого процесса нередко используются таблицы и графы. В связи с этим учителю начальных классов необходимы определенные умения и навыки решения комбинаторных задач. Прежде всего, он должен, решая несложные комбинаторные задачи, уметь грамотно осуществлять перебор возможных вариантов и при этом быть уверенным в том, что перебор осуществлен правильно. Учителю надо знать общие правила комбинаторики (в частности, правила суммы и произведения), некоторые виды комбинаций, число которых может быть подсчитано с помощью формул. Поэтому предложенный в данном пособии путь освоения способов решения комбинаторных задач состоит из нескольких этапов: сначала они решаются методом перебора и для записи возможных вариантов используются различные способы; затем появляются правила суммы и произведения и процесс решения комбинаторных задач несколько формализуется, и, наконец, рассматриваются некоторые виды комбинаций, а их число подсчитывается по формулам.

Правила суммы и произведения

В комбинаторике, которая возникла раньше теории множеств, правило нахождения числа элементов объединения двух непересекающихся конечных множеств называют правилом суммы и формулируют в таком виде.
Если объект а можно выбрать m способами, а объект b – k способами (не такими, как а), то выбор «либо а, либо b» можно осуществить m + k способами.
Задача 1. На тарелке лежат 5 яблок и 4 апельсина. Сколькими способами можно выбрать один плод?
Решение. По условию задачи яблоко можно выбрать пятью способами, апельсин – четырьмя. Так как в задаче речь идет о выборе «либо яблоко, либо апельсина», то его, согласно правилу суммы, можно осуществить 5 + 4 = 9 способами.
Правило нахождения числа элементов декартова произведения двух множеств называют в комбинаторике правилом произведения и формулируют в таком виде:
Если объект а можно выбрать m способами, а объект b – k способами, то пару (а, b) можно выбрать m k способами.
Правило суммы и произведения, сформулированные для двух объектов, можно обобщить и на случай t объектов.
Задача 2. На тарелке лежат 5 яблок и 4 апельсина. Сколькими способами можно выбрать пару плодов, состоящую из яблока и апельсина?
Решение. По условию задачи яблоко можно выбрать пятью способами, апельсин – четырьмя. Так как в задаче речь идет о выборе пары (яблоко, апельсина), то ее, согласно правилу произведения, можно осуществить 5 4 = 20 способами.
Задача 3. Сколько всего двузначных чисел можно составить из цифр 7, 4 и 5 при условии, что они в записи числа не повторяются?
Решение. Чтобы записать двузначное число, надо выбрать цифру десятков и цифру единиц. Согласно условию на месте десятков в записи числа может быть любая из цифр 7, 4 и 5. Другим словом, выбрать цифру десятков можно тремя способами. После того как цифра десятков определена, для выбора цифры единиц остаются две возможности, поскольку цифры в записи числа не должны повторяться. Так как любое двузначное число – это упорядоченная пара, состоящая из цифры десятков и цифры единиц, то ее выбор, согласно правилу произведения, можно осуществить 3 2 = 6 способами.
Задача 4. Сколько всего трехзначных чисел можно составить, используя цифры 7, 4 и 5?
Решение. В данной задаче рассматриваются трехзначные числа, так как цифры в записи этих чисел могут повторяться, то цифру сотен, цифру десятков и цифру единиц можно выбрать тремя способами каждую. Поскольку запись трехзначного числа представляет собой упорядоченный набор из трех элементов, то, согласно правилу произведения, его выбор можно осуществить 27 способами, так как 3 3 3 = 27.
Задача 5. Сколько всего четырехзначных чисел можно составить из цифр 0 и 3?
Решение. Запись четырехзначного числа представляет собой упорядоченный набор (кортеж) из четырех цифр. Первую цифру – цифру тысяч можно выбрать только одним способом, так как запись числа не может начинаться с нуля. Цифрой сотен может быть либо ноль, либо три, т.е. имеется два способа выбора. Столько же способов выбора имеется для цифры десятков и цифры единиц.
Итак, цифру тысяч можно выбрать одним способом, цифру сотен – двумя, цифру десятков – двумя, цифру единиц – двумя. Чтобы узнать, сколько всего четырехзначных чисел можно составить из цифр 0 и 3, согласно правилу произведения, способы выбора каждой цифры надо перемножить: 1 2 2 2 = 8.
Таким образом, имеем 8 четырехзначных чисел.
Задача 6. Сколько трехзначных чисел можно составить, используя цифры 0, 1, 3, 6, 7, и 9, если каждая из них может быть использована в записи только один раз?
Решение. Так как запись числа не может начинаться с нуля, то цифру сотен можно выбрать пятью способами; выбор цифры десятков можно осуществить также пятью способами, поскольку цифры в записи числа не должны повторяться, а одна из шести данных цифр будет уже использоваться для записи сотен; после выбора двух цифр (для записи сотен и десятков) выбрать цифру единиц из данных шести можно четырьмя способами. Отсюда, по правилу произведения, получаем, что всего трехзначных чисел (из данных шести цифр) можно образовать 100; 5 5 4 = 100.

Размещения и сочетания
Правила суммы и произведения – это общие правила решения комбинаторных задач. Кроме них в комбинаторике пользуются формулами для подсчета числа отдельных видов комбинаций, которые встречаются наиболее часто. Рассмотрим некоторые из них и прежде всего те, знание которых необходимо учителю начальных классов.
Используя цифры 7, 4 и 5, мы образовывали различные двузначные числа: 77, 74, 75, 47, 44, 45, 57, 55. В записи этих чисел цифры повторяются.
С теоретико-множественной точки зрения запись любого двузначного числа – это кортеж длины 2. Записывая различные двузначные числа с помощью цифр 7, 4 и 5, мы по сути дела образовывали из данных трех цифр различные кортежи длины 2 с повторяющимися элементами. В комбинаторике такие кортежи называют размещениями с повторениями из трех элементов по два элемента.
Определение. Размещение с повторениями из k элементов по m элементов – это кортеж, составленный из m элементов k-элементного множества.
Из определения следует, что два размещения из k элементов по m элементов отличаются друг от друга либо составом элементов, либо порядком их расположения.
Например, два двузначных числа из перечисленных (а это размещения из трех элементов по два) отличаются друг от друга либо составом элементов (74 и 75), либо порядком их расположения (74 и 47).
Относительно размещений часто возникает вопрос: «Сколько всевозможных размещений по m элементов каждое можно образовать из k элементов данного множества?» Например, сколько всевозможных двузначных чисел можно записать, используя цифры 7, 4 и 5?
Число всевозможных размещений с повторениями из k элементов по m элементов обозначают Г13 EMBED Equation.3 1415 и подсчитывают по формуле Г13 EMBED Equation.3 1415 = k13 EMBED Equation.3 1415.
Выведем эту формулу.
Пусть в множестве Х содержит k элементов. Будем образовывать из них различные кортежи по m элементов. Такие кортежи образуют множество Х х Х хх Х, содержащее m множителей. По правилу произведения
n (Х х Х хх Х) = n (Х)n (Х) n (Х) = k k k = k13 EMBED Equation.3 1415.
m множителей m множителей
Следовательно, Г 13 EMBED Equation.3 1415 = k13 EMBED Equation.3 1415.
Подсчитаем число двузначных чисел, которые можно составить из цифр 7, 4 и 5. Г13 EMBED Equation.3 1415 = 9.
Нередко встречаются задачи, в которых требуется подсчитать число кортежей длины m, образованных из k элементов некоторого множества, но при условии, что элементы в кортеже не повторяются. Такие кортежи называются размещениями без повторений из k элементов по m элементов.
Определение. Размещение без повторений из k элементов по m элементов – это кортеж, составленный из m неповторяющихся элементов k-элементного множества.
Число всевозможных размещений без повторений из k элементов по m элементов обозначают А k и подсчитывают по формуле:
А13 EMBED Equation.3 1415 = k (k-1) (k- m+1).
Выведем эту формулу.
Пусть в множестве Х содержит k элементов. Будем образовывать из них различные размещения без повторений из m элементов. Тогда выбор первого элемента таких кортежей можно осуществить k способами; если первый элемент выбран, то выбор второго элемента можно осуществить k-1 способами (так как после выбора первого элемента кортежа в множестве Х остается k-1 элемент). Третий элемент размещения можно выбрать k-2 способами и т.д., m-й элемент можно выбрать k- (m-1) способами. Но выбор упорядоченного набора из m элементов можно осуществить k (k-1) (k- m+1). Значит, А13 EMBED Equation.3 1415 = k (k-1) (k- m+1).
m множителей
Например, число двузначных чисел, записанных с помощью цифр 7, 4 и 5 так, что цифры в записи числа не повторяются, есть число размещений без повторений из трех элементов по два: А13 EMBED Equation.3 1415 = 3 (3-1) = 32 = 6.
Задача 1. Сколько всевозможных трехзначных чисел можно записать, используя цифры 7, 4 и 5 так, чтобы цифры в записи числа не повторялись?
Решение. В задаче рассматриваются размещения без повторений из трех элементов по три, и их число можно подсчитать по формуле:
А13 EMBED Equation.3 1415 = 3(3-1)(3-2) = 321= 6.
Эти числа таковы: 745, 754, 475, 457, 547, 574.
Заметим, что в данном случае разные числа получаются в результате перестановки цифр.
Определение. Перестановками из k элементов без повторений называют размещения из k элементов по k элементов.
Число перестановок без повторений из k элементов обозначают Р k и подсчитывают по формуле Р k = k!, где k! = 123 k и k! Читают «k факториал». Считают, что 1! = 1, 0! = 1. Например, 5! = 12345 = 120; 7! = 1234567 = 5040.
Из элементов множества Х = {7, 4, 5} можно образовывать не только кортежи различной длины, но и различные подмножества, например двухэлементные. В комбинаторике их называют сочетаниями без повторений из трех элементов по два элемента.
Определение. Сочетание без повторения из k элементов по m элементов – это m-элементное подмножество множества, содержащего k элементов.
Два сочетания из k элементов по m элементов отличаются друг от друга хотя бы одним элементом.
Число всевозможных сочетаний без повторений из k элементов по m элементов обозначают C13 EMBED Equation.3 1415. Как находить это число?
Обратимся сначала к примеру. Образуем различные двухэлементные подмножества из элементов множества Х = {7, 4, 5}. Их будет три: {7, 4}{7, 5}{4, 5}. Из элементов каждого такого подмножества можно образовать 2! кортежей длины 2:
(7, 4) (7, 5) (4, 5)
(4, 7) (5, 7) (5, 4)
Все полученные кортежи являются размещениями без повторения из трех элементов по два и их число равно А13 EMBED Equation.3 1415= 32 = 6. Но, с другой стороны, это число равно произведению 2! С13 EMBED Equation.3 1415. Значит, А13 EMBED Equation.3 1415 = 2! С13 EMBED Equation.3 1415, откуда С13 EMBED Equation.3 1415=13 EMBED Equation.3 1415.
Докажем справедливость этой зависимости в общем виде, т.е., что С13 EMBED Equation.3 1415 = 13 EMBED Equation.3 1415.
Пусть в множестве Х содержится k элементов. Образуем из них сочетания без повторений по m элементов. Они будут представлять собой m-элементные подмножества множества Х. Всего таких подмножеств будет С13 EMBED Equation.3 1415.
Из элементов каждого m-элементного подмножества можно образовать m! Перестановок, т.е. кортежей длины m. В итоге получим m! С13 EMBED Equation.3 1415 кортежей длины m, образованных из k элементов множества Х. Их число равно А13 EMBED Equation.3 1415. Таким образом,
А13 EMBED Equation.3 1415= m! С13 EMBED Equation.3 1415, откуда С13 EMBED Equation.3 1415 = 13 EMBED Equation.3 1415.
Конечно, применение формул облегчает подсчет числа возможных вариантов решений той или иной комбинаторной задачи. Однако чтобы воспользоваться формулой, необходимо определить вид соединений (комбинаций), о которых идет речь в задаче, что бывает сделать не очень просто.
Выясним, например, о каких комбинациях идет речь в следующих задачах:
Сколько всего двузначных чисел? (Используются размещения с повторениями)
Сколько всего двузначных чисел, в записи которых цифры не повторяются? (Используется размещения без повторений)
На прямой взяли десять точек. Сколько всего получилось отрезков, концами которых являются эти точки? (Используются сочетания без повторений).

Основные выводы
Изучив материал этого параграфа, установили, что решение комбинаторных задач предполагает усвоение следующих понятий: способ выбора объекта; дерево возможных вариантов; размещение из m элементов по k элементов (с повторениями и без повторений); сочетание из m элементов по k элементов (без повторений).
В основе решения комбинаторных задач лежат различные правила: правило суммы, правило произведения, правила подсчета указанных комбинаций (см. выше).

Лекция 14. Алгоритмы и их свойства
План:
1. Понятие алгоритма
2. Виды алгоритмов
3. Приемы построения алгоритмов
4. Основные выводы

§ 7. Алгоритмы и их свойства
Большинство действий, совершаемых человеком, выполняются по определенным правилам. Их эффективность во многом зависит от того, насколько он представляет, что делать в каждый момент времени, в какой последовательности, каким должен быть итог его действий. Другими словами, результат деятельности человека непосредственно зависит от того, насколько он представляет алгоритмическую сущность своих действий.
Кроме того, применение в производстве и быту различных автоматов, компьютеров требует от человека строгого соблюдения определенной последовательности действий при их использовании, что, в свою очередь, невозможно без предварительного составления алгоритмов.
Таким образом, осмысление и разработка алгоритмов выполняемых действий становится существенным компонентом деятельности человека, составной частью его культуры мышления и поведения. Алгоритм – одно из фундаментальных понятий, которое используется в различных областях знания, но изучается оно в математике и информатике. Его освоение начинается уже в начальной школе на уроках математики, где ученики овладевают алгоритмами арифметических действий, знакомятся с правилами вычитания числа из суммы, суммы из числа и др.
Вообще формирование алгоритмического мышления у младших школьников в настоящее время является одной из важнейших задач учителя, и поэтому ему требуются определенные знания об алгоритмах, а также некоторые умения в их построении.

Понятие алгоритма
Происхождение термина «алгоритм» связано с математикой. История его возникновения такова. В IХ веке в Багдаде жил ученый ал(аль)-Хорезми (полное имя Мухаммед Бен Мусса ал-Хорезми, т.е. Мухаммед сын Мусы из Хорезма), математик, астроном, географ. В одном из своих трудов он описал десятичную систему счисления и впервые сформулировал правила выполнения арифметических действий над целыми числами и обыкновенными дробями. Арабский оригинал этой книги был утерян, но остался латинский перевод ХII в., по которому Западная Европа ознакомилась с десятичной системой счисления и правилами выполнения арифметических действий.
Ал-Хорезми стремился к тому, чтобы сформулированные им правила были понятными. Достичь этого в IХ в., когда еще не была разработана математическая символика (знаки операций, скобки, буквенные обозначения и т.д.), было трудно. Однако ему удалось выработать четкий стиль строгого словесного предписания, который не давал читателю возможность уклониться от предписанного или пропустить какие-нибудь действия.
Правила в книгах ал-Хорезми в латинском переводе начинались словами «Алгоризми сказал». В других латинских переводах автор именовался как Алгоритмус. Со временем было забыто, что Алгоризми (Алгоритмус) – это автор правил, и эти правила стали называть алгоритмами. Многие столетия разрабатывались алгоритмы для решения все новых и новых классов задач, но само понятие алгоритма не имело точного математического определения.
В настоящее время понятие алгоритма уточнено, и сделано это в ХХ веке в рамках науки, называемой теорией алгоритмов.
Будем рассматривать алгоритм как программу действий для решения задач определенного типа.
Чтобы какую-либо программу действий можно было назвать алгоритмом, она должна удовлетворять ряду требований. Эти требования называют свойствами алгоритма.
1. Каждая программа, задающая алгоритм, должна состоять из конечного числа шагов, а каждый шаг должен быть точно и однозначно определен. Это свойство алгоритмов называется свойством определенности (или детерминированности).
Согласно этому свойству в алгоритмах не может быть таких, например, предписаний, как «сложить х с одним из данных чисел а или b», «привести два-три примера истинных и ложных высказываний» и т.д.
2. Шаги в алгоритме должны идти в определенной последовательности. Это означает, что в любом алгоритме для каждого шага (кроме последнего) можно указать единственный непосредственно следующий за ним шаг, т.е. такой, что между ними нет других шагов. Это свойство дискретности алгоритмов.
Дискретная структура алгоритмов хорошо вида в алгоритмах выполнения арифметических действий. Например, алгоритм нахождения суммы чисел 34 + 23 формулируется так:
1) Пишу десятки под десятками, а единицы под единицами.
2) Складываю единицы: 4 + 3 = 7, пишу 7 под единицами.
3) Складываю десятки: 3 + 2 = 5, пишу 5 под десятками.
4) Читаю ответ: сумма равна 57.
3. Каждый шаг программы, задающей алгоритм, должен состоять из выполнимых действий. Это означает, что предусмотренные действия были выполнимы теми исполнителями, которым она адресована. Так, например, задание «решить уравнение х + 9 = 17» один ученик уверенно выполняет и получает искомое значение переменной х, так как владеет всеми действиями, необходимыми для решения простейших уравнений.
1) прочитай уравнение;
2) вспомни правило, как найти значение неизвестного;
3) реши уравнение;
4) сделай проверку;
5) запиши ответ.
Другой не справляется с заданием или получает неверный ответ, так как не владеет хотя бы одним из действий, которые требуются для выполнения данного задания.
Как видно из примера, под словом «действие» понимаются не только математические операции, но оно имеет и более широкий смысл.
Кроме того, в алгоритмах недопустимы также ситуации, когда после выполнения очередного действия исполнителю неясно, какое из них должно выполняться на следующем этапе.
Все сказанное характеризует свойство алгоритма, называемое свойством понятности.
4. Программа, задающая алгоритм, должна быть направлена на получение определенного результата. Получение результата за конечное число шагов составляет свойство результативности алгоритма.
5. Программа, задающая алгоритм, должна быть применима к любой задаче рассматриваемого типа. Другими словами, каждый алгоритм решения линейного уравнения первой степени применяется для решения всех уравнений вида ах + b = 0. В этом состоит свойство массовости алгоритма.
Задачи, для которых может быть составлен алгоритм, и в результате выполнения этого алгоритма получен ответ на вопрос (даже если ответ, что задача не имеет решения), называются алгоритмически разрешимыми.
Алгоритмы могут предназначаться как исполнителю-человеку, так и исполнителю-машине. И в связи с этим между ними могут быть различия. Действия, понятные человеку, могут быть не понятны машине (например, действие «вспомни правило»), и наоборот. Предписания для человека могут содержать желательные, но не обязательные действия, или их можно поменять местами. Например, чтобы определить значение истинности конъюнкции двух высказываний А и В, нужно:
1) определить значение истинности высказывания А;
2) определить значение истинности высказывания В;
3) определить значение истинности высказывания А
· В.
Так как операция конъюнкции коммутативна, т.е. А
· В В
· А, то пункты 1) и 2) можно поменять местами. Такой выбор последовательности шагов осуществляет исполнитель-человек, но не машина. Если свойства детерминированности и дискретности сохраняются с некоторой степенью точности, т.е. в программе возможна перестановка шагов или она содержит желательные, но не обязательные шаги, то мы имеем не алгоритм, а алгоритмическое предписание. Однако, несмотря на различия между этими понятиями, часто алгоритмические предписания называются алгоритмами.
Известны различные способы записи алгоритмов: словесная запись, формульная, табличная, на языке блок-схем или алгоритмическом языке.
Словесная запись – это форма представления алгоритмических предписаний. Она допускает употребление естественного языка и математической символики, что делает предписание понятным и доступным для усвоения. Форму словесной записи имеют многие «бытовые» алгоритмические предписания, часто применяемые в повседневной жизни: как испечь пирог, как пользоваться электроприбором, как получить книгу в библиотеке и т.д. Вообще в этой форме могут быть описаны любые предписания, в том числе и математические. Например, алгоритмическое предписание нахождения середины отрезка АВ может иметь вид:
поставить ножку циркуля в точку А;
установить раствор циркуля в точку А;
провести окружность;
поставить ножку циркуля в точку В;
провести окружность;
отметить точки пересечения окружностей;
через отмеченные точки провести прямую;
отметить точку пересечения прямой с отрезком АВ.

Алгоритмы, используемые для вычислений, могут быть записаны в формульной (т.е. с помощью формулы) или табличной (т.е. с помощью таблицы) формах. Например, для нахождения корней квадратного уравнения ах2 + bх + с = 0 (а ( 0) удобнее применять не словесную запись, а формулу:
х = (- b ±
· b
· - 4ac) : 2a
Запись алгоритма, используемого для вычислений, в форме таблицы удобно использовать, когда требуется найти не одно, а несколько значений одного и того же выражения для различных значений переменных, входящих в данное выражение.
Рассмотрим алгоритмическое предписание решения следующей задачи: «В одном куске 72 м ткани, а в другом в у раз больше. Сколько метров ткани во втором куске? Составь выражение и найди его значение, если у = 2, 4, 8».
Словесная запись алгоритма решения данной задачи такова:
составить выражение;
найти его значение для у = 2;
найти его значение для у = 4;
найти его значение для у = 8.
Если же оформить предписание в виде таблицы, то запись будет иметь вид:

Значение переменной
у
2
4
8

Значение выражения
72 - у





Алгоритмы можно записывать на языке блок-схем. Такое их представление, состоящее из блоков и стрелок, выполняется следующим образом:
каждый шаг записывается в форме определенной геометрической фигуры (блока);
блок, соответствующий команде, предусматривающей выполнение некоторого действия, в результате которого образуется какой-то новый промежуточный или конечный результат, изображается в виде прямоугольника. Внутри него записывается выполняемое действие. Такие блоки называются арифметическими, или, в более общем виде, перерабатывающими информацию, так как не всегда выполняемые действия являются арифметическими;
блок, соответствующий команде, предусматривающей проверку некоторого условия, изображается в виде ромба. Проверяемое логическое условие записывается внутри него. Выполнение данной команды не приводит к новому результату, а лишь определяет дальнейший ход процесса решения. Такие блоки называются логическими;
если за шагом А непосредственно следует шаг В, то от блока А к блоку В проводится стрелка. От каждого арифметического блока исходит только одна стрелка; от каждого логического - две стрелки: одна с пометкой «да» (или «+»), идущая к блоку, следующему за логическим блоком, если условие выполняется, другая - с пометкой «нет» (или «-»), идущая к блоку, следующему за логическим, если условие не выполняется;
начало и конец алгоритма изображаются блоками в виде овалов, внутри которых записываются соответственно слова «Начало» и «Конец».

х + 24

да
В качестве примера такой записи рассмотрим алгоритмическое предписание для решения задачи: «Из ряда чисел 15, 16, 17, 18 выпиши значения х при которых верно неравенство .у + 24 > 40


нет



х выписать


13 SHAPE \* MERGEFORMAT 1415

Рис 61.

В соответствии с этой схемой устанавливаем, что если х = 15, то х + 24 не больше 40, следовательно, при этом значении х неравенство х + 24 > 40 верным не будет. Аналогично для х = 16. Если же х = 17, то х + 24 будет больше 40, и, значит, при этом значении х неравенство х + 24 > 40 будет верным. Аналогично и для х = 18.
Видим, что блок-схема наглядно представляет логику решения задачи. Поэтому запись алгоритмов в виде блок-схем имеет широкое распространение.
Еще один способ - это запись на определенном алгоритмическом языке. Она используется в том случае, когда исполнитель данного алгоритма - машина, причем каждая машина имеет свой, только ей понятный язык: фортран, паскаль, бейсик, лого и др.
В зависимости от порядка выполнения действий различают следующие виды алгоритмических процессов: линейные, разветвляющиеся, циклические.

Числа
Кончились
Да
Если в алгоритме действия выполняются последовательно друг за другом, то он называется линейным. Если в алгоритме порядок действий зависит от некоторого условия, он называется разветвляющимся. Если в алгоритме некоторые действия могут выполняться многократно, то он называется циклическим.
Рис. 62
Примером линейного алгоритмического предписания является ранее рассмотренное нами предписание нахождения середины отрезка. На рисунке 61 в виде блок-схемы представлен разветвляющийся алгоритм выбора из данных чисел тех, которые удовлетворяют неравенству х + 24 > 40. Так как в этом алгоритмическом предписании последовательность действий должна повториться для каждого из данных чисел, то его можно сделать циклическим. Для организации цикла необходимо осуществить перебор всех значений и предусмотреть выход из цикла (рис. 62).
Упражнения
1. Установите, для решения каких задач используются следующие
алгоритмы:
А л г о р и т м А.
1) Пишу единицы под единицами, десятки под десятками, сотни под сотнями.
Складываю единицы: 4 + 2 = 6.
Складываю десятки: 6 + 4 = 10, десять десятков равны одной сотне. Пишу под десятками 0, а одну сотню запомню и прибавлю к сотням.
Складываю сотни: 2 + Я = 7, да еще 1, получится 8. Пишу 8 под сотнями.
5) Читаю ответ: 806. А л г о р и т м Б.
Отметь на листе бумаги точку О.
Установи раствор циркуля равным длине отрезка АВ.
Поставь ножку циркуля в точку О.
Проведи окружность.
2. Объясните, почему следующая программа действий является алгоритмическим предписаннем:
Собери портфель
Открой портфель.
Положи в портфель тетради.
Положи в портфель учебники.
Положи в портфель карандаш.
Положи в портфель ручку.
Закрой портфель,
3. Является ли следующая программа действий алгоритмом или алгоритмическим предписанием
А. Измерение длины отрезка АВ.
Совместить линейку с отрезком АВ, совместив О с А.
Отметить число, соответствующее точке В.
Записать полученное значение.
Б. Построение биссектрисы угла (рис.63).




Рис.63
1) Провести циркулем дугу окружности, пересекающую стороны данного угла, и с центром в вершине угла.
Обозначить точки пересечения душ окружности со сторонами угла буквами А и В
Провести окружность с центром в точке А и тем же радиусом.
Провести окружность с центром в точке В и тем же радиусом.
Обозначить одну из точек пересечения окружностей буквой С.
Провести луч из вершины угла через точку С.
4. Составьте алгоритм вычисления по формуле:
а) у = (5х -3) ( (2х + 7);
б) у = 2( (х + 8)-1.
5. По приведенному алгоритму восстановите формулу для вычисления значения у:
Умножить х на 4, обозначить результат R.
Сложить R, с числом 7, обозначить результат R.
Разделить R на х, считать результат значением у.
6. Алгоритм получения кипятка задан при помощи блок-схемы

Какой вид будет иметь блок-схема этого алгоритма при условии, что:
а) в чайнике уже есть вода;
б) плита включена?
7. Составьте алгоритм вычисления в миллиметрах длины ломаной, состоящей из:
а) двух звеньев; 6) пяти звеньев.
8. Составьте алгоритм построения отрезка длиной 5 см. Какие изменения произойдут в нем с изменением длины отрезка?
9.Составьте и запишите алгоритм построения на клетчатой бумаге квадрата со стороной
5 см. Какие изменения надо внести в него, чтобы построить квадрат: а) со стороной 5 см на нелинованной бумаге; б) со стороной любой длины?
Приемы построения алгоритмов
При изучении математики у школьников формируются такие действия, как действие планирования своей деятельности, оценка ее результата, поиска плана решения задачи, чтения учебных текстов, и другие. Если все эти действия проанализировать, то можно составить алгоритмические предписания по их выполнению, а затем использовать как ориентиры для разных видов деятельности. Например, алгоритмическое предписание поиска плана решения задачи может быть таким:
Прочитайте задачу.
Выделите, что дано и что нужно найти в задаче.
Укажите объекты, о которых говорится в условии.
Выясните, как связаны данные объекты и те, которые требуется найти.
Подумайте, как на основании имеющихся у вас знаний об объектах, о которых идет речь, ответить на требования задачи.
Составьте план предполагаемого решения.
Кроме общих учебных действий при изучении математики формируются действия, связанные с освоением конкретного материала. Многие из них носят алгоритмический характер, поэтому для овладения ими целесообразно составлять предписания. В частности, к таким действиям относятся: усвоение нового определения понятия (правила, свойства, теоремы); распознавание принадлежности объекта объему данного понятия; нахождение значения переменной по формуле; решение однотипных задач и др.
Таким образом, обучение математике требует от учителя умения строить алгоритмические предписания. Какие приемы при этом можно использовать?
Для построения любого алгоритмического предписания прежде всего необходимо выделить четкую последовательность элементарных шагов, приводящих к требуемому результату. Каждый такой шаг представляет собой операцию, ранее сформировавшуюся у исполнителя. Когда алгоритм описывается словесно, - это отдельные указания, пункты. Если он формулируется на языке блок-схем, то это отдельные блоки. Непосредственное же построение алгоритма всегда происходит с применением некоторого приема. Это приемы пошаговой детализации, решение частных задач, приемы на основе определений, формул и др.
Все они могут быть разбиты на две группы. К первой группе относятся приемы, на основе которых построение алгоритма осуществляется путем «развития» его «вглубь» и выявления все более частных его особенностей. Ко второй группе относятся приемы, на основе которых построение осуществляется путем «восхождения» к алгоритму от решения частных задач.
Один из наиболее распространенных приемов первой группы – прием пошаговой детализации (или прием последовательного уточнения). Идея пошаговой детализации заключается в том, что на каждом этапе происходит уточнение уже имеющегося алгоритма. Поэтому при применении данного приема: 1) сначала алгоритм строится в крупных блоках (т.е. выделяются наиболее существенные операции); 2) определяется последовательность их выполнения; 3) крупные блоки уточняются до тех пор, пока каждая операция в алгоритме не станет понятной исполнителю.
Рассмотрим, например, как используется прием пошаговой детализации при построении алгоритма решения простейших уравнений (т.е. уравнений вида 5 + х = 8; 8 – х = 7; 5 х = 10; х : 4 = 5 и т.д.).
1. Выделим наиболее существенные операции.
Для решения простейшего уравнения надо назвать неизвестный компонент, т.е. сначала прочитать уравнение. Затем нужно знать правило нахождения этого компонента. Далее, необходимо уметь решать уравнение. Потом провести доказательство, что полученное значение неизвестного – искомое, т.е. сделать проверку. И, наконец, записать ответ.
2. Определим последовательность выделенных операций и запишем алгоритм в крупных блоках:
1]. Прочитай уравнение.
2]. Вспомни правило, как найти значение неизвестного.
3]. Реши уравнение.
4]. Сделай проверку.
5]. Запиши ответ.
Если исполнитель (ученик) не владеет хотя бы одним из перечисленных действий, то он будет испытывать при решении уравнения определенные трудности. Поэтому непонятные ему действия должны быть уточнены. Так, например, чтобы прочитать уравнение, надо назвать арифметическое действие и компоненты. Значит, блок 1]. Можно детализировать:
Назови действие, которое указано в уравнении.
Вспомни, как называются компоненты этого действия.
Прочитай уравнение, используя название компонентов.
Если затруднения вызваны наличием в уравнении больших чисел, то можно использовать пример с аналогичным действием, что и в данном уравнении, но с небольшими числами. Поэтому алгоритм выбора действия (блок 2]) может иметь следующий вид:
Составь пример-помощник на действие, указанное в уравнении, с небольшими числами.
Установи в примере-помощнике, каким действием можно найти неизвестное число.
Вспомни правило нахождения неизвестного компонента.
Алгоритм решения уравнения, т.е. блок 3], можно также уточнить:
Примени правило и запомни выражение неизвестного компонента через известные.
Вычисли значение неизвестного.
Алгоритм проверки, т.е. блок 4] может иметь следующий вид:
Подставь в уравнение найденное значение неизвестного.
Вычисли значение левой и правой части уравнения.
Сравни эти значения.
Прием пошаговой детализации можно использовать при составлении алгоритмов решения различных задач, в частности при вычислении значений величин по формулам, при решении задач на распознавание принадлежности объекта объему данного понятия. Каждый шаг уточнения алгоритма, как правило, состоит из следующих этапов: анализ ситуации; построение более точного фрагмента; контроль правильности этого фрагмента и его связи с предшествующими.
Рассмотрим теперь прием построения алгоритмов, основанный на решении частных задач. Построение алгоритмов с помощью этого приема предполагает:
тщательный анализ разнообразных частных задач определенного класса, приводящих к различным результатам;
выявление операций и последовательности их выполнения при решении частных задач данного класса;
выявление всех логических условий, влияющих на дальнейший ход процесса и приводящих, в конце концов, к разным результатам;
определение последовательности операций для всех возможных случаев, т.е. окончательное построение алгоритма.
Составим, например, алгоритм для класса задач «решить уравнение ах = b».
Тщательно анализируем разнообразные частные задачи, приводящие к различным результатам.
А. 3х = 12 2х = - 5 0,5х = 5 3х = 0 2х = 2
х = 12:3 х = -5:2 х = 5:0,5 х = 0:3 х = 2:2
х = 4 х = -2,5 х = 10 х = 0 х = 1
Б. 0х = 5 0х = - 12 0х = 1,12 0х = 3
Решений нет
В. 0х = 0,
х – любое число.
2) Выявляем операции и последовательность их выполнения при решении частных задач.
А. Операция деления b на а.
Б, В не содержат операций.
3) Выявляем все логические условия, влияющие на дальнейший ход процесса и приводящие, в конце концов, к разным результатам.
А. Если а
· 0, то х = b:а – решение уравнения.
Б. Если а = 0 и b ( 0, то решений нет.
В. Если а = 0 и b = 0, то решений бесконечно много.
4) Построим окончательный алгоритм (рис. 65).
13 SHAPE \* MERGEFORMAT 1415
Рис. 65
Упражнения
1. Используя прием пошаговой детализации, составьте алгоритм выполнения задания: «Определите логическую структуру и значение истинности высказывания, запишите его, используя символы». Проверьте правильность составленного алгоритма для следующих высказываний:
а) 28 кратно 4 и меньше 31;
б) 28 кратно 4 или 9;
в) неверно, что 28 кратно 9.
Используя определение квадрата, составьте и зашипите алгоритм, позволяющий среди различных геометрических фигур распознавать квадраты. Применяя его, выполните задание: «среди следующих фигур выделите квадраты» (рис. 31).
Используя задание: «лежат ли три точки на одной прямой, если известны расстояния между ними: а) 3, 5, 8; б) 1, 4, 2; в) 6, 4, 5; г) 7, 11, 4; д) 3, 8, 12; е) 3, 6, 3?», разделите все случаи на группы в зависимости от результата; обобщите полученные выводы и постройте алгоритм принадлежности трех точек одной прямой. Каким приемом построения алгоритма вы воспользуетесь?
Примечание: расстояния между точками измерены с помощью одной и той же единицы длины.
Основные выводы
Уточнены следующие понятия:
- алгоритм;
- алгоритмическое предписание;
- линейный, разветвляющийся и циклический алгоритм.
Рассмотрены свойства алгоритмов (определенности, дискретности, понятности, результативности, массовости), способы из записи (словесный, формульный, табличный, на языке блок-схем) и приемы построения (пошаговая детализация; прием, основанный на решении частных задач и др.)

Лекция 15. Понятие вероятности
План:
1. События и вероятность. Понятие вероятности. Невозможные и достоверные события.
2. Понятия суммы и произведения. Теоремы сложения и умножения.
3. Условные вероятности. Полная вероятность. Формула Бейеса. Схема испытаний Бернулли.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ - раздел математики, изучающий закономерности случайных явлений. Предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий. Знание закономерностей, которым подчиняются массовые случайные события, позволяет предвидеть, как эти события будут протекать. Так, хотя нельзя наперед определить результат одного бросания монеты, но можно предсказать, причем с небольшой погрешностью, число появлений герба, если монета будет брошена достаточно большое число раз. При этом предполагается, что монета бросается при одних и тех же условиях.
Методы теории вероятностей широко применяются практически во всех областях науки, техники и сельского хозяйства (в физике, биологии, психологии, педагогике, экономике, военном деле, агротехнике и др.).
ИСПЫТАНИЕ (ОПЫТ, СТОХАСТИЧЕСКИЙ ЭКСПЕРИМЕНТ) -
наблюдение какого-либо явления при соблюдении определенного комплекса условий, который должен каждый раз строго выполняться при повторении данного И. Если то же самое явление наблюдается при другом комплексе условий, то это уже другое И.
СОБЫТИЕ - какое-либо явление, которое может произойти или не произойти в результате данного испытания. События принято обозначать начальными заглавными буквами латинского алфавита А, В, С....
Пример 6.1. а) В урне имеются цветные шары. Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появление шара определенного цвета - событие; б) Студент отвечает на вопрос. Сам процесс - это испытание. Конкретный ответ - событие.
Элементарные исходы (элементарные события) - события, которые в данном испытании могут произойти, причем:
все они взаимно исключают друг друга, и в результате испытания происходит одно из этих событий;
каково бы ни было случайное событие А, по наступившему элементарному событию можно сказать, произошло или не произошло событие А.
Принятое обозначение –
· ,
· ,
· ,,
·п .
Те элементарные исходы испытания, в которых интересующее событие наступает, называют благоприятствующими этому событию.
Пространство (поле) элементарных событий - совокупность всех элементарных событий данного испытания. Принятое обозначение - , т.е. = {
· ,
· ,
· ,,
·п }.
Пример 6.2. Испытание состоит в бросании двух игральных кубиков. Элементарное событие состоит в выпадении упорядоченной пары чисел (т, п) на первом и втором кубике соответственно, где т, п ( N,
т ( 6, п ( 6. Пространство = {(1,1), (1,2), (1,3), ., (6,6)} состоит из 36 элементарных событий.
Наблюдаемые события подразделяют на следующие три вида: достоверные, невозможные и случайные.
Достоверное С. - С, которое обязательно происходит в результате данного испытания. Принятое обозначение - . Так, достоверным С. является выпадение не более шести очков при бросании обычной игральной кости, появление белого шара при извлечении из урны, содержащей только белые шары, и т.п.
Невозможное С. - С, которое заведомо не произойдет в результате данного испытания. Принятое обозначение - (. Примерами невозможных событий являются извлечение более четырех тузов из обычной карточной колоды, появление черного шара при извлечении шара из урны, содержащей только белые шары, и т.п.
Случайное С. – С., которое может либо произойти, либо не произойти в результате данного испытания. Например, если брошена монета, то она может упасть так, что сверху будет либо орел, либо решка. Поэтому событие А: "При бросании монеты выпал орел" - случайное.
Противоположное С. – С., состоящее в том, что данное событие А не наступило. Его обозначают
· . Если, скажем, событие А состоит в появлении красной масти при вытаскивании карты из колоды, то
· означает появление черной.
Несовместные С. - события А и В такие, что наступление одного из них исключает возможность наступления другого. Так, положительный ответ на вопрос несовместим с отрицательным ответом, выпадение четного числа очков при бросании игральной кости несовместно с выпадением нечетного числа. Наоборот, выпадение четного числа очков (событие А) и числа очков, кратного трем (событие В), не будут несовместными, т.к. выпадение шести очков означает наступление и события А, и события В. Ясно, что события А и
· всегда будут несовместными.
События А , А , .... , А п называются равновозможными, если нет основания считать, что появление одного из них в результате испытания является более возможным, чем остальных.
События А , А , .... , А п называются единственно возможными, если какое-либо одно из них непременно должно наступить в результате испытания.
События А,, А2, .... Ап образуют полную группу, если в результате испытания появится хотя бы одно из них. ш
Пример 6.3. Пусть в урне находится три белых шара, занумерованных цифрами 1, 2, 3 и два черных шара, занумерованных цифрами 4, 5. Из урны наудачу извлекается один шар. Пусть событие А заключается в том, что извлеченный шар - красный. Поскольку в урне находится 5 шаров, то в результате испытания может быть извлечен любой из пяти шаров, т.е. в результате испытания наступит одно из пяти следующих событий: Л, - "Появление шара №1", А2 - "Появление шара №2", ..., А5 - "Появление шара №5". Данные события Аг А2, ., Л5 образуют полную группу равновозможных попарно несовместных событий.
Пример 6.4. События "Выигрыш в шахматной партии" (А) и "Проигрыш в шахматной партии" (В) не образуют полную группу, т.к. результатом шахматной партии может быть "ничья".
ОПЕРАЦИИ НАД СОБЫТИЯМИ.
Сумма (объединение) событий А и В - событие, состоящее в появлении хотя бы одного из событий А и В. Сумму событий обозначают А + В (или А
·В).
Произведение (пересечение) событий А и В - событие, состоящее в их совместном появлении. Произведение событий обозначают А
· В (или А
·В).
Разность событий А и В - событие А\В, происходящее тогда и только тогда, когда происходит А, но не происходит В.









а) А + В б) А
· В в) А\В г)
·
Рис. 6.1
На рис. 6.1 события А + В, А
· В, А\В,
· заштрихованы
Теорема 6.1. Для любых событий Л, В и С справедливы следующие законы и свойства:
Коммутативности А + В = В + А; А
· В = В
· А.
Ассоциативности: (А В) С = А (В С); (А + В) + С = А + (В + С).
Дистрибутивности: А (В + С) = (А В) + (А С).
Идемпотентности: А А = А; А + А = А.
Поглощения. А + = ; А = А; А +( = А; А ( = (.
А+ А = ; А = \А.
А + (А В) = А; А (А + В) = А.
Де Моргана:
· (АВ) =
· +
·;
· (А + В) =
·
·.
А\(ВС) = (А\В) (А\С); А\(В + С) = (А\В) + (А\С) = (А\В)\С/
Двойного отрицания:
·
· = А.
А +
· = ;
А\В = А В .
Доказательство этой теоремы опускается.
ВЕРОЯТНОСТЬ СОБЫТИЯ А ( Р(А) ) - отношение числа т благоприятствующих событию А исходов к общему числу п всех равновозможных попарно несовместных элементарных исходов, образующих полную группу, т.е.
Р(А) = m\n (6.1)
Данная формула представляет собой т.н. классическое определение вероятности по Лапласу.
Теорема 6.2. Вероятность достоверного события равна единице: Р( ) = 1.
Доказательство. Пусть - достоверное событие. Тогда в результате испытания оно обязательно произойдет. Следовательно, каждый элементарный исход испытания будет благоприятствующим событию , т.е. m = n. Значит, Р( ) = m\n = 1. Теорема доказана.
Теорема 6.3. Вероятность невозможного события равна нулю: Р(() = 0.
Доказательство. Пусть ( - невозможное событие. Тогда в результате испытания оно никогда не произойдет. Следовательно, число благоприятствующих событию 0 исходов равно нулю, т.е. m = 0. Значит Р(() = 0\ n. = 0. Теорема доказана.
Теорема 6.4. Если А - случайное событие, то 0 < Р(А) < 1.
Доказательство. Так как А - случайное событие, то в результате испытания оно может как наступить, так и не наступить. Поэтому число m благоприятствующих событию А исходов испытания, с одной стороны, больше нуля, а с другой стороны меньше числа n всех элементарных исходов испытания, т.е. 0 < m < n . Тогда 0/ n < m / n < n / n, и значит,
0 < m / n < 1. Теорема доказана.
Теорема 6.5. Если А - событие, то 0 < Р(А) < 1.
Доказательство следует из теорем 6.2 - 6.4.
Пример 6.5. Испытание состоит в подбрасывании игральной кости, на каждой из граней которой проставлено число очков (от 1 до 6). Какова вероятность того, что: а) выпадет 2 очка? б) выпадет нечетное число очков?
Решение. В данном испытании имеется 6 равновозможных случаев (выпадение 1,2,3,4,5,6 очков, т.е. n = 6), т.к. нет оснований предполагать, что появление какого-то определенного числа очков более вероятно (при условии, что кость симметрична). Поэтому вероятность выпадения любого числа очков, в том числе и 2, при одном (m = 1) подбрасывании равна 1/6.
Событию А, заключающемуся в появлении нечетного числа очков, благоприятствуют три случая (выпадение 1, 3 и 5, т.е. m = 3), поэтому по формуле (6.1) получаем Р(А) = m / n = 0,5.
Ответ, а) 1/6; б) 0,5.
Пример 6.6. В коробке из 12 кубиков находятся 5 красных кубиков. Найдите вероятность того, что среди восьми взятых наудачу кубиков, ровно 2 красных.
Решение. Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 8 кубиков из 12, т.е. числу сочетаний из 12 элементов по 6 (С 13 EMBED Equation.3 1415). Подсчитаем число исходов, благоприятствующих событию А - "Среди восьми взятых кубиков ровно 2 красных": 2 красных кубика можно взять из 5 красных кубиков С 13 EMBED Equation.3 1415 способами; при этом остальные 8
· 2 = 6 кубика не должны быть красными; взять же 6 не красных кубика из 12 - 5 = 7 не красных кубиков можно С 13 EMBED Equation.3 1415 способами.
Следовательно, число благоприятствующих исходов равно С 13 EMBED Equation.3 1415 С 13 EMBED Equation.3 1415 .
Искомая вероятность равна отношению числа исходов, благоприятствующих событию,
к числу всех элементарных исходов: Р(А) = (С 13 EMBED Equation.3 1415 С 13 EMBED Equation.3 1415) : (С 13 EMBED Equation.3 1415) = 14 \ 99.
Ответ: 14/99.
В основе математических моделей, используемых в теории вероятностей, лежат три понятия: пространство элементарных событий , класс событий А (подмножеств ) и определенная на этом классе функция множеств Р - вероятностная мера. Значение Р(А) функции Р для события А и называется вероятностью события А.
ОТНОСИТЕЛЬНАЯ ЧАСТОТА СОБЫТИЯ - отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. Относительная частота события А определяется формулой W(А) = m\n, где m - число появлений события, n - общее число испытаний.
Определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически. Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта. Так, если по окончании экзаменационной сессии выясняется, что из 24 случайно отобранных студентов неуспевающими являются 3 студента, то относительная частота появления неуспевающих студентов W(А) = 3/24 = 0,125.
Длительные наблюдения показывают, что если в одинаковых условиях производятся опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости, суть которое состоит в том, что в различных опытах относительна частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Это постоянное число есть вероятность появления события. Таким образом, если опытным путем установлена относительная частота, то полученное число можно принять за приближенное значение вероятности.
Пример 6.7. По данным статистического управления города N относительная частота рождения девочек за 2000 г. по месяцам характеризуется следующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473. Относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождения девочек.
СТАТИСТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ. Классическое определение вероятности предполагает, что число элементарных исходов испытания - конечно, а элементарные события равновозможные. О равновозможности элементарных исходов испытания судят из соображений симметрии. Так, например, обстоит дело при бросании игрального кубика, когда предполагают, что он имеет идеальную форму правильного многогранника (куба), при извлечении шаров из урны, когда считают, что шары абсолютно одинаковые по форме и неразличимы на ощупь, и т.п.
Однако задачи, в которых можно исходить из соображений симметрии, на практике встречаются весьма редко. Чаще встречаются испытания, элементарные события которых не являются равновозможными. В таких случаях классическое определение неприменимо. По этой причине наряду с классическим определением пользуются также статистическим определением вероятности, принимая за вероятность события относительную частоту или число, близкое к ней. Другими словами, если в результате достаточно большого числа испытаний оказалось, что относительная частота события А весьма близка к числу 0,78, то это число принимают за статистическую вероятность события А, и говорят, что событие А стохастически устойчиво. Например, если при 100 попытках стрелок попал в цель 81 раз, то можно считать, что для него вероятность попадания в цель при данных условиях приблизительно равна 0,81, т.е. относительной частоте попадания.
АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ.
Пусть - пространство элементарных событий некоторого стохастического эксперимента и в выделена система 5 событий, являющаяся алгеброй событий. Это означает, что:
1) ( S;
2) Если А ( S (
· ( S;
3) Если А и В ( S ( А+ В ( S и А
· В ( S.
Каждому событию А поставим в соответствие число Р(А) (его вероятность) так, что выполняются следующие свойства:
1 .((А( S) [Р(А)
· 0].
2. Р( )= 1
3. Если А и В несовместны (АВ = (), то Р(А + В) = Р(А) + Р(В). Тройка ( , S , Р) называется вероятностным пространством.
Этот подход позволяет, не обсуждая трудного вопроса о том, откуда известны первоначальные вероятности, если известны вероятности одних событий, вычислить по ним вероятности других, достаточно сложных событий, пользуясь только перечисленными аксиомами. В таком виде аксиоматика теории вероятностей была предложена
А.Н. Колмогоровым.
ГЕОМЕТРИЧЕСКАЯ МОДЕЛЬ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Рассмотрим опыт, состоящий в бросании случайным образом точки на отрезок [а; b], предполагая, что попадания в любую точку равновозможны. Пространство элементарных событий в этом опыте - все точки отрезка [а; b]. Поскольку множество элементарных событий несчетно (бесконечно) и все они равновозможны, то для (( ( Р(( ) = 0. Так что классическая схема неприменима. В этом случае положим, что вероятность события А - "Попадание брошенной точки на отрезок [с; d] ( [а; b] -пропорциональна длине отрезка [с; d] , т.е. Р(А) = к
· (d - с), где d - с - длина отрезка. Коэффициент к находится из условия нормировки: Р( ) = к
· (а - b) = 1 => к = 1 / (а - b) и Р(А) = (d - с ) / (а - b).
Пример 6.8. Абонент ждет телефонного вызова в течение одного часа. Какова вероятность, что вызов произойдет в последние 20 минут этого часа?
Решение. Пусть событие А состоит в том, что вызов произошел в последние 20 минут. Изобразим пространство элементарных событий в виде отрезка длины 60. Тогда элементарные события, благоприятные А, заключены в последнюю треть отрезка, следовательно, Р{А) =1/3.
Ответ: 1/3.
Естественно, что вместо отрезка можно говорить о плоской фигуре, определив вероятность как отношение Р(А) = S(А) / S (), где S(А) и S () - площади cоответствующих фигур.
Нетрудно убедиться, что все аксиомы и в том, и в другом случае выполняются.
Пример 6.9. Два лица Х и У условились встретиться в определенном месте между 12 часами и часом, при этом пришедший первым ждет другого в течение 20 минут, после чего уходит. Чему равна вероятность встречи лиц X и У, если приход каждого из них в течение указанного часа может произойти случайно, и моменты прихода независимы?
Решение. Обозначим момент прихода лица X через х, а лица У - через у. Для того, чтобы встреча произошла, необходимо и достаточно выполнение неравенства |х - у| < 20. На координатной плоскости множество точек, удовлетворяющие этому неравенству, изобразятся в виде полосы (рис. 6.2, а), все возможные исходы - точками квадрата со стороной 60 (минут) а благоприятствующие встрече - расположатся в заштрихованной области (рис. 6.2, 6). Следовательно, искомая вероятность равна отношению площади заштрихованной фигуры к площади всего квадрата, т.е. равна (602 - 402 )/602 = 5/9. у* >

Рис. 6.2
Ответ: 5/9.
ВЕРОЯТНОСТИ СУММЫ И ПРОИЗВЕДЕНИЯ СОБЫТИЙ. Часто бывает так, что вероятность некоторого события можно найти, зная вероятности других событий, связанных с этим событием.
Теорема 6.6. (Теорема сложения вероятностей). Вероятность суммы (объединения; появления одного из них, безразлично какого) двух произвольных событий равна сумме вероятностей этих событий за вычетом вероятности их совместного появления, т.е.
Р(А + В) = Р(А) + Р(В) – Р(АВ).
Доказательство. Пусть А и В - произвольные события. Обозначим через п число всех элементарных исходов испытания, в результате которого может наступить событие А + В. В силу определения число т всех исходов, которые благоприятствуют событию А + В, можно посчитать следующим образом: к числу m, благоприятствующих событию А исходов испытания прибавим число т2 благоприятствующих исходов событию В. Поскольку наступление события А + В происходит и при совместном наступлении событий А и В (т.е. при наступлении события АВ), а каждый благоприятствующий событию АВ исход благоприятствует как событию А, так и событию В, то в сумме m + т2 дважды учтено число т всех благоприятствующих событию АВ исходов. Поэтому m = m + т2 - т и значит, Р(А + В) = т\п = (m + т2 - т )\п = m\п + т2\п - т \п . Учитывая, что m\п, т2\п, т \п - вероятности событий А, В, АВ соответственно, то Р(А + В) = Р(А) + Р(В)- Р(АВ). Теорема доказана.
Следствие 1. Вероятность суммы (объединения) попарно несовместных событий равна сумме их вероятностей, т.е. Р(А + А2 +... + Ап) = Р(А) + Р(А2) ++ Р(Ап).
Следствие 2. Пусть А, А2, ... , Ап - полная группа попарно несовместных событий. Тогда Р(А) + Р(А2) ++ Р(Ап) = 1.
Следствие 3. Сумма вероятностей противоположных событий равна единице, т.е. Р(А) + Р(
· ) = 1.
Пример 6.10. В урне 5 белых, 6 черных и 9 красных шаров. Какова вероятность того, что первый наугад вынутый шар окажется черным или красным?
Решение. Здесь имеется всего 20 элементарных исходов, из которых появлению черного шара благоприятствует 6, а появлению красного - 9. Поэтому вероятность события А - появление черного шара: Р(А) = 6/20, а вероятность события В - появление красного шара: Р(В) = 9/20. Поскольку события А и В несовместны (вынимается всего один шар), то Р(А + В) = Р(А) + Р(В) = 6/20 + 9/20 = 0,75.
Ответ: 0,75.
Условная вероятность события В (РА(В)) - вероятность события В, вычисленная при условии, что событие А уже произошло. Если А и В - независимые события, то РА(В) = Р(В), РВ(А) = Р(А).
Теорема 6.7. (Теорема умножения вероятностей). Вероятность произведения (пересечения; совместного появления) двух произвольных событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило, т.е. Р(АВ) = Р(А)РА(В) = Р(В)РВ(А).
Доказательство. Пусть п - число всех элементарных исходов испытания, т из этих исходов благоприятствуют событию А и d исходов благоприятствуют событиям А и В. Тогда, по определению вероятности события, имеем Р(А) = т/п, Р(АВ) = d/п. Найдем условную вероятность РА(В) события В при условии, что событие А наступило. Событие А наступает в т исходах, а в d исходах из них наступает событие В. Следовательно, РА(В) = d/т. Так как d/п = (т/п)( d/т), то Р(А В) = Р(А) РА(В). Аналогично можно показать, что Р(АВ) = Р(В) РВ(А). Теорема доказана.
Пример 6.11. На полке стоят 11 научно-популярных книг и 5 художественных. Какова вероятность того, что две подряд наугад взятые книги окажутся художественными?
Решение. Рассмотрим два события В и В2: В - при первом испытании взята художественная книга, Вг - при втором испытании взята художественная книга. По теореме 6.7 вероятность такого события равна Р(В1В2) = Р(В) РВ (В2). Вероятность события В1РВ= 5/16. После первого испытания на полке останется 15 книг, из которых 4 художественные, поэтому условная вероятность РВ (В2) = 4/15.
Отсюда искомая вероятность равна: Р(ВВг) =5/16
·4/15 =1/12. .
Ответ: 1/12.
Следствие 1. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляют при условии, что все предыдущие события уже наступили, т.е.
Р(А
·А2
·...
·Ап) = Р( А) Р А (А2) Р А А2 (А) РА РА2 РАn-1 (Ап,) .
Пример 6.12. Из десяти карточек составлено слово "МАТЕМАТИКА". Из них школьник наудачу выбирает поочередно четыре карточки и приставляет одну к другой. Какова вероятность того, что получится слово "ТЕМА"?
Решение. Введем события А, А2, А, А, состоящие в том, что первая выбранная буква - Т, вторая - Е, третья – М и четвертая - А. Нам нужно найти вероятность произведения этих событий. По следствию 1 из теоремы 6.7 имеем:
Р(А
·А2
·А
·А = 2/10
·1/9
·2/8
·3/7 = 1/420.
Ответ: 1/420.
Следствие 2. Если А, А2, . . ., Ап - независимые события, то вероятность их произведения (совместного появления) равна произведению вероятностей этих событий, т.е. Р(А
·А2
·...
·Ап) = Р( А) Р (А2) Р(Ап).
Пример 6.13. Два стрелка независимо один от другого делают по одному выстрелу по одной и той же мишени. Вероятность поражения мишени первым стрелком - 0,7; вторым - 0,8. Какова вероятность того, что мишень будет поражена?
Решение. Пусть событие А состоит в том, что мишень поразил первый стрелок, а событие В - в том, что мишень поразил второй стрелок. По условию Р(А) = 0,7 и Р(В) = 0,8.
1-й способ. Рассмотрим противоположные события:
· - промах первого стрелка,
· - промах второго. По следствию 3 из теоремы 6.6 получаем Р(
· ) = 1 - 0,7 = 0,3 и Р(
·) = 1 - 0,8 = 0,2. Произведение событий
·
· означает промах обоих стрелков. По смыслу задачи события А и В являются независимыми, поэтому и противоположные события
· и
· также будут независимыми. По следствию 2 из теоремы 6.7 получаем вероятность того, что оба стрелка промахнутся:
Р(
·
·) = 0,30,2 = 0,06. Нас же интересует вероятность противоположного события, состоящего в том, что мишень поражена. Поэтому искомую вероятность мы находим по следствию 3 из теоремы 6.6: 1 - 0,06 = 0,94.
2-й способ. Искомое событие (мишень будет поражена хотя бы одним стрелком) есть сумма событий А и В. По теореме 6.6 Р(А + В) = Р(А) + Р(В) - Р(АВ) = 0,7 + 0,8 - 0,70,8= 1,5-0,56 = 0,94.
Ответ: 0,94.
Пример 6.14. В студенческой группе 25 человек. Какова вероятность того, что дни рождения хотя бы у двоих совпадают?
Решение. Вероятность того, что дни рождения у двух произвольно взятых людей совпадают, равна 1/365 (считаем, что попадания дня рождения на любой день в году -равновозможные случаи). Тогда вероятность того, что дни рождения двух людей не совпадают, т.е. вероятность противоположного события равна 1 - 1/365 = 364/365. Вероятность того, что день рождения третьего отличается от дней рождения двух предыдущих, составит 363/365 (363 случая из 365 благоприятствуют этому событию). Рассуждая аналогично, находим, что для 25-го члена группы эта вероятность равна 341/365. Далее найдем вероятность того, что дни рождения всех 25 членов группы не совпадают. Поскольку все эти события (несовпадение дня рождения каждого очередного члена группы с днями рождения предыдущих) независимы, то по следствию 2 из теоремы 6.7 получаем:
Р(А
·А2
·...
·А) = 364/365
· 363/365
·
·341/365 = 0,43
Это вероятность того, что дни рождения у всех 25 человек не совпадают. Вероятность противоположного события будет вероятностью того, что хотя бы у двоих дни рождения совпадают, т.е. искомой вероятностью Р = 1 - 0,43 = 0,57.
Ответ: 0,57.
СХЕМА БЕРНУЛЛИ. Пусть А - случайное событие по отношению к некоторому испытанию. Будем считать, что испытание имеет два исхода: наступление события А и ненаступление события А (т.е. наступление события
· ). Если производится несколько таких испытаний, причем вероятность события А в каждом из них не зависит от исходов остальных, то такие испытания называют независимыми (относительно события А).
Говорят, что проводимый эксперимент удовлетворяет схеме Бернулли, если:
1) эксперимент состоит из n независимых испытаний;
2) каждое испытание имеет два исхода - наступление некоторого события А и наступление события А;
3) вероятность события А в каждом испытании постоянна.
Теорема 6.10. Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р, а не появления - q. Тогда вероятность Рп(k) того, что в n испытаниях событие А появится ровно k раз, вычисляется по формуле Бернулли: Рп(k) = С13 EMBED Equation.3 1415 р13 EMBED Equation.3 1415 q 13 EMBED Equation.3 1415.

Наивероятнейшее число наступления события А в n испытаниях - число k = k при котором вероятность Рп(k) является наибольшей.
Теорема 6.11. Если р
· 0 и р
·1,то наивероятнейшее число k можно определить из двойного неравенства: n р - q ( k ( n р + р. Если n р + р не является целым числом, то данное неравенство определяет лишь одно наивероятнейшее число. Если n р + р - целое число, то имеются два наивероятнейших значения: k' = n р - q и k'' = n р + р. Доказательство этой теоремы опускается.
Пример 6.17. Вероятность попадания в мишень при выстреле равна 0,8. Найдите:
а) вероятность того, что при семи выстрелах произойдет пять попаданий в мишень;
б) наивероятнейшее число k попаданий в мишень при семи выстрелах.
Решение. Рассматриваемый в задаче эксперимент удовлетворяет схеме Бернулли. Пусть А - событие "Попадание в мишень при выстреле". Тогда событие
· означает "промах". По условию Р(А) = р = 0,8, значит, Р(
· ) = q = 1 - р = 0,2.
а) Для нахождения пяти попаданий при семи выстрелах воспользуемся теоремой 6.10: Р (5) = С13 EMBED Equation.3 1415 р13 EMBED Equation.3 1415 q 13 EMBED Equation.3 1415 = 7! / (5!(7-5)! 0,8 0,2І = 0,275.
б) Наивероятнейшее число попаданий в мишень при семи выстрелах находим (согласно теоремы 6.11) из двойного неравенства 70,8 - 0,2 ( k ( 7 0,8 + 0,8, т.е 5,4 ( k ( 6,4. Значит, k = 6.
Ответ: а) 0,275; б) 6.

Глава II. ЭЛЕМЕНТЫ АЛГЕБРЫ
Лекция 16. Соответствия
План:
1. Понятие соответствия. Способы задания соответствий.
2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
3. Взаимно-однозначные соответствия

Первоначально алгеброй называли учение о решении уравнений. За много столетий своего развития алгебра превратилась в науку, которая изучает операции и отношения на различных множествах. Поэтому не случайно уже в начальной школе дети знакомятся с такими алгебраическими понятиями, как выражение (числовое и с переменными), числовое равенство, числовое неравенство, уравнение. Они изучают различные свойства арифметических действий над числами, которые позволяют рационально выполнять вычисления. И конечно, в начальном курсе математики происходит их знакомство с различными зависимостями, отношениями, но чтобы использовать их в целях развития мыслительной деятельности детей, учитель должен овладеть некоторыми общими понятиями современной алгебры - понятием соответствия, отношения, алгебраической операции и др. Кроме того, усваивая математический язык, используемый в алгебре, учитель сможет глубже понять сущность математического моделирования реальных явлений и процессов.
§ 8. СООТВЕТСТВИЯ МЕЖДУ ДВУМЯ МНОЖЕСТВАМИ
Изучая окружающий нас мир, математика рассматривает не только его объекты, но и главным образом связи между ними. Эти связи называют зависимостями, соответствиями, отношениями, функциями. Например, при вычислении длин предметов устанавливаются соответствия между предметами и числами, которые являются значениями их длин; при решении задач на движение устанавливается зависимость между пройденным расстоянием и временем, если скорость движения постоянна.
Конкретные зависимости, соответствия, отношения между объектами в математике изучались с момента ее возникновения. Но вопрос о том, что общее имеют самые разные соответствия, какова сущность любого соответствия, был поставлен в конце XIX - начале XX века, и ответ на него был найден в рамках теории множеств.
В начальном курсе математики изучаются различные взаимосвязи между элементами одного, двух и более множеств. Поэтому учителю надо понимать их суть, что поможет ему обеспечить единство в методике изучения этих взаимосвязей.

41. Понятие соответствия. Способы задания соответствий
Рассмотрим три примера соответствий, изучаемых в начальном курсе математики.

I. Найти значение выражения:
II.Найти площадь фигуры
III. Решить уравнение:

в1) (17-1):4;
в2) (12 + 18) : (6-6);
в3) 2·7 + 6.
F1






F2












F1













Рис.66
y1) 2 + x = 6;
y2) x – 7 = 4;
y3) 2x = 8


В первом случае мы устанавливаем соответствие между заданными выражениями и их числовыми значениями. Во втором выясняем, какое число соответствует каждой из данных фигур, характеризуя ее площадь. В третьем ищем число, которое является решением уравнения.
Что общее имеют эти соответствия?
Видим, что во всех случаях мы имеем два множества: в первом -это множество из трех числовых выражений и множество N натуральных чисел (ему принадлежат значения данных выражений); во втором -это множество из трех геометрических фигур и множество N натуральных чисел; в третьем - это множество из трех уравнений и множество N натуральных чисел.

2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
Выполняя предложенные задания, мы устанавливаем связь (соответствие) между этими множествами. Ее можно представить наглядно, при помощи графов (рис. 67).
Можно задать эти соответствия, перечислив все пары элементов, плодящихся в заданном соответствии:
{(в1,4),(в3,20)};
{(F1,4),( F2,10),(F3,10)};
{(y1, 4), (у2, 11), (y3,4)}.


Рис. 67
Полученные множества показывают, что любое соответствие между двумя множествами X и Y можно рассматривать как множество упорядоченных пар, образованных из их элементов. А так как упорядоченные пары - это элементы декартова произведения, то приходим к следующему определению общего понятия соответствия.
Определение. Соответствием между множествами X и Y называется всякое подмножество декартова произведения этих множеств.
Соответствия принято обозначать буквами Р, S, Т, К и др. Если S -соответствие между элементами множеств X и Y то, согласно определению, S с Х х У.
Выясним теперь, как задают соответствия между двумя множествами. Поскольку соответствие - это подмножество, то его можно задавать как любое множество, т.е. либо перечислив все пары элементов, находящихся в заданном соответствии, либо указав характеристическое свойство элементов этого подмножества. Так, соответствие между множествами X - {1, 2, 4, 6} и У = {3, 5} можно задать:
при помощи предложения с двумя переменными: а < Ь при условии, что а X, b Y;
перечислив пары чисел, принадлежащих подмножеству декартова произведения Х х У: {(1,3), (1,5), (2, 3), (2, 5), (4, 5)}. К этому способу задания относят также задание соответствия при помощи графа (рис. 68) и графика (рис. 69).











Нередко, изучая соответствие между множествами X и Y, приходится рассматривать и соответствие, ему обратное. Пусть, например, S -соответствие «больше на 2» между множествами X = {4, 5, 8, 10} и Y = {2, 3,6}. Тогда S = {(4,2), (5, 3), (8,6)} и его граф будет таким, как на рисунке 70,а.
Соответствие, обратное данному, - это соответствие «меньше на 2», Оно рассматривается между множествами R и Х, и чтобы его представить наглядно, достаточно на графе соответствия S направление стрелок поменять на противоположное (рис. 70,6). Если соответствие меньше на 2» обозначить S-1, то S-1 = {(2,4), (3,5), (6,8)}.

Рис.70

Условимся предложение «элемент х находится в соответствии S с элементом у» записывать кратко так: хSу. Запись хSу можно рассматривать как обобщение записей конкретных соответствий: x= 2у; х > 3у+1 и др.

3. Взаимно-однозначные соответствия
Воспользуемся введенной записью для определения понятия соответствия, обратного данному.

Определение. Пусть S - соответствие между множествами Х и У. Соответствие S-1; между множествами Y и X называется обратным данному, если уS-1 тогда и только тогда, когда хSу.
Соответствия S и S-1 называют взаимно обратными. Выясним особенности их графиков.
Построим график соответствия S = {(4, 2), (5, 3), (8, 6)} (рис. 71, а). При построении графика соответствия S-1 = {(2, 4), (3, 5), (6, 8)} мы должны первую компоненту выбирать из множества Y = {2, 3, 6}, а вторую - из множества Х= {4, 5, 8, 10}. В результате график соответствия S-1 совпадет с графиком соответствия S. Чтобы различать графики соответствий S и S-1, условились первую компоненту пары соответствия S-1 считать абсциссой, а вторую - ординатой. Например, если (5, 3) S, то (3, 5) S-1. Точки с координатами (5, 3) и (3, 5), а в общем случае (х,у) и (у, х) симметричны относительно биссектрисы 1-го и 3-го координатных углов. Следовательно, графики взаимно обратных соответствий S и S-1 симметричны относительно биссектрисы 1-го и 3-го координатных углов.


Рис.71

Чтобы построить график соответствия S-1, достаточно изобразить на координатной плоскости точки, симметричные точкам графика S относительно биссектрисы 1-го и 3-го координатных углов.

Упражнения
Вычислив длины заданных отрезков, учащийся записал: АВ = 7 см, СD = 12 см, КL = 15 см, XY = 12 см. Соответствие между какими множествами он установил? Задайте это соответствие при помощи предложения с двумя переменными и графа.
Даны множества: X = {2, 5}, Y = {3, 6}. Перечислите элементы декартова произведения данных множеств и образуйте все подмножества полученного множества. Какое из подмножеств задает соответствие: а) «больше»; б) «меньше»; в) «меньше на 1»; г) «меньше в 3 раза»?
Соответствие «число х в два раза больше числа у» рассматривается между множествами X и Y. Каким будет его график, если:
а) X = {2,4,6,8}, Y = N; б) X =[2, 8], Y=R;
в) Х = Y =R.
Между множествами X = {0, 1, 2, 3, 4, 5} и Y= Z задано соответствие «х - у = 3», причем х X, у Y. Какая фигура на рисунке 72 является графиком этого соответствия?


Графиком соответствия Р, заданного между множествами X и Y, являются все точки прямоугольника АВСD (рис. 73). Назовите координаты трех точек, принадлежащих этому графику и задайте множества X и Y.
Множества X = {1, 3, 4, 6} и Y = (0, 1} находятся в соответствии S = {(1, 1), (3, 0), (3, 1), (4 0), (4, 1) (6, 1)}. Задайте соответствие S-1, обратное соответствию S, и постройте на одном чертеже их графики.
7. Между множеством X - углов треугольника AВС и множеством Y- его сторон задано соответствие Т - «угол х лежит против стороны у». Задайте соответствие Т-1, обратное соответствию Т, при помощи: а) предложения с двумя переменными; б) графа.
8. Даны графики соответствий P и Q (рис. 74). Можно ли утверждать, что соответствия P и Q
взаимно обратные?
9. Постройте графики соответствий, обратных данным (рис. 75).


Лекция17. Взаимно-однозначные соответствия
План:
1. Взаимно-однозначные соответствия. Понятие взаимно однозначного отображения множества Х на множество Y.
2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
3. Основные выводы

42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества Х на множество Y
В математике изучают различные виды соответствий. Это не случайно, поскольку взаимосвязи, существующие в окружающем нас мире, многообразны. Для учителя, обучающего математике младших школьников, особую значимость имеют взаимно однозначные соответствия.
Определение. Взаимно однозначным соответствием между множествами X и Y называется такое соответствие, при котором каждому элементу множества X сопоставляется единственный элемент множества Y и каждый элемент множества Y соответствует только одному элементу множества X.
Рассмотрим примеры взаимно однозначных соответствий.
Пример 1. Пусть Х - множество кружков, Y - множество квадратов и соответствие между ними задано при помощи стрелок (рис. 76).

Рис. 76
Это соответствие взаимно однозначное, так как каждому кружку из множества X сопоставляется единственный квадрат из множества Y и каждый квадрат из Y соответствует только одному кружку из множества X.
Пример 2. Пусть X - множество действительных чисел, Y - множество точек координатной прямой. Соответствие между ними таково: действительному числу сопоставляется точка координатной прямой. Это соответствие взаимно однозначное, так как каждому действительному числу сопоставляется единственная точка координатной прямой и каждая точка на прямой соответствует только одному числу.
В математике взаимно однозначное соответствие между множествами X и Y часто называют взаимно однозначным отображение множества X на множество Y.
Понятие взаимно однозначного соответствия позволяет определить отношение равномощности множеств.
2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
Определение. Множества X и Y называются равномощными, если между ними можно установить взаимно однозначное соответствие.
Если множества X и Y равномощны, то пишут X ~ Y.
Нетрудно увидеть, что множества, которые были рассмотрены в примерах 1 и 2, равномощны.
Равномощными могут быть как конечные, так и бесконечные множества. Равномощные конечные множества называют еще равночисленными. В начальном обучении математике равночисленность выражается словами «столько же» и может использоваться при ознакомлении учащихся со многими другими понятиями. Например, чтобы ввести равенство чисел, сравнивают два множества, устанавливая между их элементами взаимно однозначное соответствие. Например, пишут, что 5 = 5, так как кружков столько же, сколько квадратов (рис. 76).
Понятие равночисленности множеств лежит и в основе определения отношений «больше на ...» и «меньше на ...». Например, чтобы утверждать, что 6 больше 4 на 2, сравнивают два множества, устанавливая взаимно однозначное соответствие между множеством X, в котором 4 элемента, и подмножеством Y, другого множества Y, в котором 6 элементов (рис. 77), и делают вывод: треугольников столько же, сколько кружков, и еще 2. Другими словами, треугольников на 2 больше, чем кружков.

Рис. 77

Как уже было сказано, равномощными могут быть и бесконечные множества. Приведем примеры таких множеств.
Пример 3. Пусть X - множество точек отрезка АВ, Y - множество точек отрезка СD, причем длины отрезков различны. Так как между данными множествами можно установить взаимно однозначное соответствие (рис. 78), то множества точек отрезка АВ и СD равномощны.



Пример 4. Рассмотрим множество N натуральных чисел и множество Y - четных натуральных чисел. Они равномощны, так как между их элементами можно установить взаимно однозначное соответствие:
N: 1 2 3 n

Y: 2 4 6 2n
На первый взгляд кажется парадоксальным тот факт, что можно установить взаимно однозначные соответствия между множеством и его частью: для конечных множеств такая ситуация невозможна. Однако в математике доказано, что для бесконечного множества А всегда найдется такое его подмножество B, что между А и В можно установить взаимно однозначное соответствие. Иногда это утверждение считают определением бесконечного множества.
Если бесконечное множество равномощно множеству N натуральных чисел, его называют счетным. Любое бесконечное подмножество множества N счетно: чтобы пронумеровать его элементы, надо расположить элементы подмножества в порядке возрастания и нумеровать один за другим (т.е. так, как это сделано в примере 4). Так, счетно множество всех нечетных натуральных чисел, множество натуральных чисел, кратных 5 и др. Счетными являются также множества всех целых чисел, всех рациональных.
Существуют ли множества, отличные от счетных? Доказано, что бесконечным множеством, не равномощным множеству N натуральных чисел, является множество R всех действительных чисел.

Упражнения
Задайте при помощи графа три соответствия между множествами X = {а, b, с} и Y = {2, 4, 6} так, чтобы одно из них было взаимно однозначным.

Рис.79
X - множество прямоугольников (рис. 79), Y = N. Между элементами этих множеств установлено соответствие Р: «прямоугольник х имеет площадь, равную у». Постройте граф соответствия Р. Является ли оно взаимно однозначным?
Как можно изменить множества X и Y, данные в упражнении 2, чтобы соответствие Р: «прямоугольник х имеет площадь, равную у», было взаимно однозначным?
Даны множества: А = {1, 2, 5}, В = {3, 7}. Найдите А х В и В х А. Верно ли, что найденные множества равномощны?
Докажите, что множество А счетно, если:
а) А = {9,10,11,12,...};
б) А = (а
·а = 3n, n N};
в) А = {а
·а = n2, n N}.
6. Покажите, что, выполняя нижеприведенные задания, учащиеся начальных классов используют понятие равночисленности множеств:

а) Нарисуй на другой фигуре (рис. 80) столько же точек, сколько на первой (точки не пересчитывать).
б) Нарисуй, не считая, столько же квадратов и столько же отрезков, сколько на рисунке 81 треугольников.
в) У Димы было 28 марок, а у Коли на 7 марок больше. Сколько марок было у Коли?
г) У Маши 9 игрушек, а у Риты на 2 меньше. Сколько игрушек у Риты?
д) Для детского сада купили 4 зеленых мяча, а красных в 3 раза больше, чем зеленых. Сколько красных мячей купили детям?
е) Для детского сада купили 15 красных мячей, а зеленых в 3 раза меньше. Сколько зеленых мячей купили детям?
43. Основные выводы § 8
Изучая материал этого параграфа, мы установили, что любое соответствие S между двумя множествами X и Y есть подмножество декартова произведения этих множеств, т.е. S с X х Y. Выяснили, что соответствия задают также, как и множества вообще. Познакомились с новыми понятиями:
- соответствие, обратное данному;
- взаимно однозначное соответствие;
- равномощные множества;
- счетное множество.
Установили, что графики взаимно обратных соответствий между числовыми множествами симметричны относительно биссектрисы 1-го и 3-го координатных углов.

Лекция 18. Числовые функции
План:
1. Определение числовой функции как частного случая соответствия.. Способы задания функции. Область определения и область значения функции.
2. График функции. Свойство монотонности функции

§ 9. ЧИСЛОВЫЕ ФУНКЦИИ
Функция - одно из важнейших понятий математики, исходное понятие ведущей ее области - математического анализа. В школьном курсе математики основное внимание уделяется числовым функциям. Причиной этого является тесная связь математики с естественными науками, в частности с физикой, для которой числовые функции служат средством количественного описания различных зависимостей между величинами.
В начальном курсе математики понятие функции и все, что с ним связано, в явном виде не изучается, но идея функциональной зависимости буквально пронизывает его, а правильное понимание таких свойств реальных явлений, как взаимозависимость и изменяемость, является основой научного мировоззрения. Безусловно, все это требует от учителя начальных классов определенных знаний о функции и ее свойствах, и прежде всего таких, которые помогут ему осуществлять в начальной школе пропедевтику понятия функции.

44. Понятие функции. Способы задания функций
Выполним два задания для младших школьников.
Увеличь каждое нечетное однозначное число в 2 раза.
Заполни таблицу.
Уменьшаемое
5
5
5
5
5
5

Вычитаемое
0
1
2
3
4
5

Разность







С какими математическими понятиями мы имеем дело, выполняя эти задания?
Прежде всего, в каждом задании есть два числовых множества, между которыми устанавливается соответствие. В первом - это множества {1, 3,5, 7} и {2, 6, 10, 14}, а во втором - это множество значений вычитаемого {0, 1, 2, 3, 4,5} и множество значений разности {5, 4, 3, 2, 1, 0}. В чем сходство устанавливаемых между этими множествами соответствий? И в первом, и во втором задании каждому числу из первого множества сопоставляется единственное число из второго. В математике такие соответствия называют функциями. В общем виде понятие числовой функции определяют так:
Определение. Числовой функцией называется такое соответствие между числовым множеством X и множеством R действительных чисел, при котором каждому числу из множества X сопоставляется единственное число из множества R.
Множество X называют областью определения функции.
Функции принято обозначать буквами f, g, h и др. Если f- функция, заданная на множестве X, то действительное число у, соответствующее числу x из множества X, часто обозначают f(х) и пишут у = f(х). Переменную х при этом называют аргументом (или независимой переменной) функции f. Множество чисел вида f(х) для всех х из множества X называют областью значений функции f.
В рассмотренном выше первом примере функция задана на множестве X = {1, 3, 5, 7} - это ее область определения. А область значений этой функции есть множество {2, 6, 10, 14}.
Из определения функции вытекает, что для задания функции необходимо указать, во-первых, числовое множество X, т.е. область определения функции, и, во-вторых, правило, по которому каждому числу из множества X соответствует единственное действительное число.
Часто функции задают с помощью формул, указывающих, как по данному значению аргумента найти соответствующее значение функции. Например, формулы у = 2х - 3, у = х2, у = 3х, где х - действительное число, задают функции, поскольку каждому действительному значению х можно, производя указанные в формуле действия, поставить в соответствие единственное значение .у.
Заметим, что с помощью одной и той же формулы можно задать как угодно много функций, которые будут отличаться друг от друга областью определения. Например, функция у = 2х - 3, где x R, отлична от функции у = 2х - 3, где х N. Действительно, при х = -5 значение первой функции равно -13, а значение второй при х = -5 не определено.
Часто при задании функции с помощью формулы ее область определения не указывается. В таких случаях считают, что областью определения функции является область определения выражения f(х). Например, если функция задана формулой у = 2х - 3, то ее областью определения считают множество R действительных чисел. Если функция задана формулой у = 6/(x-2), то ее область определения - есть множество R действительных чисел, исключая число 2 (если х = 2, то знаменатель данной дроби обращается в нуль).

2. График функции. Свойство монотонности функции

Числовые функции можно представлять наглядно на координатной плоскости. Пусть у = f(х) - функция с областью определения X. Тогда ее графиком является множество таких точек координатной плоскости, которые имеют абсциссу х и ординату f(х) для всех х из множества X.
Так, графиком функции у = 2х - 3, заданной на множестве R, является прямая (рис. 82), а графиком функции у = х2, заданной также на множестве R - парабола (рис. 83).




Рис. 83

Функции можно задавать при помощи графика. Например, графики, приведенные на рисунке 84, задают функции, одна из которых имеет в качестве области определения промежуток [-2, 3], а вторая конечное множество {-2, -1,0, 1,2,3}.

Не каждое множество точек на координатной плоскости представляет собой график некоторой функции. Так как при каждом значении аргумента из области определения функция должна иметь лишь одно значение, то любая прямая, параллельная оси ординат, или совсем не пересекает график функции, или пересекает его лишь в одной точке. Если же это условие не выполняется, то множество точек координатной плоскости график функции не задает. Например, кривая на рисунке 85 не является графиком функции - прямая АВ, параллельная оси ординат, пересекает ее в двух точках.
Функции можно задавать при помощи таблицы. Например, таблица, приведенная ниже, описывает зависимость температуры воздуха от времени суток. Эта зависимость - функция, так как каждому значению времени t соответствует единственное значение температуры воздуха р:

t (в часах)
0
3
6
9
12
15
18
21
24

p( в градусах Цельсия)
-3
-7
-5
0
2
4
2
1
-3


Числовые функции обладают многими свойствами. Мы рассмотрим одно из них - свойство монотонности, так как понимание этого свойства учителем важно при обучении математике младших школьников.
Определение. Функция f(х) называется монотонной на некотором промежутке А, если она на этом промежутке возрастает или убывает.
Определение. Функция f(х) называется возрастающей на некотором промежутке А, если для любых чисел х1, х2 из множества А выполняется условие:
х1< х2 ( f(х1)< f(х2)
График функции, возрастающей на промежутке А, обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика увеличиваются (рис. 86).
Определение. Функция f называется убывающей на некотором промежутке А, если для любых чисел х1, х2 из множества А выполняется условие:
х1< х2 ( f(х1)> f(х2)
График функции, убывающей на промежутке А, обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика уменьшаются (рис. 87).



Упражнения
Функции, приведенные в начале пункта, задайте при помощи формул и укажите для каждой область определения и множество значений.
Какие из следующих формул задают на множестве R действительных чисел функцию: а) у = 4х; б) y = 4/x; в) x2 + у2 = 4?


Рис.88

На рисунке 88 изображены графики функций f, g, h . Укажите область определения и область значений каждой. Установите, возрастают они или убывают на данной области определения. Найдите для каждой функции наибольшее и наименьшее значение на всей области определения.
Постройте график функции у = 5 - х, если ее область определения X такова:
а) X = {0,1,2,3,4,5};
б) X =[0;5];
в) X = R.
5. Постройте графики следующих функций при условии, что они заданы на множестве R действительных чисел:
а) y = х; 6) y= 3; в) х = 5; г) y = 0.
Функция f задана при помощи таблицы:
X
1
2
3
4
5
6
7
8
9
10

у
3
4
5
6
7
8
9
10
11
12

а) Укажите ее область определения и область значений.
б) Задайте функцию f при помощи формулы.
в) Постройте график функции f на координатной плоскости.
д) Докажите, что функция f возрастает на всей области определения.
Изучая математику в начальных классах, учащиеся выполняют задания:
а) 39 + a. Вычисли сумму, если а принимает значения 0,6,15,31,46,52.
б)( -9. Вычисли разность, поставив в окошко числа 10, 11,12.
в) Составь все возможные примеры на сложение однозначных чисел с ответом 12.
Покажите, что в каждом из этих заданий устанавливается соответствие между двумя числовыми множествами и это соответствие - функция. Назовите в каждом случае область ее определения и область значений.
Докажите, что соответствие между значениями переменных х и у, осматриваемое в задаче, является функцией; укажите область ее значений при условии, что х < 5; постройте график данной функции:
а) Катя купила 3 тетради, а Лена на х тетрадей больше. Сколько тетрадей (у) купили Лена и Катя вместе?
б) Из пунктов А и В навстречу друг другу вышли два туриста. При встрече оказалось, что один прошел 3 км, а второй на х км больше. Каково расстояние (у км) между пунктами А и В?
9. Сравните функции, о которых идет речь в упражнении 8. Чем они похожи? В чем их различие? Какими будут графики данных функций?
10. У одного ученика было 2 тетради. В течение 6 дней он каждый день покупал по 3 новых тетради. Сколько тетрадей (у) у него будет через х дней?
Выразите у через х и покажите, что установленное соответствие - функция. Укажите ее область определения и область значений. Постройте график.
Лекция 19. Прямая и обратная пропорциональность
План:
1. Прямая и обратная пропорциональность, линейная и квадратичная функции, их свойства и графики.
2. Построение графиков функций.
3. Основные выводы

45. Прямая и обратная пропорциональности
Если t - время движения пешехода (в часах), s - пройденный путь (в километрах), и он движется равномерно со скоростью 4 км/ч, то зависимость между этими величинами можно выразить формулой s = 4t. Так как каждому значению I соответствует единственное значение 5, то можно говорить о том, что с помощью формулы s = 4t задана функция. Ее называют прямой пропорциональностью и определяют следующим образом.
Определение. Прямой пропорциональностью называется функция, которая может быть задана при помощи формулы у = kх, где k - не равное нулю действительное число.
Название функции у = kх связано с тем, что в формуле у = kх есть переменные х и у, которые могут быть значениями величин. А если отношение двух величин равно некоторому числу, отличному от нуля, их называют прямо пропорциональными. В нашем случае y/x = k (k
· 0). Это число называют коэффициентом пропорциональности.
Функция у = kх является математической моделью многих реальных ситуаций, рассматриваемых уже в начальном курсе математики. Одна из них описана выше. Другой пример: если в одном пакете муки 2 кг, а куплено х таких пакетов, то всю массу купленной муки (обозначим ее через у) можно представить в виде формулы у = 2х, т.е. зависимость между количеством пакетов и всей массой купленной муки является прямой пропорциональностью с коэффициентом k = 2.
Напомним некоторые свойства прямой пропорциональности, которые изучаются в школьном курсе математики.
Областью определения функции у = kх и областью ее значений является множество действительных чисел.
Графиком прямой пропорциональности является прямая, проходящая через начало координат. Поэтому для построения графика прямой пропорциональности достаточно найти лишь одну точку, принадлежащую ему и не совпадающую с началом координат, а затем через эту точку и начало координат провести прямую.
Например, чтобы построить график функции у = 2х, достаточно иметь точку с координатами (1, 2), а затем через нее и начало координат провести прямую (рис. 89).
При k > 0 функция у = kх возрастает на всей области определения; при k < 0 - убывает на всей области определения.
Если функция f - прямая пропорциональность и (х1,у1), (х2,у2), - пары соответственных значений переменных x и у, причем x2
· 0, то x1/x2 = y1/y2
Действительно, если функция f - прямая пропорциональность, то она может быть задана формулой у = kх, и тогда у1 = kх1, у2 = kх2. Так как при х2
· 0 и k
· 0, то у2
· 0. Поэтому y1/y2 = kx1/kx2 = x1/x2
Если значениями переменных х и у служат положительные действительные числа, то доказанное свойство прямой пропорциональности можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у увеличивается (уменьшается) во столько же раз.
Это свойство присуще только прямой пропорциональности, и им можно пользоваться при решении текстовых задач, в которых рассматриваются прямо пропорциональные величины.
Задача 1. За 8 ч токарь изготовил 16 деталей. Сколько часов потребуется токарю на изготовление 48 деталей, если он будет работать с той же производительностью?
Решение. В задаче рассматриваются величины - время работы токаря, количество сделанных им деталей и производительность (т.е. количество деталей, изготавливаемых токарем за 1 ч), причем последняя величина постоянна, а две другие принимают различные значения. Кроме того, количество сделанных деталей и время работы - величины прямо пропорциональные, так как их отношение равно некоторому числу, не равному нулю, а именно - числу деталей, изготавливаемых токарем за 1 ч. Если количество сделанных деталей обозначить буквой у, время работы х, а производительность - k, то получим, что y/x = k или у = kх, т.е. математической моделью ситуации, представленной в задаче, является прямая пропорциональность.
Решить задачу можно двумя арифметическими способами:
1 способ: 2 способ:
1) 16:8 = 2 (дет.) 1) 48:16 = 3 (раза)
2) 48:2 = 24(ч) 2) 8-3 = 24(ч)
Решая задачу первым способом, мы сначала нашли коэффициент пропорциональности k, он равен 2, а затем, зная, что у = 2х, нашли значение y при условии, что у = 48.
При решении задачи вторым способом мы воспользовались свойством прямой пропорциональности: во сколько раз увеличивается количество деталей, сделанных токарем, во столько же раз увеличивается и количество времени на их изготовление.
Перейдем теперь к рассмотрению функции, называемой обратной пропорциональностью.
Если t- время движения пешехода (в часах), v - его скорость (в км/ч) и он прошел 12 км, то зависимость между этими величинами можно выразить формулой v
· t = 20 или v= 20/t. Так как каждому значению t (t
·0) соответствует единственное значение скорости v, то можно говорить о том, что с помощью формулы v =20/t задана функция. Ее называют обратной пропорциональностью и определяют следующим образом.
Определение. Обратной пропорциональностью называется функция, которая может быть задана при помощи формулы у = k/x, где k – не равное нулю действительное число.
Название данной функции связано с тем, что в у = k/x есть переменные x и у, которые могут быть значениями величин. А если произведение двух величин равно некоторому числу, отличному от нуля, то их называют обратно пропорциональными. В нашем случае xy = k (к
· 0). Это число k называют коэффициентом пропорциональности.
Функция у = k/x является математической моделью многих реальных ситуаций, рассматриваемых уже в начальном курсе математики. Одна из них описана перед определением обратной пропорциональности. Другой пример: если купили 12 кг муки и разложили ее в x банок по у кг в каждую, то зависимость между данными величинами можно представить в виде х
· у = 12, т.е. она является обратной пропорциональностью с коэффициентом k = 12.
Напомним некоторые свойства обратной пропорциональности, известные из школьного курса математики.
Областью определения функции у = k/x и областью ее значений x является множество действительных чисел, отличных от нуля.
Графиком обратной пропорциональности является гипербола.
При k > 0 ветви гиперболы расположены в 1-й и 3-й четвертях и функция у = k/x является убывающей на всей области определения x (рис. 90). При k < 0 ветви гиперболы расположены во 2-й и 4-й четвертях и функция у = k/x является возрастающей на всей области определения х (рис.91)












Если функция f - обратная пропорциональность и (х1,у1), (х2,у2) - пары соответственных значений переменных х и у, то x1/x2 = y1/y2.
Действительно, если функция f- обратная пропорциональность, то она может быть задана формулой у = k/x, и тогда у1 = k/x1, у2 = k/x2. Так как х
· 0, х2
· 0 и k
· 0, то y1/y2 = k/x2 : k/x1 = k
·x1/ k
·x2 = x1/x2.
Если значениями переменных x и у служат положительные действительные числа, то это свойство обратной пропорциональности можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у уменьшается (увеличивается) во столько же раз.
Это свойство присуще только обратной пропорциональности, и им можно пользоваться при решении текстовых задач, в которых рассматриваются обратно пропорциональные величины.
Задача 2. Велосипедист, двигаясь со скоростью 10 км/ч, проехал расстояние от А до В за 6 ч. Сколько времени потратит велосипедист на обратный путь, если будет ехать со скоростью 20 км/ч?
Решение. В задаче рассматриваются величины: скорость движения велосипедиста, время движения и расстояние от А до В, причем последняя величина постоянна, а две другие принимают различные значения. Кроме того, скорость и время движения - величины обратно пропорциональные, так как их произведение равно некоторому числу, а именно пройденному расстоянию. Если время движения велосипедиста обозначить буквой у, скорость - х, а расстояние АВ – k, то получим, что ху = k или у = k/x, т.е. математической моделью ситуации, представленной в задаче, является обратная пропорциональность.
Решить задачу можно двумя способами:
1 способ: 2 способ:
1) 10-6 = 60 (км) 1) 20:10 = 2 (раза)
2)60:20 = 3(ч) 2)6:2 = 3(ч)
Решая задачу первым способом, мы сначала нашли коэффициент пропорциональности k, он равен 60, а затем, зная, что у = 60/x, нашли значение у при условии, что х = 20.
При решении задачи вторым способом мы воспользовались свойством обратной пропорциональности: во сколько раз увеличивается скорость движения, во столько же раз уменьшается время на прохождение одного и того же расстояния.
Заметим, что при решении конкретных задач с обратно пропорциональными или прямо пропорциональными величинами накладываются некоторые ограничения на x и у, в частности, они могут рассматриваться не на всем множестве действительных чисел, а на его подмножествах.
Задача 3. Лена купила х карандашей, а Катя в 2 раза больше. Обозначьте число карандашей, купленных Катей, через у, выразите у через х и постройте график установленного соответствия при условии, что х
· 5. Является ли это соответствие функцией? Какова ее область определения и область значений?
Решение. Катя купила у = 2х карандашей. При построении графика функции у = 2х необходимо учесть, что переменная х обозначает количество карандашей и х
· 5, значит, она может принимать только значения 0, 1, 2, 3, 4, 5. Это и будет область определения данной функции. Чтобы получить область значений данной функции, надо каждое значение х из области определения умножить на 2, т.е. это будет множество {0, 2, 4, 6, 8, 10}. Следовательно, графиком функции у = 2х с областью определения {0, 1, 2, 3, 4, 5} будет множество точек, изображенных на рисунке 92. Все эти точки принадлежат прямой у = 2х.
Упражнения
Известно, что функция f является прямой пропорциональностью, задана на множестве X = {1, 2, 3, 4, 5, 6} и при х, равном 3, значение функции равно 12.
а) Задайте функцию f при помощи формулы и таблицы; постройте ее график.
б) Какие свойства функции f можно проиллюстрировать при помощи таблицы и графика?
в) Какие из названных свойств вы будете использовать, решая задачу: «В 3 пакета разложили поровну 12 кг муки. Сколько килограммов муки можно разложить в 6 таких пакетов?»
2. Известно, что функция f является обратной пропорциональностью, задана на множестве X = {1, 2, 3, 5, 6, 10, 15, 30} и при х, равном 5, значение функции f равно 6.
а) Задайте функцию f при помощи формулы и таблицы; постройте ее график.
б) Какие свойства функции f можно проиллюстрировать при помощи таблицы и графика?
в) Какие из названных свойств вы будете использовать, решая задачу: «Муку разложили в 10 пакетов по 3 кг в каждый. Сколько получилось бы пакетов, если бы в каждый положили по 6 кг муки?»
3. Покажите, что зависимость между величинами, о которых идет речь в нижеприведенной задаче, может быть выражена формулой у = kх.
Из 24 м ткани сшили 8 одинаковых платьев. Сколько потребуется ткани на 16 таких же платьев?
4. Учитель, проводя с детьми анализ задачи (см. упр. 3), спрашивает: «Если на 8 платьев израсходовали 24 м ткани, то на 16 платьев израсходуют больше или меньше ткани?» Дети отвечают, что больше, так как 16 больше 8.
О каком свойстве и какой функции в этом случае идет речь?
5. Задайте при помощи формулы соответствие, которое рассматривается в задании:
а) Запиши несколько примеров на деление с результатом 10.
б) Составь все возможные примеры на сложение однозначных чисел с ответом 10.
Установите, являются ли эти соответствия функциями.
Одна сторона прямоугольника 3 см, а другая - х см. Какова площадь (у см2) этого прямоугольника? Постройте график полученного соответствия при условии, что х
· 6. Докажите, что это соответствие - функция.
Площадь прямоугольника с основанием х см равна 12 см2. Какова высота (у см) этого прямоугольника?
Покажите, что соответствие между значениями переменных x и у является функцией и постройте ее график при условии, что 1
· х
· 12.
Учащимся дано задание заполнить таблицу
b
1
2
3
4
6
8
12
24

24:b










Задает ли эта таблица функцию? Какую? Какое свойство этой функции можно проиллюстрировать при помощи данной таблицы?
9. Обоснуйте, используя определения прямой или обратной пропорциональности и их свойства, решение различными арифметическими способами следующих задач:
а) С участка собрали 6 мешков картофеля по 40 кг в каждом. Этот картофель разложили в ящики по 20 кг в каждый. Сколько ящиков потребовалось?
б) Из куска ткани длиной 24 м сшили 8 одинаковых костюмов. Сколько потребуется ткани на 32 таких же костюма?
Какие вспомогательные модели можно использовать на этапе поиска плана решения задач из упражнения 9, если рассматривать их в начальной школе, т.е. при условии, что дети не знают ни прямой, ни обратной пропорциональности?
Какие из нижеприведенных задач можно решить в начальной школе двумя способами:
а) Велосипедист ехал со скоростью 12 км/ч и был в пути 2 ч. Сколько времени потребуется пешеходу, чтобы пройти это расстояние со скоростью 4 км/ч?
б) Из 100 кг свеклы при переработке получается 16 кг сахара. Сколько килограммов сахара получится из 3 т свеклы?
в) Два опытных участка имеют одинаковую площадь. Ширина первого участка 30 м, ширина второго 40 м. Найдите длину первого участка, если известно, что длина второго участка равна 75 м.
46. Основные выводы § 9
Рассмотрев материал данного параграфа, мы уточнили наши знания о таких понятиях, как:
числовая функция;
область определения функции;
область значений функции;
график функции;
прямая пропорциональность;
обратная пропорциональность.
Вспомнили, что числовую функцию можно задать с помощью формулы (она представляет собой уравнение с двумя переменными), графика на координатной плоскости, таблицы.
Выяснили, что функции могут обладать свойством монотонности, т. е. возрастать или убывать на некотором промежутке.
Особо выделили свойства, присущие только прямой и обратной пропорциональности, поскольку их можно использовать при обучении младших школьников решению задач с пропорциональными величинами.

Лекция 20. Отношения на множестве
План:
1. Отношения на множестве. Бинарные отношения.
2. Свойства отношений

§10. ОТНОШЕНИЯ НА МНОЖЕСТВЕ
В математике изучают не только связи между элементами двух множеств, т.е. соответствия, но и связи между элементами одного множества. Называют их отношениями.
Отношения многообразны. Между понятиями - это отношения рода и вида, части и целого; между предложениями - отношения следования и равносильности; между числами - «больше», «меньше», «равно», «больше на...», «меньше на ...», «следует» и др.
Если рассматривают отношения между двумя элементами, то их называют бинарными; отношения между тремя элементами - тернарными; отношения между п элементами - n-арными. Все названные выше отношения являются бинарными. Примером тернарного отношения может служить отношение между точками прямой - «точка х лежит между точками у и 2».
Изучение отношений между объектами важно для познания как самих объектов, так и для познания реального мира в целом. В нашем курсе мы будем рассматривать в основном бинарные отношения, но чтобы увидеть общность методических подходов к изучению в начальном курсе математики конкретных отношений, понять важнейшие математические идеи, связанные с отношениями, учителю надо знать, какова математическая сущность любого отношения, какими свойствами они могут обладать, какие основные виды отношений изучает математика.
47. Понятие отношения на множестве
Чтобы определить общее понятие бинарного отношения на множестве, поступим так же, как и в случае с соответствиями, т.е. рассмотрим сначала конкретный пример. Пусть на множестве X = {2, 4, 6, 8} задано отношение «меньше». Это означает, что для любых двух чисел из множества X можно сказать, какое из них меньше: 2 < 4, 2 < 6, 2 < 8, 4 < 6, 4 < 8, 6 < 8. Полученные неравенства можно записать иначе, в виде упорядоченных пар: (2, 4), (2, 6), (2, 8), (4, 6), (4, 8), (6, 8). Но все эти пары есть элементы декартова произведения Х х Х, поэтому об отношении «меньше», заданном на множестве X, можно сказать, что оно является подмножеством множества Х х X.
Вообще бинарные отношения на множестве X определяют следующим способом:
Определение. Бинарным отношением на множестве X называется всякое подмножество декартова произведения Х х Х.
Так как в дальнейшем мы будем рассматривать только бинарные отношения, то слово «бинарные», как правило, будем опускать.
Условимся отношения обозначать буквами R, S, T, P и др.
Если R - отношения на множестве X, то, согласно определению, R с X х X. С другой стороны, если задано некоторое подмножество множества X х X, то оно определяет на множестве X некоторое отношение R.
Утверждение о том, что элементы х и у находятся в отношении R, можно записывать так: (х, у) R или хRу. Последняя запись читается: «Элемент х находится в отношении R с элементом у».
Отношения задают так же, как соответствия. Отношение можно задать, перечислив пары элементов множества X, находящиеся в этом отношении. Формы представления таких пар могут быть различными - они аналогичны формам задания соответствий. Отличия касаются задания отношений при помощи графа.
Построим, например, граф отношений «меньше», заданного на множестве X = {2, 4, 6, 8}. Для этого элементы множества X изобразим точками (их называют вершинами графа), а отношение «меньше» стрелкой (рис. 93).
На том же множестве X можно рассмотреть другое отношение «кратно». Граф этого отношения будет в каждой вершине иметь петлю (стрелку, начало и конец которой совпадают), так как каждое число кратно самому себе (рис. 94). Отношение можно задать при помощи предложения с двумя переменными. Так, например, заданы рассмотренные выше отношения «меньше» и «кратно», причем использована краткая форма предложений «число x меньше числа у» и «число х кратно числу у». Некоторые такие предложения можно записывать, используя символы. Например, отношения «меньше» и «кратно» можно было задать в таком виде: «x < у», «х : у». Отношение «х больше у на 3» можно записать в виде равенства х = у + 3 (или x - у = 3).
Для отношения R, заданного на множестве X, всегда можно задать отношение R-1, ему обратное, - оно определяется так же, как соответствие, обратное данному. Например, если R - отношение «х меньше y», то обратным ему будет отношение «у больше x».
Понятием отношения, обратного данному, часто пользуются при начальном обучении математике. Например, чтобы предупредить ошибку в выборе действия, с помощью которого решается задача: «У Пети 7 карандашей, что на 2 меньше, чем у Бори. Сколько карандашей у Бори?» - ее переформулируют: «У Пети 7 карандашей, а у Бори на 2 больше. Сколько карандашей у Бори?» Видим, что переформулировка свелась к замене отношения «меньше на 2» обратным ему отношением «больше на 2».
Упражнения
Приведите примеры отношений, существующих между:
а) натуральными числами;
б) прямыми на плоскости;
в) треугольниками;
г) множествами.
На множестве X = {0, 3, 6, 9, 12, 15, 18} задано отношение R. Перечислите пары чисел, связанных этим отношением и постройте его граф, если:
а) R - «x- больше у в 3 раза»;
б) R - «x больше у на 3».
3. Запишите в виде равенства предложение:
а) Число x меньше у на 2.
б) Число x меньше у в 2 раза.
4. Задает ли на множестве X = {2, 4, 6, 8} какое-либо отношение следующее множество упорядоченных пар:
а) {(2,2), (4,4), (6, 6), (8, 8)}; б) {(4, 2), (6, 4), (8, 6), (2, 1)}?
5. На множестве X = {2,4, 6, 8} рассматриваются отношения «х = у», «х : у» и «х больше у на 2». Какое из приведенных ниже подмножеств множества Х х Х задает данные отношения:
а) {(4,2), (6, 2), (8, 2), (6,4), (8, 4), (8, 6), (2,2), (4, 4), (6, 6), (8, 8)};
б) {(4,2), (6,4), (8,6)};
в) {(2,2), (4,4), (6,6), (8, 8)}.
6. Отношение «x
· y»рассматривается на множестве Х. Каким будет его график на координатной плоскости, если:
а) X ={2,4, 6, 8};
б) Х – множество натуральных чисел;

в) Х – множество действительных чисел? 7. На множестве отрезков (рис.95) задано отношение Р: «отрезок х длиннее отрезка у». Постройте граф этого отношения и задайте различными способами отношение, обратное данному.
8. Отношение S на множестве действительных чисел задано при помощи графика (рис. 96). Постройте график отношения, обратного данному.
9.Семья Волковых состоит из отца Михаила Петровича, матери Веры Ивановны и детей: Толи, Кати, Андрея и Оли. Между членами семьи существуют различные отношения родства: «быть матерью»; «быть дочерью»; «быть братом» и другие. Постройте графы указанных отношений и назовите другие, которые существуют между членами семьи Волковых. Есть ли среди них взаимно обратные?
10. На рисунке 97 дан граф отношения «быть братом» на множестве детей, живущих в одном доме (дети обозначены точками А, Б, В, Г, Д, Е, Ж, З). Кто из них является девочкой, а кто мальчиком?


11. Решите арифметическим методом задачу, предварительно выделив все отношения, которые в ней рассматриваются:
а) На одной полке было в 3 раза больше книг, чем на другой. Когда с первой полки сняли 8 книг, а на другую положили 5 книг, то на второй полке стало на 17 книг меньше, чем на первой. Сколько книг было на каждой полке?
б) На автобазе было на 46 грузовых машин больше, чем автобусов. Сколько грузовых машин было на автобазе, если их было в 3 раза больше, чем автобусов?
Лекция 21. Свойства отношений
План
1. Свойство рефлексивености
2. Свойство симметричности
3. Свойство транзитивности
48. Свойства отношений
Мы установили, что бинарное отношение на множестве X представляет собой множество упорядоченных пар элементов, принадлежащих декартову произведению X х Х. Это математическая сущность всякого отношения. Но, как и любые другие понятия, отношения обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые.
Рассмотрим на множестве отрезков, представленных на рис. 98, отношения перпендикулярности, равенства и «длиннее». Построим графы этих отношений (рис. 99) и будем их сравнивать. Видим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отношение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлексивности или просто, что оно рефлексивно.

Определение. Отношение R на множестве X называется рефлексивным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.
Используя символы, это отношение можно записать в таком виде:
R рефлексивно на Х х R х для любого х X.
опр.
Если отношение R рефлексивно на множестве X, то в каждой вершине графа данного отношения имеется петля. Справедливо и обратное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.
Примеры рефлексивных отношений:
отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);
отношение подобия треугольников (каждый треугольник подобен самому себе).
Существуют отношения, которые свойством рефлексивности не обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе. Поэтому на графе отношения перпендикулярности (рис. 99) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.
Обратим теперь внимание на графы отношений перпендикулярности и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направлении. Эта особенность графа отражает те свойства, которыми обладают отношения параллельности и равенства отрезков:
если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;
если один отрезок равен другому отрезку, то этот «другой» равен первому.
Про отношения перпендикулярности и равенства отрезков говорят, что они обладают свойством симметричности или просто симметричны.
Определение. Отношение R на множестве X называется симметричным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у, следует, что и элементу находится в отношении R с элементом х.
Используя символы, это отношение можно записать в таком виде:
R симметрично на Х (х R y yRx).
опр.
Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к x. Справедливо и обратное утверждение. Граф, содержащий вместе с каждой стрелкой, идущей от x к у, и стрелку, идущую от у к x, является графом симметричного отношения.
В дополнение к рассмотренным двум примерам симметричных отношений присоединим еще такие:
-отношение параллельности на множестве прямых (если прямая x параллельна прямой у, то и прямая у параллельна прямой х)
-отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).
Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на множестве отрезков. Действительно, если отрезок x длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметричности или просто антисимметрично.
Определение. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится.
Используя символы, это определение можно записать в таком виде:
R симметрично на Х (х R y ^ x
·y yRx).
опр.
Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого соединены только одной стрелкой, есть граф антисимметричного отношения.
Кроме отношения «длиннее» на множестве отрезков свойством антисимметричности, например, обладают:
отношение «больше» для чисел (если х больше у, то у не может быть больше х);
отношение «больше на 2» для чисел (если х больше у на 2, то у не может быть больше на 2 числа х),
Существуют отношения, не обладающие ни свойством симметричности, ни свойством антисимметричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 100. Он показывает, что данное отношение не обладает ни свойством симметричности, ни свойством антисимметричности.

Рис.100
Обратим внимание еще раз на одну особенность графа отношения «длиннее» (рис. 99). На нем можно заметить: если стрелки проведены от е к а и от а к с, то есть стрелка от е к с; если стрелки приведены от е к b и от b к с, то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.
Определение. Отношение R на множестве X называется транзитивным, если выполняется условие; из того, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом z, следует, что элемент х находится в отношении К с элементом z .
Используя символы, это определение можно записать в таком виде:
R транзитивно на X (х R y ^ yRz xRz).
опр.
Граф транзитивного отношения с каждой парой стрелок, идущих от x к у и у к z, содержит стрелку, идущую от х к z. Справедливо и обратное утверждение.
Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z, то отрезок х равен отрезку z, Это свойство отражено и на графе отношения равенства (рис. 99)
Существуют отношения, которые свойством транзитивности не обладают. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку d, а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!
Рассмотрим еще одно свойство отношений, которое называют свойством связанности, а отношение, обладающее им, называют связанным.
Определение. Отношение R на множестве X называется связанным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находится в отношении R с элементом у, либо элемент у находится в отношении R с элементом х.
Используя символы, это определение можно записать в таком виде:
R связано на множестве X (х
· у => хRу v уRх).
опр.
Например, свойством связанности обладают отношения «больше» для натуральных чисел: для любых различных чисел х и у можно утверждать, что либо х > у, либо у > х.
На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.
Существуют отношения, которые свойством связанности не обладают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и у, что ни число х не является делителем числа у, ни число у не является делителем числа х.
Выделенные свойства позволяют анализировать различные отношения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.
Так, если суммировать все сказанное об отношении равенства, заданном на множестве отрезков (рис. 99), то получается, что оно рефлексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности - симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве отрезков связанными не являются.
Задача 1. Сформулировать свойства отношения R, заданного при помощи графа (рис. 101).

Рис.101
Решение. Отношение R-антисимметрично, так как вершины графа соединяются только одной стрелкой.
Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с, на графе есть стрелка, идущая от b к с.
Отношение R - связанно, так как любые две вершины соединены стрелкой.
Отношение R свойством рефлексивности не обладает, так как на графе есть вершины, в которых петли нет.
Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.
Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число y не больше числа x 2 раза.
Данное отношение не обладает свойством рефлексивности, потому что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.
Заданное отношение не транзитивно, так как из того, что число x больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.
Это отношение на множестве натуральных чисел свойством связанности не обладает, так как существуют пары таких чисел х и у, что ни число х не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3, 5 и 8 и др.
Упражнения
Докажите, что отношение R, заданное при помощи графа (рис.102), рефлексивно, антисимметрично и транзитивно.
Докажите, что отношение Т, заданное при помощи графа (рис.103), симметрично и транзитивно.
Сформулируйте условия, при которых отношение свойством рефлексивности не обладает, и докажите, что отношение Т (см. упр. 2) не рефлексивно.
Сформулируйте условия, при которых отношение не обладает свойством: а) симметричности; б) антисимметричности; в)транзитивности; г) связанности.
Докажите, что отношение Р, граф которого изображен на рисунке 104, не обладает ни свойством симметричности, ни свойством антисимметричности, ни свойством транзитивности.
Какими свойствами обладает отношение, граф которого изображен на рисунке 105? Является ли оно рефлексивным? Транзитивным?
Какие из следующих утверждений истинны:
а) Отношение «x больше у на 3» антисимметрично на множестве N, так как из того, что х больше у на 3, не следует, что у больше х на 3.
б) Отношение «x больше у на 3» антисимметрично, так как из того, что х больше у на 3, следует, что у не больше х на 3.
в) Отношение «х больше у на 3» антисимметрично, так как из того, что х больше у на 3, следует, что у меньше х на 3.
8. На множестве отрезков задано отношение «короче». Верно ли, что оно антисимметрично и транзитивно? Рефлексивно ли оно?
9. Какими свойствами обладают следующие отношения, заданные на множестве натуральных чисел:
а) «меньше»; б) «меньше на 2»; в) «меньше в 2 раза»?
10. На множестве X ={а, b, с} задано отношение R = {(а, b), (а, а), (b,b), (с, с), (b, а), (b, с), (с, b)}. Какими свойствами оно обладает?
11. На множестве Х= {2,4,6,8, 12} заданы отношения «больше» и «кратно». В чём их сходство и различие?
12. Установите, какое отношение рассматривается в задаче; какие приемы анализа задачи можно использовать:
а) Школьники сделали к карнавалу 15 шапочек для мальчиков, а для девочек в 2 раза больше. Сколько всего карнавальных шапочек они сделали?
б) Второклассники вырезали для елки 26 звездочек, это в 2 раза меньше, чем снежинок. Сколько всего звездочек и снежинок вырезали второклассники?

Лекция 22. Отношения эквивалентности и порядка на множестве
План:
1. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы.
2. Отношение порядка. Строгое и нестрогое отношения порядка, отношение линейного порядка. Упорядоченность множеств.
3. Основные выводы

49. Отношения эквивалентности и порядка
Рассмотрим на множестве дробей X = {1/2, 1/3, 1/4, 2/4, 2/6, 3/6} отношение равенства. Это отношение:
- рефлексивно, так как всякая дробь равна сама себе;
- симметрично, так как из того, что дробь m/n равна дроби p/q, следует, что дробь p/q равна дроби m/n;
- транзитивно, так как из того, что дробь m/n равна дроби p/q и дробь p/q равна дроби r/s, следует, что дробь m/n равна дроби r/s.
Про отношение равенства дробей говорят, что оно является отношением эквивалентности.
Определение. Отношение R на множестве X называется отношением эквивалентности, если оно одновременно обладает свойствами рефлексивности, симметричности и транзитивности.
Примерами отношений эквивалентности могут служить отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).
Почему в математике выделили этот вид отношений? Рассмотрим отношение равенства дробей, заданное на множестве X = {1/2, 1/3, 1/4, 2/4, 2/6, 3/6} (Рис.106). Видим, что множество разбилось на три подмножества: {1/2, 2/4, 3/6}, {1/3, 2/6}, {1/4}. Эти подмножества не пересекаются, а их объединение совпадает с множеством Х, т.е. имеем разбиение множества X на классы. Это не случайно.
Вообще, если на множестве X задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества (классы эквивалентности).
Так, мы установили, что отношению равенства на множестве дробей {1/2, 1/3, 1/4, 2/4, 2/6, 3/6} соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных между собой дробей.
Верно и обратное утверждение: если какое-либо отношение, заданное на множестве X, порождает разбиение этого множества на классы, то оно является отношением эквивалентности.
Рассмотрим, например, на множестве X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} отношение «иметь один и тот же остаток при делении на 3». Оно порождает разбиение множества X на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9), во второй - числа, при делении которых на 3 в остатке получается 1 (это числа 1, 4, 7, 10), и в третий - все числа, при делении которых на 3 в остатке получается 2 (это числа 2, 5, 8). Действительно, полученные подмножества не пересекаются и их объединение совпадает с множеством X. Следовательно, отношение «иметь один и тот же остаток при делении на 3», заданное на множестве X, является отношением эквивалентности. Заметим, что утверждение о взаимосвязи отношения эквивалентности и разбиения множества на классы нуждается в доказательстве. Мы его опускаем. Скажем только, что если отношение эквивалентности имеет название, то соответствующее название дается и классам. Например, если на множестве отрезков задается отношение равенства (а оно является отношением эквивалентности), то множество отрезков разбивается на классы равных отрезков (см. рис. 99). Отношению подобия соответствует разбиение множества треугольников на классы подобных треугольников.
Итак, имея отношение эквивалентности на некотором множестве, мы можем разбить это множество на классы. Но можно поступить и наоборот: сначала разбить множество на классы, а затем определить отношение эквивалентности, считая, что два элемента эквивалентны тогда и только тогда, когда они принадлежат одному классу рассматриваемого разбиения.
Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математики. Почему?
Во-первых, эквивалентный - это значит равносильный, взаимозаменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности {1/2, 2/4, 3/6} неразличимы с точки зрения отношения равенства, и дробь 3/6 может быть заменена другой, например 1/2. И эта замена не изменит результата вычислений.
Во-вторых, поскольку в классе эквивалентности оказываются элементы, неразличимые с точки зрения некоторого отношения, то считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. Определение класса эквивалентности по одному представителю позволяет вместо всех элементов множества изучать совокупность отдельных представителей из классов эквивалентности. Например, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольников и т.д. Свойства, присущие некоторому классу, рассматриваются на одном его представителе.
В-третьих, разбиение множества на классы с помощью отношения эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то общее, что имеют параллельные между собой прямые.
Вообще любое понятие, которым оперирует человек, представляет собой некоторый класс эквивалентности. «Стол», «дом», «книга» - все эти понятия являются обобщенными представлениями о множестве конкретных предметов, имеющих одинаковое назначение.
Другим важным видом отношений являются отношения порядка.
Определение. Отношение R на множестве X называется отношением порядка, если оно одновременно обладает свойствами антисимметричности и транзитивности.
Примерами отношений порядка могут служить: отношение «меньше» на множестве натуральных чисел; отношение «короче» на множестве отрезков, поскольку они антисимметричны и транзитивны.
Если отношение порядка обладает еще свойством связанности, то говорят, что оно является отношением линейного порядка.
Например, отношение «меньше» на множестве натуральных чисел является отношением линейного порядка, так как обладает свойствами антисимметричности, транзитивности и связанности.
Определение. Множество X называется упорядоченным, если на нем задано отношение порядка.
Так, множество N натуральных чисел можно упорядочить, если задать на нем отношение «меньше».
Если отношение порядка, заданное на множестве X, обладает свойством связанности, то говорят, что оно линейно упорядочивает множество X.
Например, множество натуральных чисел можно упорядочить и с помощью отношения «меньше», и с помощью отношения «кратно» - оба они являются отношениями порядка. Но отношение «меньше», в отличие от отношения «кратно», обладает еще и свойством связанности. Значит, отношение «меньше» упорядочивает множество натуральных чисел линейно.
Не следует думать, что все отношения делятся на отношения эквивалентности и отношения порядка. Существует огромное число отношений, не являющихся ни отношениями эквивалентности, ни отношениями порядка.

Упражнения
1.На множестве X прямоугольников (рис. 107) задано отношение «иметь равные площади». Постройте граф отношения и докажите, что оно является отношением эквивалентности. Какие классы эквивалентности порождает это отношение на множестве X"?

Рис. 107
Объясните, почему отношение равенства отрезков является отношением эквивалентности, а отношение «короче» не является.
X - множество прямых плоскости. Какое из следующих отношений является отношением эквивалентности на этом множестве: а) «х параллельна у»; б) «х перпендикулярна у»; в) «х пересекает у»?
На множестве X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} задано отношение «иметь один и тот же остаток при делении на 4». Является ли оно отношением эквивалентности?
Можно ли разбить множество Х= {7-3; 22, 5
· 2; 60 : 6; 1+ 3; 0 : 4; 0
·10; 4:(10-10)} на классы при помощи отношения «иметь равные значения»?
На множестве X = {213, 37, 21, 87, 82} задано отношение Р - «иметь в записи одинаковые цифры». Является ли Р отношением эквивалентности?
На множестве целых чисел от 0 до 999 задано отношение К - «иметь в записи одно и то же число цифр». Покажите, что К - отношение эквивалентности. На сколько классов эквивалентности разбивается данное множество при помощи отношения К? Назовите наименьший и наибольший элементы каждого класса.
Сколько классов эквивалентности порождает на множестве натуральных чисел отношение «оканчиваться одной и той же цифрой»? Назовите по одному представителю каждого класса.
X - множество отрезков. Какие из следующих отношений являются отношениями порядка на этом множестве: а) «х равно у»; б) «х длиннее у»; в) «х длиннее у в 3 раза»?
Упорядочивают ли множество натуральных чисел отношения: а) «больше в 2 раза»; б) «больше на 2»; в) «непосредственно следовать за»; г) «х - делитель у»?
Отношение Т- «иметь одно и то же число делителей» задано на множестве X = {1, 2, 4, 6, 7, 8, 10, 11}. Является ли Т отношением эквивалентности? Отношением порядка?
Выясните, какие из следующих высказываний истинны, а какие ложны; свой ответ обоснуйте: а) Отношение «х кратно у» на множестве натуральных чисел рефлективно и симметрично. б) Отношение «х кратно у» на множестве натуральных чисел антисимметрично и транзитивно. в) Отношение «х кратно у» на множестве натуральных чисел является отношением порядка.
Между множествами существуют отношения равенства, равномощности, «быть подмножеством». Какие из них являются отношениями эквивалентности, а какие отношениями порядка?
Решите задачи для младших школьников и укажите свойства отношений, которые были при этом использованы: а) Мальчик составил пирамидку из трех колечек: желтого, красного и зеленого. В каком порядке он расположил колечки, если желтое больше зеленого, а красное меньше зеленого? б) Четверо учащихся получили разные оценки за контрольную работу. Игорь получил оценку выше, чем Петр, Петр ниже, чем Максим, но выше, чем Кирилл. Кто получил самую низкую оценку?
50. Основные выводы § 10
Изучив материал данного параграфа, мы познакомились со следующими понятиями:
бинарное отношение на множестве;
отношение эквивалентности;
отношение порядка.
Выяснили, что отношения на множестве задают так же, как и соответствия. Узнали, что отношения на множестве могут обладать свойствами:
- рефлексивности;
симметричности;
антисимметричности;
транзитивности;
связанности.
В зависимости от свойств отношения делят на отношения эквивалентности, отношения порядка и отношения, которые не являются ни отношениями эквивалентности, ни отношениями порядка.
Узнали, что существует тесная взаимосвязь между отношением эквивалентности на множестве X и разбиением этого множества на классы.

Лекция 23. Алгебраические операции на множестве
План:
1. Понятие алгебраической операции на множестве
2. Свойства алгебраических операций
3. Основные выводы

§ 11. АЛГЕБРАИЧЕСКИЕ ОПЕРАЦИИ НА МНОЖЕСТВЕ
В математике изучают не только отношения, но и различные операции. Например, сложение, вычитание, умножение, деление, извлечение из корня - это операции над числами; пересечение, объединение, вычитание, декартово умножение - это операции над множествами; конъюнкция, дизъюнкция, отрицание - это операции над высказываниями и высказывательными формами. Операции над высказываниями и множествами появились в математике в XIX веке. Операции над высказываниями ввел английский математик Дж. Буль, а операции над множествами немецкий математик Г. Кантор. Оказалось, что операции над высказываниями и множествами обладают свойствами, аналогичными свойствам сложения и умножения чисел, но некоторые их свойства отличаются от свойств операций над числами.
Вообще в XIX веке в математике возникли разные ветви алгебры: обычных чисел, высказываний, множеств и другие. Каждая из них имела свои правила, но для некоторых видов алгебр эти правила были похожими. Стремление выяснить, что представляет собой любая операция, способствовало появлению общего понятия алгебраической операции.
Изучение свойств алгебраических операций привело математиков к выводу о том, что основная задача алгебры - изучение свойств операций, рассматриваемых независимо от объектов, к которым они применяются. И если первоначально алгебра была учением о решении уравнений, то в XX веке она превратилась в науку об операциях и их свойствах.
Учитель начальных классов первым знакомит детей с различными операциями над числами и их свойствами. Иногда в начальном курсе математики начинается изучение операций над множествами и предложениями. И естественно, чтобы грамотно обучать детей, видеть перспективу развития алгебраических понятий в дальнейшем обучении школьников математике, учителю необходимо знать, что такое алгебраическая операция, какими свойствами она может обладать.
51. Понятие алгебраической операции
Рассмотрим, например, хорошо известное нам сложение натуральных чисел. Выполняя эту операцию, мы, имея два числа, находим третье - сумму первых двух чисел. Так, складывая числа 5 и 9, получаем число 14, которое так же, как и данные числа 5 и 9, является натуральным числом.
Выполняя пересечение множеств, мы по двум данным множествам находим новое, состоящее из общих элементов данных множеств.
Если рассмотреть вычитание натуральных чисел, то можно сказать, что при его выполнении по двум заданным натуральным числам находят третье - разность, но не всегда эта разность является натуральным числом. Но если рассмотреть вычитание целых чисел, то разность двух целых чисел всегда будет целым числом. И в этом вычитание целых чисел похоже на сложение натуральных чисел и пересечение двух множеств.
Обобщая, можно сказать, что, выполняя ту или иную операцию, мы должны знать, на каком множестве она рассматривается. Далее, выполняя операцию, мы по двум элементам х и у из выбранного множества находим третий элемент z того же множества. Он единственный, и при этом ответ, вообще говоря, зависит от порядка этих элементов (как, например, при вычитании чисел). Другими словами, при выполнении операции упорядоченной паре элементов из множества X ставится в соответствие единственный элемент того же множества. И если такая ситуация складывается для всех пар элементов множества X, то операция называется алгебраической.
Определение. Алгебраической операцией на множестве X называется соответствие, при котором каждой паре элементов из множества X сопоставляется единственный элемент того же множества.
Примерами алгебраических операции могут служить:
сложение на множестве натуральных чисел, поскольку сумма любых натуральных чисел является натуральным числом. Иначе говоря, при сложении каждой паре (х, у) натуральных чисел ставится в соответствие единственное натуральное число, обозначаемое х + у;
вычитание на множестве целых чисел, так как разность любых целых чисел является целым числом или, говоря иначе, при вычитании каждой паре (х, у) целых чисел ставится в соответствие единственное целое число, обозначаемое х - у;
деление на множестве рациональных чисел при условии, что исключается деление на нуль. Тогда частное любых рациональных чисел есть рациональное число, т.е. каждой паре (х, у) рациональных чисел ставится в соответствие единственное рациональное число.
С алгебраической операцией связано понятие замкнутого множества: если на множестве X задана алгебраическая операция, то говорят, что множество X замкнуто относительно этой операции.
Например, о множестве N натуральных чисел можно сказать, что оно замкнуто относительно сложения и умножения.
Существуют операции, которые не являются алгебраическими. Примером такой операции является вычитание на множестве натуральных чисел: х - у будет натуральным числом лишь при условии, что х > у, т.е. в множестве натуральных чисел есть пары, которым нельзя поставить в соответствие натуральное число.
Вычитание на множестве натуральных чисел не является алгебраической операцией, но мы знаем, что если разность натуральных чисел существует, то это число единственное. Аналогичной особенностью обладает и деление натуральных чисел. Говорят, что вычитание и деление есть частичные алгебраические операции на множестве натуральных чисел.
Определение. Частичной алгебраической операцией на множестве X называется соответствие, при котором некоторым парам элементов из множества X сопоставляется единственный элемент того же множества.
Задача. На множестве X натуральных чисел, кратных 3, заданы операции: сложение, умножение, вычитание и деление. Какие из них являются на этом множестве:
а) алгебраическими;
б) частичными алгебраическими?
Решение. Любое натуральное число, кратное 3, имеет вид 3n, где п N.
Пусть 3n и 3m - два натуральных числа из множества X, n N, m N. Тогда 3n + 3m = 3 (n+m), причем п + т - сумма двух натуральных чисел и, значит, число натуральное и единственное. Следовательно, складывая два любых натуральных числа, кратных 3, мы всегда получаем число, кратное 3, и это число единственное. Таким образом, сложение на данном множестве X есть алгебраическая операция.
Рассмотрим произведение двух чисел из множества X: 3n
· 3m = 9n
·m, причем п
·т - произведение двух натуральных чисел и, значит, число натуральное и единственное. Но 9:3, следовательно, умножая два любых натуральных числа, кратных 3, мы всегда получаем число, кратное 3, и это число единственное. Таким образом, умножение на данном множестве X есть алгебраическая операция.
Рассмотрим теперь разность двух чисел из множества X: 3n - 3m = 3 (n-m), но разность n - т существует на множестве натуральных чисел лишь при условии, что п > т. И если эта разность существует, то она единственна. Поэтому, если п > т, то разность 3n - 3m существует и является числом, кратным 3. Таким образом, вычитание на множестве X есть частичная алгебраическая операция.
Выполним деление чисел на множестве X: 3n : 3m = n:m. Так как частное натуральных чисел лит существует не всегда и, кроме того, если оно существует, то оно может быть не кратно 3. Значит, деление на множестве чисел, кратных 3, не является алгебраической операцией. Но поскольку для некоторых n и m их частное может быть кратно 3 (например, если п = 24, m = 2), то деление на множестве X является частичной алгебраической операцией.
Понятие алгебраической операции проходит через весь школьный курс математики. Начинается этот процесс в начальных классах, где происходит знакомство детей со сложением, которое сначала рассматривается на отрезке натурального ряда от 1 до 9 включительно, затем на отрезке от 1 до 100 и т.д. Алгебраической эта операция становится тогда, когда ее начинают рассматривать на всем множестве натуральных чисел. С умножением ситуация аналогичная.
Операции вычитания и деления в начальном обучении рассматриваются как частичные алгебраические операции на множестве натуральных чисел.
Упражнения
1. Сформулируйте условия, при которых операция, заданная на множестве X:
а) будет алгебраической; б) не будет алгебраической.
Объясните, почему сложение и умножение являются алгебраическими операциями на множестве 2 целых чисел, а деление не является.
На множестве X={-1,0,1} заданы сложение, умножение и вычитание. Являются ли они алгебраическими на этом множестве?
Являются ли алгебраическими операции: сложение, умножение, деление и вычитание, заданные на множестве X, если:
a) Х- множество четных натуральных чисел;
б) X - множество нечетных натуральных чисел;
в) Х- множество натуральных чисел, кратных 5?
5. Среди следующих высказываний укажите истинные, ответ обоснуйте:
а) Множество N натуральных чисел замкнуто относительно умножения.
б) Множество Q рациональных чисел замкнуто относительно деления (деление на нуль не рассматривается).
в) Множество Z целых чисел замкнуто относительно вычитания и деления.
г) Множество Z целых чисел замкнуто относительно вычитания или деления.
6. Являются ли алгебраическими на множестве натуральных чисел следующие операции:
а) возведение в степень;
б) нахождение наибольшего общего делителя двух чисел;
в) нахождение наименьшего общего кратного двух чисел?
Дано множество {а, Ь, с}. Составьте множество X всех его подмножеств. На этом множестве X рассмотрите операции пересечения и объединения. Являются ли они алгебраическими?
В начальном курсе математики сложение рассматривают сначала на отрезке натуральных чисел от 1 до 9 (включительно), затем на отрезке от 1 до 100, затем от 1 до 1000, Является ли оно алгебраической операцией на этих множествах?
52. Свойства алгебраических операций
Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения. Аналогичными свойствами обладают объединение и пересечение множеств.
Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозначать символами: * (читается - «звездочка») и о (читается - «кружок»).
Важнейшим свойством алгебраических операций является свойство ассоциативности.
Определение. Алгебраическая операция *, заданная на множестве X, называется ассоциативной, если для любых элементов х, у и z из множества X выполняется равенство
(x*y)*z=x*(y*z).
Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*у*z вместо (х*у)*z и х*(у*z).
Например, ассоциативно сложение натуральных чисел: для любых натуральных чисел х, у и z выполняется равенство (х + у) + z = x + (у + z). Ассоциативно сложение рациональных и действительных чисел. Поэтому сумму нескольких чисел можно записывать без скобок.
Существуют алгебраические операции, не обладающие свойством ассоциативности. Так, не является ассоциативным вычитание целых чисел: существуют целые числа х, у и z, для которых (х - у) - z
· х - (у - z). Например, (12 - 7) - 3
· 12 - (7 - 3).
Ассоциативность алгебраической операции * позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но переставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.
Определение. Алгебраическая операция * на множестве X называется коммутативной, если для любых двух элементов х и у из множества X выполняется равенство
х*у = у*х.
Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х
· у = у
· х. Эти равенства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.
Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа х и у, для которых х - у
· у - х. Например, 12-7
·7-12.
Если на множестве X заданы две алгебраические операции * и о, то они могут быть связаны друг с другом свойством дистрибутивности.
Определение. Алгебраическая операция о называется дистрибутивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:
(х*y)оz = (x o z)*(y o z) и 2) z o (х*у) = (z o х)*(z о у).
Если выполняется только равенство 1), то операцию о называют дистрибутивной справа относительно операции *; если же выполняется только равенство 2), то операцию о называют дистрибутивной слева относительно операции *.
Выясним, в каких случаях различают дистрибутивность справа и слева.
Рассмотрим на множестве натуральных чисел две операции: возведение в степень (она соответствует операции о в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х
·у)z - = хz-уz. Как известно из алгебры, полученное равенство справедливо для любых натуральных чисел х, у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получаем х уz = ху-хz. Но это равенство выполняется не всегда, т.е. операция возведения в степень не является дистрибутивной слева относительно умножения. Такая ситуация является следствием того, что возведение в степень - операция, не обладающая свойством коммутативности.
Если взять сложение и умножение натуральных чисел, то, как известно, умножение дистрибутивно относительно сложения: для любых натуральных чисел х, у и z выполняются равенства
(x+y)
·z + x
·z + y
·z и z
·(x+y) = z
·x + z
·y
А так как умножение коммутативно, то не имеет значения, где писать множитель z - справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.
Выясним роль свойства дистрибутивности в преобразованиях выражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак °. Проиллюстрируем сказанное на примере преобразования выражения (x + у)
·(z + р). Так как умножение дистрибутивно относительно сложения, то
(x + у)
·(z + р)= x
·(z + р) + у
·(z + р)= (x
·z + x
·р) + (у
·z + y
·р).
А поскольку сложение ассоциативно, то последнюю запись можно записать без скобок. Следовательно, (x + у)
·(z + р)= )=x
·z + x
·р +у
·z + y
·р.
Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре нейтральными и поглощающими.
Определение. Элемент е из множества X называется нейтральным относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*е=е*х =х.
Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.
Определение. Элемент р из множества X называется поглощающим относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*р=р*х=р.
Если поглощающий элемент относительно алгебраической операции существует, то он единственный.
Так, в множестве Zо целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества Zо выполняются равенства х + 0 = 0 + х = х. Это же число нуль является поглощающим элементом относительно умножения: для любого x из множества Zо верны равенства: х
·0 = 0
·х = 0.
Как известно, вычитание чисел является операцией, обратной сложению. Но чтобы дать определение обратной операции в общем виде, надо определить понятие сократимой операции.
Определение. Алгебраическая операция *, заданная на множестве X, называется сократимой, если из условий а*х =а*у и х*а =у*а следует, что х =у.
Например, сократимо сложение натуральных чисел: из равенств а+х=а+у и х+а=у+а следует, что х= у.
Определение. Пусть * - сократимая и коммутативная алгебраическая операция, заданная на множестве X. Тогда операция о называется обратной для операции *, если х о у = z тогда и только тогда, когда у * z = х.
Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х - у тогда и только тогда, когда у + z = х.
Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество Zо целых неотрицательных чисел, которое является объединением множества натуральных чисел и нуля: Zо = N U{0}. На этом множестве рассматриваются алгебраические операции сложения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (Zо, +, ). Ее основные характеристики:
1) Сложение и умножение на множестве Zо ассоциативно и коммутативно, а умножение дистрибутивно относительно сложения, т. е.:
(V х,у Zо) х + у = у + х;
(V х,у Zо) х
·у = у
·х;
(V х,у,z Zо) (х + у) + z = х + (у + z);
(V х,у,z Zо) (х
·у)
·z = х
·(у
·z);
(V х,у,z Zо) (х +у)
·z = х
·z +у
· z.
2) Сложение и умножение сократимы (исключая сокращение произведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:
х + а= у + а => х = у
х
·а = у
·а => х = у.
3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:
(V х Zо) х + 0 = 0 + х = x:;
(V х Zо) х
· 0 = 0
· x = 0.
Единица является нейтральным элементом относительно умножения:
(V х,у Zо) х 1 = 1x = x.
4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в Zо частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умножению (исключая деление на нуль):
x-у = z ( у + z = x
х:у~2 ( у-z = х.
5) Вычитание и деление обладают свойствами:
(a-c)+b, если а
·с
(а+b) – c= a+(b-c), если b
·c
а - (b + с) = (а - b) - с = (a - с) - b, если a
· b + с;
(a+b):c = a:c+b:c, если a:c и b:c;
(a:c)
·b, если а:с

·b) : c= a
·(b:c), если b:c
а:(b-с) = (а:b):с= (а:с):b, если a:b и a:c
Названные характеристики алгебры (Zо, +, ) присутствует (явно или неявно) в любом начальном курсе математики.
Упражнения
1. Запишите, используя символы, что сложение и умножение коммутативно и ассоциативно на множестве Q рациональных чисел, а умножение дистрибутивно относительно сложения и вычитания.
2. Коммутативны ли следующие алгебраические операции:
а) возведение в степень на множестве N;
6) деление на множестве Q;
в) нахождение наибольшего общего делителя натуральных чисел?
3. Сократимо ли вычитание и деление на множестве Q рациональных чисел?
Какое множество является поглощающим элементом относительно пересечения множеств? Ответ обоснуйте.
Сформулируйте определение деления как операции, обратной умножению.
Выясните, как формулируются свойства сложения и умножения в различных учебниках по математике для начальной школы.
Запишите все свойства действий, характеризующих алгебру (Zо, +, ).
53. Основные выводы § 11
Изучив материал данного параграфа, мы познакомились со следующими понятиями:
алгебраическая операция на множестве;
множество, замкнутое относительно алгебраической операции;
частичная алгебраическая операция;
нейтральный элемент относительно алгебраической операции;
поглощающий элемент относительно алгебраической операции;
обратная операция.
Мы выяснили, что алгебраические операции могут обладать свойствами:
коммутативности;
ассоциативности;
дистрибутивности (слева и справа);
сократимости.
Установили, что в начальном курсе математики изучают алгебру (Zо, +, ).

Лекция 24. Выражения
План:
1. Понятие выражения
2. Тождественные преобразования выражений

§ 12. ВЫРАЖЕНИЯ. УРАВНЕНИЯ. НЕРАВЕНСТВА
Наряду с изучением операций и их свойств в алгебре изучают такие понятия, как выражение, уравнение, неравенство. Первоначальное знакомство с ними происходит в начальном курсе математики. Вводятся они, как правило, без строгих определений, чаще всего остенсивно, что требует от учителя не только большой аккуратности в употреблении терминов, обозначающих эти понятия, но и знания ряда их свойств. Поэтому главная задача, которую мы ставим, приступая к изучению материала данного параграфа, - это уточнить и углубить знания о выражениях (числовых и с переменными), числовых равенствах и числовых неравенствах, уравнениях и неравенствах.
Изучение данных понятий связано с использованием математического языка, он относится к искусственным языкам, которые создаются и развиваются вместе с той или иной наукой. Как и любой другой, математический язык имеет свой алфавит. В нашем курсе он будет представлен частично в связи с необходимостью больше внимания уделить взаимосвязи алгебры с арифметикой. В этот алфавит входят:
цифры 0, 1,2, 3, 4, 5, 6, 7, 8, 9; с их помощью по специальным правилам записываются числа;
знаки операций +,-,, : ;
знаки отношений <, >, =, : ;
строчные буквы латинского алфавита, их применяют для обозначения чисел;
скобки (круглые, фигурные и др.), их называют техническими знаками.
Используя этот алфавит, в алгебре образуют слова, называя их выражениями, а из слов получаются предложения - числовые равенства, числовые неравенства, уравнения, неравенства с переменными.
54. Выражения и их тождественные преобразования
Как известно, записи 3 + 7, 24:8, 32-4, (25 + 3)- 2- 17 называются числовыми выражениями. Они образуются из чисел, знаков действий и скобок. Если выполнить все действия, указанные в выражении, получим число, которое называется значением числового выражения. Так, значение числового выражения 32-4 равно 2.
Существуют числовые выражения, значения которых нельзя найти. Про такие выражения говорят, что они не имеют смысла. Например, выражение 8: (4 - 4) смысла не имеет, поскольку его значение найти нельзя: 4 - 4 = 0, а деление на нуль невозможно. Не имеет смысла и выражение 7-9, если рассматривать его на множестве натуральных чисел, так как на этом множестве значения выражения 7-9 найти нельзя.
Рассмотрим запись 2a + 3. Она образована из чисел, знаков действий и буквы а. Если вместо а подставлять числа, то будут получаться различные числовые выражения:
если a = 7, то 27 + 3;
если a = 0, то 20 + 3;
если а = -4, то 2 (-4) + 3.
В записи 2а + 3 такая буква а называется переменной, а сама запись 2а + 3 - выражением с переменной.
Переменную в математике, как правило, обозначают любой строчной буквой латинского алфавита. В начальной школе для обозначения переменной кроме букв используются другие знаки, например (. Тогда запись выражения с переменной имеет вид: 2-( + 3.
Каждому выражению с переменной соответствует множество чисел, при подстановке которых получается числовое выражение, имеющее смысл. Это множество называют областью определения выражения. Например, область определения выражения 5:(х - 7) состоит из всех действительных чисел, кроме числа 7, так как при х = 1 выражение 5: (7 - 7) смысла не имеет.
В математике рассматривают выражения, содержащие одну, две и больше переменных. Например, 2а + 3 - это выражение с одной переменной, а (Зх + 8y)
·z - это выражение с тремя переменными. Чтобы из выражения с тремя переменными получить числовое выражение, надо вместо каждой переменной подставить числа, принадлежащие области определения выражения,
Итак, мы выяснили, как образуются из алфавита математического языка числовые выражения и выражения с переменными. Если провести аналогию с русским языком, то выражения - это слова математического языка.
Но используя алфавит математического языка, можно образовать и такие, например, записи: (3 + 2)) -
·12 или 3х -у:+)8, которые нельзя назвать ни числовым выражением, ни выражением с переменной. Эти примеры свидетельствуют о том, что описание - из каких знаков алфавита математического языка образуются выражения числовые и с переменными, не является определением этих понятий. Дадим определение числового выражения (выражение с переменными определяется аналогично).
Определение. Если f и g - числовые выражения, то (f) + (g), (f)-(g), (f)
·(g), (f):(g) - числовые выражения. Считают, что каждое число является числовым выражением.
Если точно следовать этому определению, то пришлось бы писать слишком много скобок, например, (7) + (5) или (6):(2). Для сокращения записи условились не писать скобки, если несколько выражений складываются или вычитаются, причем эти операции выполняются слева направо. Точно так же не пишут скобок и тогда, когда перемножаются или делятся несколько чисел, причем эти операции выполняются по порядку слева направо. Например, пишут так: 37-12 + 62-17 + 13 или 120:15
·7:12.
Кроме того, условились сначала выполнять действия второй ступени (умножение и деление), а затем действия первой ступени (сложение и вычитание). Поэтому выражение (12
·4:3) + (5
·8:2
·7) записывают так: 12
·4:3 + 5
·8:2
·7.
Задача. Найти значение выражения 3х(х- 2) + 4(х-2) при х = 6.
Решение.
1 способ. Подставим число 6 вместо переменной в данное выражение: 3
·6
·(6 - 2) + 4
·(6 - 2). Чтобы найти значение полученного числового выражения, выполним все указанные действия:
3
·6
·(6-2) + 4
·(6-2) = 18
·4 + 4
·4 = 72 + 16 = 88.
Следовательно, при x = 6 значение выражения 3х(х-2) + 4(х-2) равно 88.
2 способ. Прежде чем подставлять число 6 в данное выражение, упростим его: 3х(х - 2) + 4(х - 2) = (х - 2)(3х + 4). И затем, подставив в полученное выражение вместо х число 6, выполним действия: (6- 2)
·(3
·6 + 4) = 4
·(18 + 4) = 4
·22 = 88.

Тождественные преобразования выражений
Обратим внимание на следующее: и при первом способе решения задачи, и при втором мы одно выражение заменяли другим. Например, выражение 18
·4 + 4
·4 заменяли выражением 72+16, а выражение 3х(х-2) + 4(х-2) - выражением (х - 2)(3х + 4), причем эти замены привели к одному и тому же результату. В математике, описывая решение данной задачи, говорят, что мы выполняли тождественные преобразования выражений.
Определение. Два выражения называются тождественно равными, если при любых значениях переменных из области определения выражений их соответственные значения равны.
Примером тождественно равных выражений могут служить выражения 5(х + 2) и 5х + 10, поскольку при любых действительных значениях д: их значения равны.
Если два тождественно равных на некотором множестве выражения соединить знаком равенства, то получим предложение, которое называют тождеством на этом множестве.
Например, 5(х + 2) = 5х + 10-тождество на множестве действительных чисел, потому что для всех действительных чисел значения выражения 5(х + 2) и 5х + 10 совпадают. Используя обозначение квантора общности, это тождество можно записать так: (V х R) 5(х + 2) = 5х + 10. Тождествами считают и верные числовые равенства.
Замена выражения другим, тождественно равным ему на некотором множестве, называется тождественным преобразованием данного выражения на этом множестве.
Так, заменив выражение 5(х + 2) на тождественно равное ему выражение 5х + 10, мы выполнили тождественное преобразование первого выражения. Но как, имея два выражения, узнать, являются они тождественно равными или не являются? Находить соответствующие значения выражений, подставляя конкретные числа вместо переменных? Долго и не всегда возможно. Но тогда каковы те правила, которыми надо руководствоваться, выполняя тождественные преобразования выражений? Этих правил много, среди них - свойства алгебраических операций.
Приведем пример тождественных преобразований выражения.
Упражнения
1. Среди следующих записей укажите числовые выражения:
а) 42:5; б) 27; в) 32+-): 14; г) 2
·7 = 7
·2;
д) (17+13):10-15; е)142>71
·2.
2. Какие из следующих выражений имеют смысл, если рассматривать их на множестве натуральных чисел:
а) (135 + 67)
·12; б)(135-217):2; в) 362:4?
3. Какие из нижеприведенных записей являются выражениями с переменными:
а)8 + 0,3b; б)21-(4+y); в) x+2y<7; г) 32:у + 3 = 5у?
4. Установите, какова область определения выражений, если рассматривать их на множестве действительных чисел:
а) (3-y):64; б) 64:(3-у); в) (5+x):(x-12).
5. Известно, что выражение называется по своему последнему действию. Укажите порядок действий и дайте название каждому выражению:
Выражение
Название выражения

(12
·5 + 3:(2 + 7))
·18


(23-
(23 -7
·6-4+ 15):(17-6)


21 +
21 + (35
·3:8-14:5)


19-
19-8:4 + 5


6. Вычислите значение выражения:
а) ((36:2-14)
·(42
·2-14)+ 20):2;
б)(72:12-(18-15)):(24:3-2
·4);
в) (16,583:7,21 + 54,68
·853,2 + 28,82
·0,1): 1,6-1,02.
7. Выясните, являются ли выражения 3(4 - х) и 12 – 3x тождественно равными на множестве:
а) {1,2, 3,4}; б) действительных чисел.
8. Какие из следующих равенств являются тождествами на множестве действительных чисел:
а)3p + 5т = 5т + 3р; в) Зр
·5т = 5т
·3р;
б) 3p - 5т = 5т - 3р; г) 3p : 5т = 5т : 3р?
9. Обоснуйте каждый шаг в преобразованиях следующих выражений:
а) 324
·5 =(300 + 20 + 4)
·5 = 300
·5 + 20
·5 + 4
·5 = 500+100 + 20=1500+120=1620;
6)97
·12 =(100-3)
·12= 100
·12-3
·12=1200-36 = 1100 + (100-36) = 1164;
в) 5(1-2х)+10x = 5-10x+ 10x = 5.
10.Объясните, почему отношение «иметь одно и то же значение» на множестве числовых выражений является отношением эквивалентности. Какие следствия из этого факта используются при выполнении тождественных преобразований числовых выражений?
Упростите выражение путем тождественных преобразований:
а)6(2аb-3)+2a(6b-5); б)(12a-16b):4-(10a-4b).
Сравните значения выражений, не выполняя действий:
а)(30+56)
·5 и 30
·5 + 56
·5;
б)(19+4)
·7 и 19
·7+10
·7;
в)(14-7)
·6 и 16
·6-7
·6;
г)(18-9)
·7 и 18
·7-11
·7.
13. Решите задачу; решение запишите в виде выражения:
а) На туристическую базу прибыли в один день 150 туристов, на другой день 170. Чтобы пойти по маршрутам, 200 туристов разбились на группы, по 20 человек в каждой, а остальные по 15 человек в группе. Сколько получилось групп?
б) В мастерской за 5 дней сшили 2000 фартуков. Сколько фартуков сошьют за 8 дней, если будет шить в день на 50 фартуков больше?
в) Слесарь обработал 6 деталей. Первую деталь он обрабатывал 18 мин, а каждую следующую на 3 мин быстрее, чем предыдущую. Сколько минут потребовалось для обработки всех деталей?






Лекция 25. Равенства и неравенства
План:
1. Понятие равенства и неравенства
2. Свойства равенств и неравенств. Примеры решения равенств и неравенств

55. Числовые равенства и неравенства
Пусть f и g - два числовых выражения. Соединим их знаком равенства. Получим предложение f= g, которое называют числовым равенством.
Возьмем, например, числовые выражения 3 + 2 и 6 - 1 и соединим их знаком равенства 3 + 2 = 6-1. Оно истинное. Если же соединить знаком равенства 3 + 2 и 7 - 3, то получим ложное числовое равенство 3 + 2 = = 7-3. Таким образом, с логической точки зрения числовое равенство - это высказывание, истинное или ложное.
Числовое равенство истинно, если значения числовых выражении, стоящих в левой и правой частях равенства, совпадают.
Свойства равенств и неравенств
Напомним некоторые свойства истинных числовых равенств.
Если к обеим частям истинного числового равенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое равенство.
Если обе части истинного числового равенства умножить на одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое равенство.
Пусть f и g - два числовых выражения. Соединим их знаком «>» (или «<»). Получим предложение f > g (или f < g), которое называют числовым неравенством.
Например, если соединить выражение 6 + 2 и 13-7 знаком «>», то получим истинное числовое неравенство 6 + 2 > 13-7. Если соединить те же выражения знаком «<», получим ложное числовое неравенство 6 + 2 < 13-7. Таким образом, с логической точки зрения числовое неравенство - это высказывание, истинное или ложное.
Числовые неравенства обладают рядом свойств. Рассмотрим некоторые.
Если к обеим частям истинного числового неравенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое неравенство.
Если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и положительное значение, то получим также истинное числовое неравенство.
Если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и отрицательное значение, а также поменяем знак неравенства на противоположный, то получим также истинное числовое неравенство.
Упражнения
1. Установите, какие из следующих числовых равенств и неравенств истинны:
а) (5,05: 1/40 - 2,8
·5/6)
·3 +16
·0,1875 = 602;
б) (1/14 – 2/7) : (-3) – 6 1/13 : (-6 1/13)> (7- 8 4/5)
·2 7/9 – 15: (1/8 – 3/4);
в) 1,0905:0,025 - 6,84
·3,07 + 2,38:100 < 4,8:(0,04
·0,006).
Проверьте, истинны ли числовые равенства: 13 93 = 31 39, 14 82 = 41 28, 23 64 = 32 46. Можно ли утверждать, что произведение любых двух натуральных чисел не изменится, если в каждом множителе переставить цифры?
Известно, что х > у - истинное неравенство. Будут ли истинными следующие неравенства:
a)2х > 2у; в) 2х-7< 2у-7;
б)-x/3<-y/3; г)-2х-7<-2у-7?
4. Известно, что а < b - истинное неравенство. Поставьте вместо * знак «>» или «<» так, чтобы получилось истинное неравенство:
а) -3,7a * -3,7b; г) –a/3 * -b/3;
б) 0,12а * 0,12b; д) -2(а + 5) * -2(b + 5);
в)a/7 * b/7; е) 2/7 (a-1) * 2/7 (b-1).
5. Дано неравенство 5 > 3. Умножьте обе его части на 7; 0,1; 2,6; 3/4. Можно ли на основании полученных результатов утверждать, что для любого положительного числа а неравенство 5а > 3а истинно?
6. Выполните задания, которые предназначаются ученикам начальных классов, и сделайте вывод о том, как трактуются в начальном курсе математики понятия числового равенства и числового не равенства:
а) Запиши два верных равенства и два верных неравенства, используя выражения: 9
·3, 30-6, 3
·9, 30-3.
б) Расставь скобки так, чтобы равенства были верными: 4 + 2
·3 = 18; 31-10-3 = 24; 54-12 + 8 = 34.
в) Поставь вместо * знаки действий так, чтобы получились верные равенства: 3*6*2 = 9; 9*3*6 = 18.
7. Какие ответы учеников вы будете считать правильными при выполнении ими задания - сравнить выражения, не вычисляя их значения:
а) 70
·32+ 9
·32 ...79
·30+ 79
·2;
б)7
·4 + 3
·4...(7 + 8)
·4;
в) 8500:1700 ...8500:100:17;
г) 24
·6080... (6000 + 80)
·24?



Лекция 26. Уравнения с одной переменной
План:
1. Понятие уравнения с одной переменной
2. Равносильные уравнения. Теоремы о равносильности уравнений
3. Решение уравнений с одной переменной

56. Уравнения с одной переменной
Возьмем два выражения с переменной: 4 х и 5 х + 2. Соединив их знаком равенства, получим предложение 4х = 5 х + 2. Оно содержит переменную и при подстановке значений переменной обращается в высказывание. Например, при х = -2 предложение 4х = 5 х + 2 обращается в истинное числовое равенство 4
·(-2) = 5
·(-2) + 2, а при х = 1 - в ложное 4
·1 = 5
·1 + 2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.
В общем виде уравнение с одной переменной можно определить так:
Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) =g(х) называется уравнением с одной переменной.
Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение - это значит найти множество его корней.
Так, корнем уравнения 4х = 5х + 2, если рассматривать его на множестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.
Пусть на множестве действительных чисел задано уравнение (х - 1)(х + 2) = 0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,-1}.
Уравнение (3х + 1)-2 = 6 х + 2, заданное на множестве действительных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х: если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.
Уравнение (3х + 1)
·2 = 6 х + 1, заданное на множестве действительных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6 х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имеет корней и что множество его корней пусто.
Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

2. Равносильные уравнения. Теоремы о равносильности уравнений
Определение. Два уравнения f1(х) = g1(х) и f2(х) = g2(х) называются равносильными, если множества их корней совпадают.
Например, уравнения х2 - 9 = 0 и (2 х + 6)( х - 3) = 0 равносильны, так как оба имеют своими корнями числа 3 и -3. Равносильны и уравнения (3х + 1)-2 = х2- + 1 и х2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.
Определение. Замена уравнения равносильным ему уравнением называется равносильным преобразованием.
Выясним теперь, какие преобразования позволяют получать равносильные уравнения.
Теорема 1. Пусть уравнение f(х) и g(х) задано на множестве и h(x) - выражение, определенное на том же множестве. Тогда уравнения f(х) = g(х) (1) и f(х) + h(x) = g(х) + h(x) (2) равносильны.
Доказательство. Обозначим через Т1 - множество решений уравнения (1), а через Т2 - множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из Т2 является корнем уравнения (1).
Пусть число а - корень уравнения (1). Тогда a Т1, и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(a) = g(a), а выражение h(х) обращает в числовое выражение h(a), имеющее смысл на множестве X. Прибавим к обеим частям истинного равенства f(a) = g(a) числовое выражение h(a). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенство f(a) + h(a) = g(a) + h(a), которое свидетельствует о том, что число а является корнем уравнения (2).
Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т1 с T2.
Пусть теперь а - корень уравнения (2). Тогда а T2 и при подстановке в уравнение (2) обращает его в истинное числовое равенство f(a) + h(a) = g(a) + h(a). Прибавим к обеим частям этого равенства числовое выражение -h(a), Получим истинное числовое равенство f(х) = g(х), которое свидетельствует о том, что число а - корень уравнения (1).
Итак, доказано, что каждый корень уравнения (2) является и корнем уравнения (1), т.е. T2 с Т1.
Так как Т1 с Т2 и Т2 с Т1, то по определению равных множеств Т1 = Т2, а значит, уравнения (1) и (2) равносильны.
Данную теорему можно сформулировать иначе: если к обеим частям уравнения с областью определения X прибавить одно и то же выражение с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.
Из этой теоремы вытекают следствия, которые используются при решении уравнений:
Если к обеим частям уравнения прибавить одно и то лее число, то получим уравнение, равносильное данному.
Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.
Теорема 2. Пусть уравнение f(х) = g(х) задано на множестве X и h(х) - выражение, которое определено на том же множестве и не обращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = g(х) и f(х)
· h(x) = g(х)
· h(x) равносильны.
Доказательство этой теоремы аналогично доказательству теоремы 1.
Теорему 2 можно сформулировать иначе: если обе части уравнения с областью определения X умножить на одно и то же выражение, которое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.
Из этой теоремы вытекает следствие: если обе части уравнения умножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.

3. Решение уравнений с одной переменной
Решим уравнение 1- x/3 = x/6, x R и обоснуем все преобразования, которые мы будем выполнять в процессе решения.
Преобразования
Обоснование преобразования

Приведем выражения, стоящие в левой и правой частях уравнения, к общему знаменателю: (6-2х)/ 6 = х/6
Выполнили тождественное преобразование выражения в левой части уравнения.

Отбросим общий знаменатель: 6-2х = х
Умножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному.

3. Выражение -2х переносим в правую часть уравнения с противоположным знаком: 6 = х+2х.
Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному.

4. Приводим подобные члены в правой части уравнения: 6 = 3х.
Выполнили тождественное преобразование выражения.

5. Разделим обе части уравнения на 3: х = 2.
Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному


Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 - корень этого уравнения.
Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.
Рассмотрим, например, уравнение х(х - 1) = 2х, х R. Разделим обе части на х, получим уравнение х - 1 = 2, откуда х = 3, т. е. данное уравнение имеет единственный корень - число 3. Но верно ли это? Нетрудно видеть, что если в данное уравнение вместо переменной х подставить 0, оно обратится в истинное числовое равенство 0
·(0 - 1) = 2
·0. А это означает, что 0 - корень данного уравнения, который мы потеряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, - это разделили обе части уравнения на х, т.е. умножили на выражение1/x , но при х = О оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.
Чтобы убедиться в том, что множество корней данного уравнения состоит из двух чисел 0 и 3, приведем другое его решение. Перенесем выражение 2х из правой части в левую: х(х - 1) - 2х = 0. Вынесем в левой части уравнения за скобки х и приведем подобные члены: х(х - 3) = 0. Произведение двух множителей равно нулю в том и только в том случае, когда хотя бы один из них равен нулю, поэтому x= 0 или х - 3 = 0. Отсюда получаем, что корни данного уравнения - 0 и 3.
В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий. Например, решение уравнения (х
·9):24 = 3 обосновывается следующим образом. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х
·9 = 24
·3, или х
·9 = 72.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х = 72:9, или х = 8, следовательно, корнем данного уравнения является число 8.
Упражнения
1. Установите, какие из следующих записей являются уравнениями с одной переменной:
а) (х -3)
·5 = 12х; г) 3 + (12-7)
· 5 = 16;
б) ( х -3)
·5 = 12; д) (х-3)
· y =12х;
в) (х-3)
·17 + 12; е) х2- 2х + 5 = 0.
Уравнение 2 х 4 + 4 х 2 -6 = 0 задано на множестве натуральных чисел. Объясните, почему число 1 является корнем этого уравнения, а 2 и -1 не являются его корнями.
В уравнении (х + ...)(2 х + 5) - (х - 3)(2 х + 1) = 20 одно число стерто и заменено точками. Найдите стертое число, если известно, что корнем этого уравнения является число 2.
Сформулируйте условия, при которых:
а) число 5 является корнем уравнения f(х) = g(х);
б) число 7 не является корнем уравнения f(х) = g(х).
5. Установите, какие из следующих пар уравнений равносильны на множестве действительных чисел:
а) 3 + 7 х = -4 и 2(3 + 7л х) = -8;
6)3 + 7 х = -4 и 6 + 7 х = -1;
в)3 + 7 х = -4 и л х + 2 = 0.
Сформулируйте свойства отношения равносильности уравнений. Какие из них используются в процессе решения уравнения?
Решите уравнения (все они заданы на множестве действительных чисел) и обоснуйте все преобразования, выполняемые в процессе их упрощения:
a)(7x+4)/2 – x = (3x-5)/2;
б) x –(3x-2)/5 = 3 – (2x-5)/3;
в)(2- х)2- х (х + 1,5) = 4.
8. Учащийся решил уравнение 5 х + 15 = 3 х + 9 следующим образом: вынес за скобки в левой части число 5, а в правой число 3, получил уравнение 5(х + 3) = 3(х + 3), а затем разделил обе части на выражение х + 3. Получил равенство 5 = 3 и сделал вывод – данное уравнение корней не имеет. Прав ли учащийся?
9. Решите уравнение 2/(2-x) – Ѕ = 4/((2-x)x); х R. Является ли число 2 корнем этого уравнения?
10. Решите уравнения, используя взаимосвязь между компонентами и результатами действий:
а) (х + 70)
·4 = 328; в) (85 х + 765): 170 = 98;
б) 560: (х + 9) - 56; г) (х - 13581):709 = 306.
11. Решите задачи арифметическим и алгебраическим способами:
а) На первой полке на 16 книг больше, чем на второй. Если с каждой полки снять по 3 книги, то на первой полке книг будет в полтора раза больше, чем на второй. Сколько книг на каждой полке?
б) Весь путь от турбазы до станции, равный 26 км, велосипедист проехал за 1 ч 10 мин. Первые 40 мин этого времени он ехал с одной скоростью, а остальное время - со скоростью на 3 км/ч меньше. Найдите скорость велосипедиста на первом участке пути.

Лекция 27. Неравенства с одной переменной
План:
1. Понятие неравенства с одной переменной
2. Равносильные неравенства. Теоремы о равносильности неравенств
3. Решение неравенств с одной переменной
4. Графическое решение неравенств с одной переменной
5. Неравенства, содержащие переменную под знаком модуля
6. Основные выводы

57. Неравенства с одной переменной
Предложения 2х + 7 > 10-х, х2+7х < 2,(х + 2)(2х-3)> 0 называют неравенствами с одной переменной.
В общем виде это понятие определяют так:
Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) > g(х) или f(х) < g(х) называется неравенством с одной переменной. Множество X называется областью его определения.
Значение переменной x из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решением. Решить неравенство - это значит найти множество его решений.
Так, решением неравенства 2 x + 7 > 10 -х, х R является число x = 5, так как 2
·5 + 7 > 10 - 5 - истинное числовое неравенство. А множество его решений - это промежуток (1,
·), который находят, выполняя преобразование неравенства: 2 x + 7 > 10- x => 3 x > 3 => x >1.

2. Равносильные неравенства. Теоремы о равносильности неравенств
В основе решения неравенств с одной переменной лежит понятие равносильности.
Определение. Два неравенства называются равносильными, если их множества решений равны.
Например, неравенства 2 x + 7 > 10 и 2 x > 3 равносильны, так как их множества решений равны и представляют собой промежуток (2/3,
·).
Теоремы о равносильности неравенств и следствия из них аналогичны соответствующим теоремам о равносильности уравнений. При их доказательстве используются свойства истинных числовых неравенств.
Теорема 3. Пусть неравенство f(х) > g(х) задано на множестве X и h(x) - выражение, определенное на том же множестве. Тогда неравенства f(х) > g(х) и f(х)+ h(x) > g(х) + h(x) равносильны на множестве X.
Из этой теоремы вытекают следствия, которые часто используются при решении неравенств:
Если к обеим частям неравенства f(х) > g(х) прибавить одно и то же число d, то получим неравенство f(х) + d > g(х)+ d, равносильное исходному.
Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части неравенства в другую, поменяв знак слагаемого на противоположный, то получим неравенство, равносильное данному.
Теорема 4. Пусть неравенство f(х) > g(х) задано на множестве X и h(х) - выражение, определенное на том же множестве, и для всех х из множества X выражение h(х) принимает положительные значения. Тогда неравенства f(х) > g(х) и f(х)
· h(x) > g(х)
· h(x) равносильны на множестве X.
Из этой теоремы вытекает следствие: если обе части неравенства f(х) > g(х) умножить на одно и то же положительное число d, то получим неравенство f(х)
·d > g(х)
·d, равносильное данному.
Теорема 5. Пусть неравенство f(х) > g(х) задано на множестве X и h(х) - выражение, определенное на том же множестве, и для всех х их множества X выражение h(х) принимает отрицательные значения. Тогда неравенства f(х) > g(х) и f(х)
· h(x) > g(х)
· h(x) равносильны на множестве X.
Из этой теоремы вытекает следствие: если обе части неравенства f(х) > g(х) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f(х)
·d > g(х)
·d, равносильное данному.

3. Решение неравенств с одной переменной
Решим неравенство 5х - 5 < 2х - 16, х R, и обоснуем все преобразования, которые мы будем выполнять в процессе решения.
Преобразования
Обоснование преобразования

Приведем выражении 2x в левую часть, а число -5 в правую, поменяв их знаки на противоположные: 5x-2x < 16+5
Воспользовались следствием 2 из теоремы 3, получили неравенство, равносильное данному

Приведем подобные члены в левой и правой частях неравенства: 3х< 21
Выполнили тождественные преобразования выражений в левой и правой частях неравенства - они не нарушили равносильности неравенств: данного и исходного.
226

3. Разделим обе части неравенства на 3: х<7.
Воспользовались следствием из теоремы 4, получили неравенство, равносильное исходному


Решением неравенства х < 7 является промежуток (-
·, 7) и, следовательно, множеством решений неравенства 5х - 5 < 2х + 16 является промежуток (-
·, 7).
Упражнения
1. Установите, какие из следующих записей являются неравенствами с одной переменной:
а) -12 - 7х < 3x + 8; г) 12х + 3(х- 2);
б) 15(x + 2)>4; д) 17-12
·8;
в) 17-(13 + 8) < 14-9; е) 2х2 + 3x-4> 0.
Является ли число 3 решением неравенства 6(2х + 7) < 15(х + 2), х R? А число 4,25?
Равносильны ли на множестве действительных чисел следующие пары неравенств:
а) -17х< -51 и х > 3;
б) (3x-1)/4 >0 и 3х-1>0;
в) 6-5x >-4 и х<2?
4. Какие из следующих высказываний истинны:
а) -7 х < -28 => x>4;
б) x < 6 => x < 5;
в) х < 6 => х < 20?
Решите неравенство 3(x - 2) - 4(х + 1) < 2(х - 3) - 2 и обоснуйте все преобразования, которые будете при этом выполнять.
Докажите, что решением неравенства 2(х + 1) + 5 > 3 - (1 - 2х) является любое действительное число.
Докажите, что не существует действительного числа, которое являлось бы решением неравенства 3(2 - х) - 2 > 5 - 3х.
Одна сторона треугольника равна 5 см, а другая 8 см. Какой может быть длина третьей стороны, если периметр треугольника:
а) меньше 22 см;
б) больше 17 см?
ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ. Для графического решения неравенства f (х) > g (х) нужно построить графики функций
у = f (х) = g (х) и выбрать те промежутки оси абсцисс, на которых график функции у = f (х) расположен выше графика функции у = g (х).
Пример 17.8. Решите графически неравенство х2 - 4 > 3х.
У - х* - 4
Решение. Построим в одной системе координат графики функций
у = х2- 4 и у = Зх (рис. 17.5). Из рисунка видно, что графики функций у = х2 - 4 расположен выше графика функции у = 3х при х < -1 и х > 4, т.е. множество решений исходного неравенства есть множество
(- (; -1) ( (4; + оо).
Ответ: х ( (- оо; -1) и (4; + оо ).
Графиком квадратичной функции у = ах2 + bх + с является парабола с ветвями, направленными вверх, если а > 0, и вниз, если а < 0. При этом возможны три случая: парабола пересекает ось Ох (т.е. уравнение ах2 + bх + с = 0 имеет два различных корня); парабола касается оси х (т.е. уравнение ах2 + bх + с = 0 имеет один корень); парабола не пересекает ось Ох (т.е. уравнение ах2 + bх + с = 0 не имеет корней). Таким образом, возможны шесть положений параболы, служащей графиком функции у = ах2 + bх + с (рис. 17.6). Используя эти иллюстрации, можно решать квадратные неравенства.








Пример 17.9. Решите неравенство: а) 2хг + 5х - 3 > 0; б) -Зх2 - 2х - 6 < 0.
Решение, а) Уравнение 2х2 + 5х -3 = 0 имеет два корня: х, = -3, х2 = 0,5. Парабола, служащая графиком функции у = 2х2 + 5х -3, показана на рис. а. Неравенство 2х2 + 5х -3 > 0 выполняется при тех значениях х, при которых точки параболы лежат выше оси Ох: это будет при х < хх или при х > хг> т.е. при х < -3 или при х > 0,5. Значит, множество решений исходного неравенства есть множество (- (; -3) и (0,5; + ().
б) Уравнение -Зх2 + 2х- 6 = 0 не имеет действительных корней. Парабола, служащая графиком функции у = - 3х2 - 2х - 6, показана на рис. 17.6 Неравенство -3х2 - 2х - 6 < О выполняется при тех значениях х, при которых точки параболы лежат ниже оси Ох. Поскольку вся парабола лежит ниже оси Ох, то множество решений исходного неравенства есть множество R.
НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ПЕРЕМЕННУЮ ПОД ЗНАКОМ МОДУЛЯ. При решении данных неравенств следует иметь в виду, что:
| f(х) | =
f(х) , если f(х) ( 0,
- f(х) , если f(х) ( 0,
При этом область допустимых значений неравенства следует разбить на интервалы, на каждом из которых выражения, стоящие под знаком модуля, сохраняют знак. Затем, раскрывая модули (с учетом знаков выражений), нужно решать неравенство на каждом интервале и полученные решения объединять в множество решений исходного неравенства.
Пример 17.10. Решите неравенство:
|х -1| + |2- х| > 3+х.
Решение. Точки х = 1 и х = 2 делят числовую ось (ОДЗ неравенства (17.9) на три интервала: х < 1, 1 ( х (.2, х > 2. Решим данное неравенство на каждом из них. Если х < 1, то х - 1 < 0 и 2 – х > 0; поэтому |х -1| = - (х - I), |2 - х | = 2 - х. Значит, неравенство (17.9) принимает вид: 1- х + 2 - х > 3 + х, т.е. х < 0. Таким образом, в этом случае решениями неравенства (17.9) являются все отрицательные числа.
Если 1 ( х (.2, то х - 1 ( 0 и 2 – х ( 0; поэтому | х- 1| = х - 1, |2 - х| = 2 – х. .Значит, имеет место система:
1 ( х (.2
х – 1 + 2 – х > 3 + х,
или
1 ( х (.2
х < - 2

Полученная система неравенств решений не имеет. Следовательно, на интервале [ 1; 2] множество решений неравенства (17.9) пусто.
Если х > 2, то х - 1 >0 и 2 – х <0; поэтому | х - 1| = х- 1, |2-х| = -(2- х). Значит, имеет место система:
х > 2,
х -1 + х – 2 > 3+х,
или
х > 2,
х > 6 или
х > 6
Объединяя найденные решения на всех частях ОДЗ неравенства (17.9), получаем его решение - множество (-(; 0) ( (6; +оо).
Иногда полезно воспользоваться геометрической интерпретацией модуля действительного числа, согласно которой | а | означает расстояние точки а координатной прямой от начала отсчета О, а | а - b | означает расстояние между точками а и b на координатной прямой. Кроме того, можно использовать метод возведения в квадрат обеих частей неравенства.
Теорема 17.5. Если выражения f (х) и g (х) при любых х принимают только неотрицательные значения, то неравенства f (х) ( g (х) и f (х) І ( g (х) І равносильны.


58. Основные выводы § 12
В данном параграфе мы определили следующие понятия:
числовое выражение;
значение числового выражения;
выражение, не имеющее смысла;
выражение с переменной (переменными);
область определения выражения;
тождественно равные выражения;
тождество;
тождественное преобразование выражения;
числовое равенство;
числовое неравенство;
уравнение с одной переменной;
корень уравнения;
что значит решить уравнение;
равносильные уравнения;
неравенство с одной переменной;
решение неравенства;
что значит решить неравенство;
равносильные неравенства.
Кроме того, мы рассмотрели теоремы о равносильности уравнений и неравенств, являющиеся основой их решения.
Знание определений всех названных выше понятий и теорем о равносильности уравнений и неравенств - необходимое условие методически грамотного изучения с младшими школьниками алгебраического материала.

Лекция 28. Уравнения с двумя переменными
План:
1. Уравнения с двумя переменными. Уравнение линии. Уравнение окружности.
2. Система уравнений с двумя переменными. Способы решения системы двух уравнений с двумя переменными: способ подстановки и способ сложения.
3. Совокупности уравнений с двумя переменными.

УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ f2 (х) = g (х)
Предикат вида f (х, у) = g (х, у) называют уравнением с двумя переменными.
Любая пара (а, b) значений переменных, обращающая уравнение f (х, у) = g (х, у) в истинное числовое равенство, называется решением этого уравнения, а множество всех таких пар множеством решений этого уравнения.
Пример. Определим, являются ли пары (1; 5) и (2; 7) решениями уравнения х + 2у = 12, и запишем множество решений данного уравнения.
Решени е. Если х = 1, а у = 5, то уравнение х + 2у = 12 обращается в неверное числовое равенство
1 +2 ( 5 = 12. Следовательно, пара (1; 5) не является решением уравнения.
Если х = 2, а у = 7, то данное уравнение обращается в верное равенство 2 + 2 7 = 12. Следовательно, пара (2; 7) является решением уравнения х + 2у = 12.
Данное уравнение имеет бесконечное множество решений. Для записи этого множества удобно выразить одну переменную через другую, например х через у. Получим: х = 12 2у. Тогда множество Т решений этого уравнения можно записать так:
Т= {(12-2у, у) | у (R}.
Упражнения
1. Путем подбора найдите несколько решений каждого из следующих уравнений: а) х у = 5;
б) у = Зх; в) Зх 2у == 16.
2. Найдите три решения уравнения х + 2у = 7. Сколько решений имеет данное уравнение? Можно ли сказать, что любая пара чисел является решением данного уравнения?
3. Найдите пары чисел, разность которых равна 10. Сколько решений имеет задача?
4. Даны два уравнения: х + у = 9 и х у = 1. Найдите пару чисел, которая: а) является решением первого уравнения, но не является решением второго; б) является решением второго уравнения, но не является решением первого; в) является решением и первого и второго уравнений; г) не является решением ни первого уравнения, ни второго.

СИСТЕМЫ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ
Система двух уравнений с двумя переменными имеет вид:
{

f (х, у) = g (х, у)



f2 (х, у) = g (х,у)



Решением этой системы является любая пара чисел (а; b), обращающая каждое из уравнений системы в верное числовое равенство. Множество таких пар есть пересечение множества решений первого уравнения с множеством решений второго.
Две системы уравнений называются равносильными на некотором множестве X, если их множества решений совпадают.
Пример 1. Решим систему уравнений
Зх + 4у = 5,
х - 2у = 4, используя метод алгебраического сложения.
Решение. Умножив обе части второго уравнения на 2 и первое уравнение сложим со вторым, получим систему
Зх + 4у = 5
(Зх + 4у) + (2х - 4у) = 5 + 8
равносильную исходной.
После приведения подобных членов данная система примет вид: Зх + 4у = 5
5х = 13,

Решением данной системы является пара чисел х = 13/5, у = - 7/10.
УРАВНЕНИЕ ПРЯМОЙ
Общее уравнение прямой - уравнение первой степени относительно переменных х и у, т.е. уравнение вида Ах + Ву + С = 0 при условии, что коэффициенты А и В одновременно не равны нулю.
Уравнение прямой в отрезках имеет вид х/а + у/b = 1, где а и b - соответственно абсцисса и ордината точек пересечения прямой с осями Ох и Оу.
Уравнение прямой с угловым коэффициентом имеет вид у = кх + b, где к = tg
· - угловой коэффициент, равный тангенсу угла наклона прямой к оси Ох, а b~ ордината точки пересечения прямой с осью Оу/
Уравнение прямой, проходящей через две точки А(х], у]) и В(х2 ,у2), имеет вид
(х – х) ) (х -х ) = ( у - у ) / ( у - у)
Угловой коэффициент прямой, проходящей через точки А и В, находится по формуле
k = ( у - у) / (х -х )
Пример 16.22. Найдите отрезки, отсекаемые на осях координат прямой, проходящей через точки А(6; 2) и В(-3;8). )
Решение. Подставив в уравнение прямой, проходящей через две точки, координаты точек
А (6; 2) и В(-3;8), получим (х – 6) / (-3 – 6) = (у – 2) / (8 – 2) или у = - 2/3х + 6.
Преобразуем последнее уравнение
к уравнении ю прямой в отрезках: (2/3)х/6 + у/6 = 1 или х/9 + у/6 = 1. Значит, а = 9 и b = 6.
Ответ: 6 и 9.
Если даны две пересекающиеся прямые А х + В у + С = 0 и А + В у + С2 - 0, то для вычисления координат точки пересечения данных прямых необходимо решить систему уравнений этих прямых.
Пример 16.23. Найдите точку пересечения прямых Зх - 4у + 11 = 0 и 4х - у - 7 = 0. Решение. Решив систему уравнений получим х = 3 и у = 5. Следовательно, (3, 5) - точка пересечения этих прямых.
Острый угол между двумя прямыми, заданными:
- общими уравнениями А х + В у + С = 0 и А х + В у + С2 - 0
вычисляется по формуле соs
· = | (А А + В В) /(
· АІ + В І
· А І + В ) І|
- общими уравнениями у = k х + b и у = k х + b
вычисляется по формуле tg
· = | (k - k ) | (1 + k ( k )|
Пример 16.24. Найдите угол между прямыми у = 3х - 1 и у = -2х + 4.
Ответ: 45°.
Условие параллельности двух прямых, заданных:
-общими уравнениями А х + В у + С = 0 и А х + В у + С2 = 0, имеет вид Ах / А = В/ В;
- уравнениями с угловыми коэффициентами у = k х + b и у = k х + b имеет вид k = k .
Условие перпендикулярности двух прямых, заданных:
общими уравнениями А х + В у + С = 0 и А х + В у + С2 = 0, имеет вид Ах А + В В = 0;
уравнениями с угловыми коэффициентами у = k х + b и у = k х + b имеет вид k k = - 1
Пример 16.25. Найдите уравнение прямой, проходящей через точку А (4; -2) и параллельной прямой 4х - 2у + 5 = 0.
Ответ: у =2х - 6.
УРАВНЕНИЕ ОКРУЖНОСТИ с центром в начале координат и радиусом R имеет вид х2 + у2 = /?2; уравнение окружности с центром в точке А{а; b) и радиусом R имеет вид (х - а)2 + {у - b)2 = /?2; уравнение окружности в общем виде имеет вид Ах2 + Ауг + Вх + Су + О = 0.


Лекция 29. Системы и совокупности неравенств с одной переменной
План:
1. Системы двух неравенств с двумя переменными: запись результата решения.
2. Совокупности неравенств с двумя переменными.

СИСТЕМЫ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ

Система неравенств f (х) ( g (х) и f2 (х) ( g (х) имеет вид:

{

f (х) ( g (х)


f2 (х) ( g (х).


Решением этой системы является всякое значение переменной х , которое обращает каждое из неравенств в истинное числовое неравенство.
Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.
Неравенство |х| < а, где а >0, равносильно системе
х < а,
х > а
или двойному неравенству а < х < а.
Пример 1. Найдем множество решений системы неравенств:
5(х + 1) – 9х – 3 > - 6(х + 2)
3 (3 + 2х) < 7х 2 (х 8).
Ответ: Множество решений неравенства х > 7 есть числовой промежуток ]7; оо[, а множество решений неравенства х < 7 - промежуток ] оо; 7[. Решением данной системы является промежуток ]7; 7[.

42. СОВОКУПНОСТИ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ
Совокупность неравенств f (х) ( g (х) и f2 (х) ( g (х) с одной переменной может быть записана в виде
(

f (х) ( g (х) (1)


f2 (х) ( g (х) (2).


Решением совокупности неравенств с одной переменной называется всякое значение переменной х, которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности.

Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.
Неравенство |х| >а, где а > 0 равносильно совокупности:
(

х ( а


х < - а.



Неравенство вида f (х) : g (х) (1) > 0 или f (х) ( g (х) (1) > 0 равносильно
совокупности (дизъюнкции) систем:
(

f (х) ( 0


g (х) ( 0.



(

f (х) < 0


g (х) <0.


Пример 1. Найдем множество решений совокупности
2х 3 > х 1,
4х + 3 > 8 х.
Решение. Найдем сначала множества решений каждого из неравенств совокупности, а затем их объединение.
Преобразуем каждое из неравенств совокупности, заменяя его равносильным:
х > 2,
х > 1.
Множество решений неравенства х > 2 есть числовой промежуток ]2; ([, а множество решений неравенства х > 1 промежуток ]1; ([. Изобразим эти множества на числовой прямой и найдем их объединение. Следовательно, множество решений совокупности есть числовой промежуток ]1; оо[.
П р и м е р 2. Решим неравенство (4х – 3) / (3 – 2х) > 1.
Ответ: ]1; 1,5[.

Лекция 30. Неравенства с двумя переменными
План:
1. Неравенства с двумя переменными. Способы решения системы двух неравенств с двумя переменными: аналитический способ и графический способ.
2. Системы двух неравенств с двумя переменными: запись результата решения.
3. Совокупности неравенств с двумя переменными.


НЕРАВЕНСТВА И СИСТЕМЫ НЕРАВЕНСТВ С ДВУМЯ ПЕРЕМЕННЫМИ. Предикат вида f(х, у)>< f2(х, у), х(Х, у( У, где f(х, у) и f2(х, у) - выражения с переменными х и у, определенные на множестве ХхУ называется неравенством с двумя переменными (с двумя неизвестными) х и у. Ясно, что любое неравенство вида с двумя переменными можно записать в виде f(х, у) > 0, х(Х, у( У. Решением неравенства с двумя переменными называется пара значений переменных, обращающая неравенство в верное числовое неравенство. Известно, что пара действительных чисел (х, у) однозначно определяет точку координатной плоскости. Это дает возможность изобразить решения неравенства или системы неравенств с двумя переменными геометрически, в виде некоторого множества точек координатной плоскости. Если уравнение.
f(х, у) = 0 определяет некоторую линию на координатной плоскости, то множество точек плоскости, не лежащих на этой линии, состоит из конечного числа областей С, С2,..., Сп (рис. 17.8). В каждой из областей С, функция f(х, у) отлична от нуля, т.к. точки, в которых f(х, у) = 0 принадлежат границам этих областей.










Рис. 17.8

Теорема 17.6. В каждой из областей G (/ = 1,2,...), на которые линия f(х, у) = 0 делит координатную плоскость, функция f(х, у) либо положительна, либо отрицательна.
Доказательство этой теоремы опускается.
Пример 17.14. Изобразите на координатной плоскости множество решений неравенства
у{у + 2) < х + 3.

Решение. Преобразуем неравенство к виду х > у2 + 2у - 3. Построим на координатной плоскости параболу х = у2 + 2у - 3. Она разобьет плоскость на две области G и G2 (рис. 17.9). Так как абсцисса любой точки, лежащей правее параболы х = у2 + 2у - 3, больше, чем абсцисса точки, имеющей ту же ординату, но лежащей на параболе, и т.к. неравенство х>уг + 2у -3 нестрогое, то геометрическим изображением решений данного неравенства будет множество точек плоскости, лежащих на параболе х = у2 + 2у - 3 и правее нее (рис. 17.9).

Рис. 17.9
Рис. 17.10
Пример 17.15. Изобразите на координатной плоскости множество решений системы неравенств
х > 0,
у > 0,
ху > 5,
х + у <6.
Решение. Геометрическим изображением решения системы неравенств х > 0, у > 0 является множество точек первого координатного угла. Геометрическим изображением решений неравенства х + у < 6 или у < 6 - х является множество точек, лежащих ниже прямой и на самой прямой, служащей графиком функции у = 6 - х. Геометрическим изображением решений неравенства ху > 5 или, поскольку х > 0 неравенства у > 5/х является множество точек, лежащих выше ветви гиперболы, служащей графиком функции у = 5/х. В итоге получаем множество точек координатной плоскости, лежащих в первом координатном углу ниже прямой, служащей графиком функции у = 6 - х, и выше ветви гиперболы, служащей графиком функции у = 5х (рис. 17.10).

Глава III. НАТУРАЛЬНЫЕ ЧИСЛА И НУЛЬ

Лекция 31. Аксиоматический метод построения теории в математике
План:
1. Из истории развития понятия числа.
2. Аксиоматический метод построения теории в математике.

Для школьной математики натуральное число является тем понятием, с которого, как правило, начинается обучение. И уже в начальных классах учащиеся знакомятся с различными функциями натурального тела. Отвечая на вопрос: «Сколько машин изображено на рисунке?», они имеют дело с числом как количественной характеристикой множества предметов. Производя счет предметов, используют натуральное число как характеристику порядка. В задачах, связанных с измерением величин, число выступает как значение величины при выбранной единице, т.е. как мера величины. Большое внимание уделяется в начальном курсе математики и еще одной роли числа - как компоненту вычислений. Таким образом, натуральное число имеет много функций, и многие из них должны быть поняты и усвоены уже младшими школьниками. Поэтому важной задачей учителя является овладение теми теориями, в которых обосновываются различные подходы к определению натурального числа и действий над числами.
В нашем курсе мы рассмотрим аксиоматическое определение системы натуральных чисел, отвечающее на вопрос, что представляет собой число как элемент натурального ряда; затем построим ее теоретико-множественную модель и выясним, что представляет собой натуральное число как мера величины, и, наконец, изучим способы записи чисел и алгоритмы действий над ними.
§ 13. Из истории возникновения понятия натурального числа
Числа возникли из потребности счета и измерения и претерпели длительный путь исторического развития.
Было время, когда люди не умели считать. Чтобы сравнить конечные множества, устанавливали взаимно однозначное соответствие между данными множествами или между одним из множеств и подмножеством другого множества, т.е. на этом этапе человек воспринимал численность предметов без их пересчета. Например, о численности группы из двух предметов он мог говорить: «Столько же рук у человека», о множестве из пяти предметов - «столько же, сколько пальцев на руке». При таком способе сравниваемые множества должны были быть одновременно обозримы.
В результате очень долгого периода развития человек пришел к следующему этапу создания натуральных чисел - для сравнения множеств стали применять множества-посредники: мелкие камешки, раковины, пальцы. Эти множества-посредники уже представляли собой зачатки понятия натурального числа, хотя и на этом этапе число не отделялось от сосчитываемых предметов: речь шла, например, о пяти камешках, пяти пальцах, а не о числе «пять» вообще. Названия множеств-посредников стали использовать для определения численности множеств, которые с ними сравнивались. Так, у некоторых племен численность множества, состоящего из пяти элементов, обозначалась словом «рука», а численность множества из 20 предметов - словами «весь человек».
Только после того как человек научился оперировать множествами-посредниками, установил то общее, что существует, например, между пятью пальцами и пятью яблоками, т.е. когда произошло отвлечение от природы элементов множеств-посредников, возникло представление о натуральном числе. На этом этапе при счете, например, яблок, не перечислялись уже «одно яблоко», «два яблока» и т.д., а проговаривались слова «один», «два» и т.д. Это был важнейший этап в развитии понятия числа. Историки считают, что произошло это в каменном веке, в эпоху первобытнообщинного строя, примерно в 10-5 тысячелетии до н.э.
Со временем люди научились не только называть числа, но и обозначать их, а также выполнять над ними действия. Вообще натуральный ряд чисел возник не сразу, история его формирования длительная. Запас чисел, которые употребляли, ведя счет, увеличивался постепенно. Постепенно сложилось и представление о бесконечности множества натуральных чисел. Так, в работе «Псаммит» - исчисление песчинок - древнегреческий математик Архимед (III в. до н.э.) показал, что ряд чисел может быть продолжен бесконечно, и описал способ образования и словесного обозначения сколь угодно больших чисел.
Возникновение понятия натурального числа было важнейшим моментом в развитии математики. Появилась возможность изучать эти числа независимо от тех. конкретных задач, в связи с которыми они возникли. Теоретическая наука, которая стала изучать числа и действия над ними, получила название «арифметика». Слово «арифметика» происходит от греческого аrithmos, что значит «число». Следовательно, арифметика - это наука о числе.
Арифметика возникла в странах Древнего Востока: Вавилоне. Китае. Индии и Египте. Накопленные в этих странах математические знания были развиты и продолжены учеными Древней Греции. В средние века большой вклад в развитие арифметики внесли математики Индии, стран арабского мира и Средней Азии, а начиная с XIII века – европейские ученые.
Термин «натуральное число» впервые употребил в V в. римский ученый А.Боэций, который известен как переводчик работ известных математиков прошлого на латинский язык и как автор книги «О введении в арифметику», которая до XVI века была образцом для всей европейской математики.
Во второй половине XIX века натуральные числа оказались фундаментом всей математической науки, от состояния которого зависела и прочность всего здания математики. В связи с этим появилась необходимость в строгом логическом обосновании понятия натурального числа, в систематизации того, что с ним связано. Так как математика XIX века перешла к аксиоматическому построению своих теорий, то была разработана аксиоматическая теория натурального числа. Большое влияние па исследование природы натурального числа оказала и созданная в XIX веке теория множеств. Конечно, в созданных теориях понятия натурального числа и действий над ними получили большую абстрактность, но этим всегда сопровождается процесс обобщения и систематизации отдельных фактов.
§ 14. АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ СИСТЕМЫ НАТУРАЛЬНЫХ ЧИСЕЛ
Как уже было сказано, натуральные числа получаются при счете предметов и при измерении величин. Но если при измерении появляются числа, отличные от натуральных, то счет приводит только к числам натуральным. Чтобы вести счет, нужна последовательность числительных, которая начинается с единицы и которая позволяет
осуществлять переход от одного числительного к другому и столько раз, сколько это необходимо. Иначе говоря, нужен отрезок натурального ряда. Поэтому, решая задачу обоснования системы натуральных чисел, в первую очередь надо было ответить на вопрос о том, что же представляет собой число как элемент натурального ряда. Ответ на него был дан в работах двух математиков - немца Грассмана и итальянца Пеано. Они предложили аксиоматику, в которой натуральное число обосновывалось как элемент неограниченно продолжающейся последовательности.

59. Об аксиоматическом способе построения теории
При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:
- некоторые понятия теории выбираются в качестве основных и принимаются без определения;
- каждому понятию теории, которое не содержится в списке основных, дается определение, в нем разъясняется его смысл с помощью основных и предшествующих данному понятий;
- формулируются аксиомы - предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий;
- каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремами и доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.
Если построение теории осуществляется аксиоматическим методом, т.е. по названным выше правилам, то говорят, что теория построена дедуктивно.
При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.
Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения.
Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.
Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы.
При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равносильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор аксиом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.
Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам. Изучая этот материал, мы должны увидеть, как из основных понятий и аксиом можно вывести всю арифметику натуральных чисел. Конечно, его изложение в нашем курсе будет не всегда строгим - некоторые доказательства мы опускаем в силу их большой сложности, но каждый такой случай будем оговаривать.
Упражнения
В чем суть аксиоматического способа построения теории?
Верно ли, что аксиома - это предложение, которое не требует доказательства?
Назовите основные понятия школьного курса планиметрии. Вспомните несколько аксиом из этого курса. Свойства каких понятий в них описываются?
Дайте определение прямоугольника, выбрав в качестве родового понятие параллелограмма. Назовите три понятия, которые в курсе геометрии должны предшествовать понятию «параллелограмм».
Какие предложения называют теоремами? Вспомните, какова логическая структура теоремы и что значит доказать теорему.


Лекция 32. Аксиоматическое построение множества целых неотрицательных чисел
План:
1. Основные понятия и аксиомы Пеано. Определение целого неотрицательного числа
2. Сложение целых неотрицательных чисел. Таблицы сложения и умножения.
3. Умножение целых неотрицательных чисел. Законы сложения и умножения.


60. Основные понятия и аксиомы. Определение натурального числа
В качестве основного понятия при аксиоматическом построении арифметики натуральных чисел взято отношение «непосредственно следовать за», заданное на непустом множестве N. Известными также считаются понятие множества, элемента множества и другие теоретико-множественные понятия, а также правила логики.
Элемент, непосредственно следующий за элементом а, обозначают а'.
Суть отношения «непосредственно следовать за» раскрывается в следующих аксиомах.
Аксиома 1. В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества. Будем называть его единицей и обозначать символом 1.
Аксиома 2. Для каждого элемента а из N существует единственный элемент а(, непосредственно следующий за а.
Аксиома 3. Для каждого элемента а из N существует не более одного элемента, за которым непосредственно следует а.
Аксиома 4. Всякое подмножество М множества N совпадает с N, если обладает свойствами: 1) 1 содержится в М; 2) из того, что а содержится в М, следует, что и а' содержится в М.
Сформулированные аксиомы часто называют аксиомами Пеано.
Используя отношение «непосредственно следовать за» и аксиомы 1-4, можно дать следующее определение натурального числа.
Определение. Множество N, для элементов которого установлено отношение «непосредственно следовать за», удовлетворяющее аксиомам 1-4, называется множеством натуральных чисел, а его элементы - натуральными числами.
В данном определении ничего не говорится о природе элементов множества N. Значит, она может быть какой угодно. Выбирая в качестве множества N некоторое конкретное множество, на котором задано конкретное отношение «непосредственно следовать за», удовлетворяющее аксиомам 1-4, мы получим модель данной системы аксиом. В математике доказано, что между всеми такими моделями можно установить взаимно однозначное соответствие, сохраняющее отношение «непосредственно следовать за», и все такие модели будут отличаться только природой элементов, их названием и обозначением. Стандартной моделью системы аксиом Пеано является возникший в процессе исторического развития общества ряд чисел:
1,2,3,4,...
Каждое число этого ряда имеет свое обозначение и название, которое мы будем считать известными.
Рассматривая натуральный ряд чисел в качестве одной из моделей аксиом 1-4, следует отметить, что они описывают процесс образования этого ряда, причем происходит это при раскрытии в аксиомах свойств отношения «непосредственно следовать за». Так, натуральный ряд начинается с числа 1 (аксиома 1); за каждым натуральным числом непосредственно следует единственное натуральное число (аксиома 2); каждое натуральное число непосредственно следует не более чем за одним натуральным числом (аксиома 3); начиная от числа 1 и переходя по порядку к непосредственно следующим друг за другом натуральным числам, получаем все множество этих чисел (аксиома 4). Заметим, что аксиома 4 в формализованном виде описывает бесконечность натурального ряда, и на ней основано доказательство утверждений о натуральных числах.
Вообще моделью системы аксиом Пеано может быть любое счетное множество, например:
I, II, III, IIII, ...
о, оо, ооо, оооо,
один, два, три, четыре,
Рассмотрим, например, последовательность множеств, в которой множество {оо} есть начальный элемент, а каждое последующее множество получается из предыдущего приписыванием еще одного кружка (рис. 108,а). Тогда N есть множество, состоящее из множеств описанного вида, и оно является моделью системы аксиом Пеано. Действительно, в множестве N существует элемент {оо}, непосредственно не следующий ни за каким элементом данного множества, т.е. выполняется аксиома 1. Если считать обведенные кружки за один элемент (рис. 108.6), то для каждого
а) {о о}, {о о о}, {о о о о},
б) { }, { о}, { о о},

Рис. 108

13 SHAPE \* MERGEFORMAT 1415
Рис. 109
множества А рассматриваемой совокупности существует единственное множество, которое получается из А добавлением одного кружка, т.е. выполняется аксиома 2. Для каждого множества А существует не более одного множества, из которого образуется множество А добавлением одного кружка, т.е. выполняется аксиома 3. Если М ( N и известно, что множество А содержится в М, следует, что и множество, в котором на один кружок больше, чем в множестве А, также содержится в N, то М ~ N (и значит, выполняется аксиома 4).

Заметим, что в определении натурального числа ни одну из аксиом опустить нельзя - для любой из них можно построить множество, в котором выполнены остальные три аксиомы, а данная аксиома не выполняется. Это положение наглядно подтверждается примерами, приведенными на рисунках 109 и 110. На рисунке 109, а) изображено множество, в котором выполняются аксиомы 2 и 3, но не выполнена аксиома 1 (аксиома 4 не будет иметь смысла, так как в множестве нет элемента, непосредственно не следующего ни за каким другим). На рисунке 109, 6) показано множество, в котором выполнены аксиомы 1, 3 и 4, но за элементом а непосредственно следуют два элемента, а не один, как требуется в аксиоме 2. На рисунке 109, в) изображено множество, в котором выполнены аксиомы 1, 2, 4, но элемент с непосредственно следует как за элементом а, так и за элементом b. На рисунке 110 показано множество, в котором выполнены аксиомы 1, 2, 3, но не выполняется аксиома 4 - множество точек, лежащих на луче, содержит 1 и вместе с







Рис. 110

каждым числом оно содержит непосредственно следующее за ним число, но оно не совпадает со всем множеством точек, показанных на рисунке.
То обстоятельство, что в аксиоматических теориях не говорят об «истинной» природе изучаемых понятий, делает на первый взгляд эти теории слишком абстрактными и формальными, - оказывается, что одним и тем же аксиомам удовлетворяют различные множества объектов и разные отношения между ними. Однако в этой кажущейся абстрактности и состоит сила аксиоматического метода: каждое утверждение, выведенное логическим путем из данных аксиом, применимо к любым множествам объектов, лишь бы в них были определены отношения, удовлетворяющие аксиомам.
Итак, мы начали аксиоматическое построение системы натуральных чисел с выбора основного отношения «непосредственно следовать за» и аксиом, в которых описаны его свойства. Дальнейшее построение теории предполагает рассмотрение известных свойств натуральных чисел и операций над ними. Они должны быть раскрыты в определениях и теоремах, т.е. выведены чисто логическим путем из отношения «непосредственно следовать за», и аксиом 1-4.
Первое понятие, которое мы введем после определения натурального числа, - это отношение «непосредственно предшествует», которое часто используют при рассмотрении свойств натурального ряда.
Определение. Если натуральное число b непосредственно следует за натуральным числом а, то число а называется непосредственно предшествующим (или предшествующим) числу b .
Отношение «предшествует» обладает рядом свойств. Они формулируются в виде теорем и доказываются с помощью аксиом 1-4.
Теорема 1. Единица не имеет предшествующего натурального числа.
Истинность данного утверждения вытекает сразу из аксиомы 1.
Теорема 2. Каждое натуральное число а, отличное от 1, имеет предшествующее число b , такое, что b ' = а.
Доказательство. Обозначим через М множество натуральных чисел, состоящее из числа 1 и из всех чисел, имеющих предшествующее. Если число а содержится в М, то и число а' также есть в N, поскольку предшествующим для а' является число а. Это значит, что множество М содержит 1, и из того, что число а принадлежит множеству М, следует, что и число а' принадлежит М. Тогда по аксиоме 4 множество М совпадает с множеством всех натуральных чисел. Значит, все натуральные числа, кроме 1, имеют предшествующее число.
Отметим, что в силу аксиомы 3 числа, отличные от 1, имеют единственное предшествующее число.
Аксиоматическое построение теории натуральных чисел не рассматривается ни в начальной, ни в средней школе. Однако те свойства отношения «непосредственно следовать за», которые нашли отражение в аксиомах Пеано, являются предметом изучения в начальном курсе математики. Уже в первом классе при рассмотрении чисел первого десятка выясняется, как может быть получено каждое число. При этом используются понятия «следует» и «предшествует». Каждое новое число выступает как продолжение изученного отрезка натурального ряда чисел. Учащиеся убеждаются в том, что за каждым числом идет следующее, и притом только одно, что натуральный ряд чисел бесконечен. И конечно, знание аксиоматической теории поможет учителю методически грамотно организовать усвоение детьми особенности натурального ряда чисел.
Упражнения
Можно ли аксиому 3 сформулировать в таком виде: «Для каждого элемента а из N существует единственный элемент, за которым непосредственно следует а»?
Выделите условие и заключение в аксиоме 4, запишите их, используя символы (, =>.
Продолжите определение натурального числа: «Натуральным числом называется элемент множества N,...».
61. Сложение
По правилам построения аксиоматической теории, определение сложения натуральных чисел нужно ввести, используя только отношение «непосредственно следовать за», и понятия «натуральное число» и «предшествующее число».
Предварим определение сложения следующими рассуждениями. Если к любому натуральному числу а прибавить 1, то получим число а', непосредственно следующее за а, т.е. а + 1 = а' и, следовательно, мы получим правило прибавления 1 к любому натуральному числу. Но как прибавлять к числу а натуральное число b, отличное от 1? Воспользуемся следующим фактом: если известно, что 2 + 3 = 5, то сумма 2+4 равна числу 6, которое непосредственно следует за числом 5. Происходит так потому, что в сумме 2 + 4 второе слагаемое есть число, непосредственно следующее за числом 3. Таким образом, сумму а + b' можно найти, если известна сумма а + b . Эти факты и положены в основу определения сложения натуральных чисел в аксиоматической теории. Кроме того, в нем используется понятие алгебраической операции.
Определение. Сложением натуральных чисел называется алгебраическая операция, обладающая свойствами:
1) (( а ( N) а + 1 = а', 2) (( а, b ( N) а + b' =(а + b)'.
Число а + b называется суммой чисел а и b , а сами числа а и b - слагаемыми.
Как известно, сумма любых двух натуральных чисел представляет собой также натуральное число, и для любых натуральных чисел а и b сумма а + b - единственна. Другими словами, сумма натуральных чисел существует и единственна. Особенностью определения является то, что заранее не известно, существует ли алгебраическая операция, обладающая указанными свойствами, а если существует, то единственна ли она? Поэтому при аксиоматическом построении теории натуральных чисел доказывают следующие утверждение:
Теорема 3. Сложение натуральных чисел существует и оно единственно.
Эта теорема состоит из двух утверждений (двух теорем):
сложение натуральных чисел существует;
сложение натуральных чисел единственно.
Как правило, существование и единственность связывают вместе, но они чаще всего не зависят друг от друга. Существование какого-либо объекта не подразумевает его единственность. (Например, если вы говорите, что у вас есть карандаш, то это не значит, что он только один.) Утверждение о единственности означает, что не может существовать двух объектов с заданными свойствами. Единственность часто доказывается методом от противного: предполагают, что имеется два объекта, удовлетворяющих данному условию, а затем выстраивают цепочку дедуктивных умозаключений, приводящую к противоречию.
Чтобы убедиться в истинности теоремы 3, сначала докажем, что если в множестве N существует операция, обладающая свойствами 1 и 2, то эта операция единственная; затем докажем, что операция сложения со свойствами 1 и 2 существует.
Доказательство единственности сложения. Допустим, что в множестве N существует две операции сложения, обладающие свойствами 1 и 2. Одну из них обозначим знаком + , а другую - знаком (. Для этих операций имеем:
1) а+1=а'; 1) а( 1=а';
2) а + b ' = (а + b )' 2) а ( b' = (а ( b)'.
Докажем, что если
(( а, b ( N) а + b = а ( b . (1)
Пусть число а выбрано произвольно, а b принимает различные натуральные значения. Обозначим через М множество всех тех и только тех чисел b , для которых равенство (1) истинно.
Нетрудно убедиться в том, что 1 ( М. Действительно, из того, что а + 1= а'= а( 1 следует, что а + 1 = а( 1.

Докажем теперь, что если b ( М, то b'( М, т.е., если а + b = а ( b, то а + b ' =
а ( b'. Так как а + b= а ( b, то по аксиоме 2 (а + b )' = (а ( b)' и тогда а + b ' = (а + b )' =(а ( b)' = а ( b'. Поскольку множество М содержит 1 и вместе с каждым числом b содержит и число b', то по аксиоме 4, множество М совпадает с N, а значит, равенство (1) истинно для любого натурального числа b. Так как число а было выбрано произвольно, то равенство (1) верно при любых натуральных числах а и b, то есть операции + и ( на множестве N могут отличаться друг от друга только обозначениями.

Доказательство существования сложения. Покажем, что алгебраическая операция, обладающая свойствами 1 и 2, указанными в определении сложения, существует.
Пусть М - множество тех и только тех чисел а, для которых можно определить а + b так, чтобы были выполнены условия 1 и 2. Покажем, что 1 ( М. Для этого при любом b положим
1 + b = b '. (2)
Тогда:
1) 1 + 1 = 1'- по правилу (2), т.е выполняется равенство а + 1 = а при а = 1.
2) 1 + b ' = (b ')' = (1 + b)' - по правилу (2.), т.е. выполняется равенство а + b ' = (а + b)' при а = 1.
Итак, 1 принадлежит множеству М.
Предположим, что а принадлежит М. Исходя из этого предположения, покажем, что и а' содержится в М. т.е. что можно определить сложение а и любого числа b так, чтобы выполнялись условия 1 и 2.
Для этого положим:
а' + b = (а + b) ' (3)
Так как по предположению число а + b определено, то по аксиоме 2 единственным образом определяется и число (а + b )'. Проверим, что при этом выполняются условия 1 и 2:
а' + 1 = (а + 1)' = (а')'. Таким образом, а' + 1 = (а')'.
а' + b' = (а + b')' = ((а + b)') ' = (а' + b')'. Таким образом, а' + b' = (а' + b)'.
Итак, показали, что множество М содержит 1 и вместе с каждым числом а содержит число а'. По аксиоме 4, заключаем, что множество М есть множество натуральных чисел. Таким образом, существует правило, которое позволяет для любых натуральных чисел а и b однозначно найти такое натуральное число а + b, что выполняются свойства 1 и 2. сформулированные в определении сложения.
Покажем, как из определения сложения и теоремы 3 можно вывести хорошо известную всем таблицу сложения однозначных чисел.
Условимся о следующих обозначениях: 1' = 2; 2' = 3; 3' = 4; 4' = 5 и т.д.
Составляем таблицу в такой последовательности: сначала к любому однозначному натуральному числу прибавляем единицу, затем число два, потом - три и т.д.
1 + 1 = 1' на основании свойства 1 определения сложения. Но 1' мы условились обозначать 2. следовательно, 1+1=2.
Аналогично 2+1 = 2' = 3; 3 + 1 = 3' = 4 и т.д.
Рассмотрим теперь случаи, связанные с прибавлением к любому однозначному натуральному числу числа 2.
1+2=1 + 1' - воспользовались принятым обозначением. Но 1 + 1' = (1 + !)' согласно свойству 2 из определения сложения, 1 + 1 - это 2, как было установлено выше. Таким образом,
1 + 2 = 1 + 1' = (1 + 1)' = 2' = 3.
Аналогично 2 + 2 = 2 + 1' = (2 + 1)' = 3' = 4; 3 + 2 = 3 + 1' = (3 + 1)' = 4' = 5 и т.д.
Если продолжить этот процесс, получим всю таблицу сложения однозначных чисел.
Следующий шаг в аксиоматическом построении системы натуральных чисел - это доказательство свойств сложения, причем первым рассматривается свойство ассоциативности, затем коммутативности и др. Доказательства теорем следует рассмотреть как упражнения.
Теорема 4. (( а, b, с ( N) (а + b) + с = а + (b + с).
Теорема 5. (( а, b ( N) а + b = b + а.
Теорема 6. (( а, b ( N) а + b ( b.
Все доказанные свойства изучаются в начальном курсе математики и используются для преобразования выражений.
Упражнения
Верно ли, что каждое натуральное число получается из предыдущего прибавлением единицы?
Используя определение сложения, найдите значение выражений:
а) 2 + 3; б) 3 + 3; в) 4 + 3.
Какие преобразования выражений можно выполнять, используя свойство ассоциативности сложения?
Выполните преобразование выражения, применив ассоциативное свойство сложения:
а) (12 + 3)+17; б) 24+ (6+19); в) 27 + 13+18.
Докажите, что (( а, b ( N) а + b ( а.
Выясните, как формулируются в различных учебниках математики для начальной школы:
а) коммутативное свойство сложения;
б) ассоциативное свойство сложения.
7. В одном из учебников для начальной школы рассматривается правило прибавления числа к сумме на конкретном примере (4 + 3) + 2 и предлагаются следующие пути нахождения результата:
а) (4 + 3) + 2 = 7 + 2 = 9;
б) (4 + 3) + 2 = (4 + 2) + 3 = 6 + 3 = 9;
в) (4 + 3) + 2 = 4 + (2 + 3) = 4 + 5 = 9.
Обоснуйте выполненные преобразования. Можно ли утверждать, что правило прибавления числа к сумме есть следствие ассоциативного свойства сложения?
8. Известно, что а + b= 17. Чему равно:
а) а + (b + 3); b) (а + 6)+ b; в) (13 + b) + а?
9. Опишите возможные способы вычисления значения выражения вида
а + b + с. Дайте обоснование этим способам и проиллюстрируйте их на конкретных примерах.
62. Умножение
По правилам построения аксиоматической теории определить умножение натуральных чисел можно, используя отношение «непосредственно следовать за» и понятия, введенные ранее.
Предварим определение умножения следующими рассуждениями.
Если любое натуральное число а умножить на 1. то получится а, т.е. имеет место равенство а ( 1 = а и мы получаем правило умножения любого натурального числа на 1. Но как умножать число а на натуральное число b, отличное от 1? Воспользуемся следующим фактом:
если известно, что 7 ( 5 = 35, то для нахождения произведения 7 ( 6 достаточно к 35 прибавить 7, так как 7 ( 6 = 7 ( (5 + I) = 7 ( 5 + 7. Таким образом, произведение а ( b' можно найти, если известно произведение: а ( b = а ( b + а.
Отмеченные факты и положены в основу определения умножения натуральных чисел. Кроме того, в нем используется понятие алгебраической операции.
Определение. Умножением натуральных чисел называется алгебраическая операция, обладающая свойствами:
1) (( а ( N) а( 1 а.
2) (( а, b ( N) а( b' = а ( b + а.
Число а ( b называется произведением чисел а и b, а сами числа а и b - множителями.
Особенностью данного определения, так же как и определения сложения натуральных чисел, является то, что заранее неизвестно, существует ли алгебраическая операция, обладающая указанными свойствами, а если существует, то единственная ли она. В связи с этим возникает необходимость в доказательстве этого факта..
Теорема 7. Умножение натуральных чисел существует, и оно единственно.
Доказательство этой теоремы аналогично доказательству теоремы 3.
Используя определение умножения, теорему 7 и таблицу сложения, можно вывести таблицу умножения однозначных чисел. Делаем это в такой последовательности: сначала рассматриваем умножение на 1, затем на 2 и т.д.
Легко видеть, что умножение на 1 выполняется по свойству 1 в определении умножения: 1 1 = 1; 2 1 = 2; 3 1 = 3 и т.д.
Рассмотрим теперь случаи умножения на 2: 1 2 = 1 1' = 1 1 + 1 = 1 + 1 = 2- переход от произведения 1 2 к произведению 1 1' осуществлен согласно принятым ранее обозначениям; переход от выражения 1 1' к выражению 1 + 1 - на основе второго свойства умножения; произведение 1 1 заменено числом 1 в соответствии с уже полученным результатом в таблице; и, наконец, значение выражения 1 + 1 найдено в соответствии с таблицей сложения. Аналогично: 2 2 = 2 1' = 2 I + 2 = 2 + 2 = 4; 3 2 = 3 1' = 3 1 + 3 = 3 + 3 = 6.
Если продолжить этот процесс, получим всю таблицу умножения однозначных чисел.
Как известно, умножение натуральных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения. При аксиоматическом построении теории удобно доказывать эти свойства, начиная с дистрибутивности.
Но в связи с тем. что свойство коммутативности будет доказано позже, необходимо рассматривать дистрибутивность справа и слева относительно сложения.
Теорема 8. (( а, b, с ( N) (а + b) с = а с + b с.
Теорема 9. (( а, b, с ( N) с (а + b) = с а + с b
Это свойство дистрибутивности слева относительно сложения. Доказывается оно аналогично тому, как это сделано для дистрибутивности справа.

Теорема 10. (( а, b, с ( N) (а b) с = а ( b с).

Это свойство ассоциативности умножения. Его доказательство основывается на определении умножения и теоремах 4- 9.
Теорема 11. (( а, b ( N) а b = b а.
Доказательство этой теоремы по форме аналогично доказательству коммутативного свойства сложения.
Поход к умножению, рассматриваемый в аксиоматической теории, является основой обучения умножению в начальной школе. Умножение на 1, как правило, определяется, а второе свойство умножения иcпользуется при составлении таблицы умножения однозначных чисел и вычислениях.
В начальном курсе изучаются все рассмотренные нами свойства умножения: и коммутативность, и ассоциативность, и дистрибутивность.

Упражнения
1.. Используя определение умножения, найдите значения выражений: а) 3 3; 6) 3 4; в) 4 3.
2. Запишите свойство дистрибутивности умножения слева относительно сложения и докажите его. Какие преобразования выражений возможны на его основе? Почему возникла необходимость в рассмотрении дистрибутивности умножения слева и справа относительно сложения?
3. Докажите свойство ассоциативности умножения натуральных чисел. Какие преобразования выражений возможны на его основе? Изучается ли это свойство в начальной школе?
4. Докажите свойство коммутативности умножения. Приведите примеры его использования в начальном курсе математики.
5. Какие свойства умножения могут быть использованы при нахождении значения выражения:
а) 5 (10 + 4); 6)125 15 6; в) (8 379) 125?
6. Известно, что 37 3 = 111. Используя это равенство, вычислите:
а) 37 18; 6) 185 12.
Все выполненные преобразования обоснуйте.
7. Определите значение выражения, не выполняя письменных вычислений. Ответ обоснуйте:
а) 8962 8 + 8962 2; б) 63402 3 + 63402 97; в) 849 +849 9.
8.. Какие свойства умножения будут использовать учащиеся начальных классов, выполняя следующие задания:
Можно ли, не вычисляя, сказать, значения каких выражений будут одинаковыми:
а) 3 7 + 3 5; 6) 7 (5 + 3): в) (7 + 5) 3?
Верны ли равенства:
а) 18 5 2 = 18 (5 2); в) 5 6 + 5 7 = (6 + 7) 5;
б) (3 10) 17 = 3 10 17; г) 8 (7 + 9) = 8 7 + 9 8? Можно ли, не выполняя вычислений, сравнить значения выражений:
а) 70 32 + 9 32 ...79 30 + 79 2; 6) 87 70 + 87 8 ... 80 78 + 7 78?


Лекция 33. Вычитание и деление целых неотрицательных чисел
План:
1. Упорядоченность множества натуральных чисел.
2. Определение вычитания целых неотрицательных чисел
3. Деление целых неотрицательных чисел. Невозможность деления на нуль. Деление с остатком.

63. Упорядоченность множества натуральных чисел
Как известно, множество натуральных чисел можно упорядочить при помощи отношения «меньше». Но правила построения аксиоматической теории требуют, чтобы это отношение было не только определено, но и сделано это на основе уже определенных в данной теории понятий. Сделать это можно, определив отношение «меньше» через сложение.
Определение. Число а меньше числа b (а < b) тогда и только тогда, когда существует такое натуральное число с, что а + с = b.
При этих условиях говорят также, что число b больше а и пишут b > а.
Теорема 12. Для любых натуральных чисел а и b имеет место одно и только одно из трех отношений: а = b, а > b, а < b.
Доказательство этой теоремы мы опускаем. Из этой теоремы вытекает, что если
а ( b, то либо а < b, либо а > b, т.е. отношение «меньше» обладает свойством связанности.
Теорема 13. Если а < b и b < с. то а < с.
Доказательство. Эта теорема выражает свойство транзитивности отношения «меньше».
Так как а < b и b < с. то, по определению отношения «меньше», найдутся такие натуральные числа к и /, что b = а + к и с = b + I. Но тогда с = (а + к) + / и на основания свойства ассоциативности сложения получаем: с = а + (к + /). Поскольку к + I - натуральное число, то, согласно определению «меньше», а < с.
Теорема 14. Если а < b, то неверно, что b < а. Доказательство. Эта теорема выражает свойство антисимметричности отношения «меньше».
Докажем сначала, что ни для одного натурального числа а не вы-!>!
· )ея отношение а < а. Предположим противное, т.е. что а < а имеет место. Тогда, по определению отношения «меньше», найдется такое натуральное число с, что а + с = а, а это противоречит теореме 6.
Докажем теперь, что если а < b, то неверно, что b < а. Предположим противное, т.е. что если а < b, то b < а выполняется. Но из этих равенств по теореме 12 имеем а < а, что невозможно.
Так как определенное нами отношение «меньше» антисимметрично и транзитивно и обладает свойством связанности, то оно является отношением линейного порядка, а множество натуральных чисел линейно упорядоченным множеством.
Из определения «меньше» и его свойств можно вывести известные свойства множества натуральных чисел.
Теорема 15. Из всех натуральных чисел единица является наименьшим числом, т.е. I < а для любого натурального числа а(1.
Доказательство . Пусть а - любое натуральное число. Тогда возможны два случая: а = 1 и а ( 1. Если а = 1, то существует натуральное число b, за которым следует а: а = b ' = b + I = 1 + b , т.е., по определению отношения «меньше», 1 < а. Следовательно, любое натуральное равно 1 либо больше 1. Или, единица является наименьшим натуральным числом.
Отношение «меньше» связано со сложением и умножением чисел свойствами монотонности.
Теорема 16.
а = b => а + с = b + с и а с = b с;
а < b => а + с < b + с и ас < bс;
а > b => а + с > b + с и ас > bс.
Доказательство. 1) Справедливость этого утверждения вытекает из единственности сложения и умножения.
Если а < b, то существует такое натуральное число k, что а + k = b. Тогда b + с = (а + к) + с = а + (к + с) = а + (с + к) = (а + с) + к. Равенство b + с = (а + с) + к означает, что а + с < b + с.
Точно так же доказывается, что а < b => ас < bс.
Доказывается аналогично.
Теорема 17 (обратная теореме 16).
а + с = Ь + с или ас ~ Ьс-( а = Ь
а + с < Ь + с или ас < Ьс ( а < Ь:
а + с > Ь + с или ас > Ьс ( а > Ь.
Доказательство. Докажем, например, что из ас < bс следует а < b Предположим противное, т.е. что заключение теоремы не выполняется. Тогда не может быть, что а = b. так как тогда бы выполнялось равенство ас = bс (теорема 16); не может быть и а > b, так как тогда бы ас > bс (теорема !6). Поэтому, согласно теореме 12, а < b.
Из теорем 16 и 17 можно вывести известные правила почленного сложения и умножения неравенств. Мы их опускаем.
Теорема 18. Для любых натуральных чисел а и b; существует такое натуральное число n, что п b > а.
Д о к а з а т е л ь с т в о. Для любого а найдется такое число п, что п > а. Для этого достаточно взять п = а + 1. Перемножая почленно неравенства п > а и b > 1, получаем пb > а.
Из рассмотренных свойств отношения «меньше» вытекают важные особенности множества натуральных чисел, которые мы приводим без доказательства.
Ни для одного натурального числа а не существует такого натурального числа п, что а < п < а + 1. Это свойство называется свойством дискретности множества натуральных чисел, а числа а и а + 1 называют соседними.
Любое непустое подмножество натуральных чисел содержит наименьшее число.
Если М - непустое подмножество множества натуральных чисел и существует такое число b, что для всех чисел х из М выполняется не равенство х < b, то в множестве М есть наибольшее число.
Проиллюстрируем свойства 2 и 3 на примере. Пусть М - множество двузначных чисел. Так как М есть подмножество натуральных чисел и для всех чисел этого множества выполняется неравенство х < 100, то в множестве М есть наибольшее число 99. Наименьшее число, содержащееся в данном множестве М, - число 10.
Таким образом, отношение «меньше» позволило рассмотреть (и в ряде случаев доказать) значительное число свойств множества натуральных чисел. В частности, оно является линейно упорядоченным, дискретным, в нем есть наименьшее число 1.
С отношением «меньше» («больше») для натуральных чисел младшие школьники знакомятся в самом начале обучения. И часто, наряду с его теоретико-множественной трактовкой, неявно используется определение, данное нами в рамках аксиоматической теории. Например, учащиеся могут объяснить, что 9 > 7 так как 9 - это 7+2. Нередко и неявное использование свойств монотонности сложения и умножения. Например, дети объясняют, что «6 + 2 < 6 + 3, так как 2 < 3».
Упражнения
1, Почему множество натуральных чисел нельзя упорядочить при помощи отношения «непосредственно следовать за»?
Сформулируйте определение отношения а > b и докажите, что оно транзитивно и антисимметрично.
3. Докажите, что если а, b, с - натуральные числа, то:
а) а < b ( ас < bс;
б) а + с < b + с(> а < Ь.

4. Какие теоремы о монотонности сложения и умножения могут использовать младшие школьники, выполняя задание «Сравни, не выполняя вычислений»:
а) 27 + 8 ... 27 + 18;
б) 27- 8 ... 27 -18.
5. Какие свойства множества натуральных чисел неявно используют младшие школьники, выполняя следующие задания:
А) Запиши числа, которые больше, чем 65, и меньше, чем 75.
Б) Назови предыдущее и последующее числа по отношению к числу 300(800,609,999).
В) Назови самое маленькое и самое большое трехзначное число.
64. Вычитание
При аксиоматическом построении теории натуральных чисел вычитание обычно определяется как операция, обратная сложению.
Определение. Вычитанием натуральных чисел а и b называется операция, удовлетворяющая условию: а b = с тогда и только тогда, когда b+с = а.
Число а - b называется разностью чисел а и b, число а – уменьшаемым, а число b - вычитаемым.
Теорема 19. Разность натуральных чисел а - b существует тогда и только тогда, когда b < а.
Доказательство. Пусть разность а - b существует. Тогда, по определению разности, найдется такое натуральное число с, что b + с = а, а это значит, что b < а.
Если же b < а, то, по определению отношения «меньше», существует такое натуральное число с, что b + с = а. Тогда, по определению разности, с = а - b, т.е. разность а - b существует.
Теорема 20. Если разность натуральных чисел а и b существует, то она единственна.
Доказательство. Предположим, что существует два различных значения разности чисел а и b;: а – b = с и а - b = с, причем с ( с . Тогда по определению разности, имеем: а = b + с, и а = b + с:. Отсюда следует, что b + с = b + с: и на основании теоремы 17 заключаем, с = с.. Пришли к противоречию с допущением, значит, оно неверное, а верна данная теорема.
Исходя из определения разности натуральных чисел и условия ее существования, можно обосновать известные правила вычитания числа из суммы и суммы из числа.
Теорема 21. Пусть а. b и с - натуральные числа.
а) Если а > с, то (а + b) - с = (a - с) + b.
б) Если b > с. то (а + b) - с - а + (b - с).
в) Если а > c и b > с. то можно использовать любую из данных формул. Доказательство. В случае а) разность чисел а и c существует, так как а > с. Обозначим ее через х: а - с = х. откуда а = с + х. Если (а + b) - с = у. то, по определению разности, а + b = с + у. Подставим в это равенство вместо а выражение с + х: (с + х) + b = с + у. Воспользуемся свойством ассоциативности сложения: с + (х + b) = с + у. Преобразуем это равенство на основе свойства монотонности сложения, получим:
х + b = у. .Заменив в данном равенстве х на выражение а - с, будем иметь (а - г) + b = у. Таким образом, мы доказали, что если а > с, то (а + b) - с = (a - c) + b
Аналогично проводится доказательство и в случае б).
Доказанную теорему можно сформулировать в виде правила, удобного для запоминания: дли того чтобы вычесть число из суммы, достаточно вычесть это число из одного слагаемого суммы и к полученному результату прибавить другое слагаемое.
Теорема 22. Пусть а, b и с - натуральные числа. Если а > b + с, то а - (b + с) = (а - b) - с или а - (b + с) = (а - c) - b.
Доказательство этой теории аналогично доказательству теоремы 21.
Теорему 22 можно сформулировать в виде правила, для того чтобы вычесть из числа сумму чисел, достаточно вычесть из этого числа последовательно каждое слагаемое одно за другим.
В начальном обучении математике определение вычитания как действия, обратного сложению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с выполнения действий над однозначными числами. Учащиеся должны хорошо понимать, что вычитание связано со сложением, и использовать эту взаимосвязь при вычислениях. Вычитая, например, из числа 40 число 16, учащиеся рассуждают так: «Вычесть из 40 число 16 - что значит найти такое число, при сложении которого с числом 16 получается 40; таким числом будет 24, так как 24 + 16 = 40. Значит. 40 - 16 = 24».
Правила вычитания числа из суммы и суммы из числа в начальном курсе математики являются теоретической основой различных приемов вычислений. Например, значение выражения (40 + 16) - 10 можно найти, не только вычислив сумму в скобках, а затем вычесть из нее число 10, но и таким образом;
а) (40 + 16) - 10 = (40 - 10) + 16 = 30 + 16 = 46:
б) (40 + 16) - 10 = 40 + (16- 10) = 40 + 6 = 46.
Упражнения
1. Верно ли, что каждое натуральное число получается из непосредственно следующего вычитанием единицы?
2. В чем особенность логической структуры теоремы 19? Можно ли ее сформулировать, используя слова «необходимо и достаточно»?
3. Докажите, что:
а) если b > с, то (а + b) - с = а + (b - с);
б) если а > b + с, то а - ( b + с) = (а - b) - с.
4. Можно ли, не выполняя вычислений, сказать, значения каких выражений будут равны:
а) (50 + 16)- 14; г) 50 + (16 -14),
б) (50 - 14) + 16; д) 50 - (16 - 14); в) (50 - 14) - 16, е) (50 + 14) - 16.
а) 50 - (16 + 14); г) (50 - 14) + 16;
б) (50 - 16) + 14; д) (50 - 14) - 16;
в) (50 - 16) - 14; е) 50 - 16- 14.
5. Какие свойства вычитания являются теоретической основой следующих приемов вычислении, изучаемых в начальном курсе математики:

а) 12-5
12 - 2-3 12 -5 = 7
б) 16-7 = 16-6 - П;
в) 48 - 30 = (40 + 8} - 30 = 40 + 8 =18;
г) 48 - 3 = (40 + 8) - 3 = 40 + 5 = 45.
6. Опишите возможные способы вычисления значения выражения вида. а - b - с и проиллюстрируйте их на конкретных примерах.
7. Докажите, что при b < а и любых натуральных c верно равенство (a – b) с = ас - bс.
Указание. Доказательство основывается на аксиоме 4.
8. Определите значение выражения, не выполняя письменных вычислений. Ответы обоснуйте.
а) 7865 ( 6 – 7865 (5: б) 957 ( 11 - 957; в) 12 ( 36 – 7 ( 36.
65. Деление
При аксиоматическом построении теории натуральных чисел деление обычно определяется как операция, обратная умножению.
Определение. Делением натуральных чисел а и b называется операция, удовлетворяющая условию: а: b = с тогда и только тогда, когда b( с = а.
Число а:b называется частным чисел а и b, число а делимым, число b - делителем.
Как известно, деление на множестве натуральных чисел существует не всегда, и такого удобного признака существования частного, какой существует для разности, нет. Есть только необходимое условие существования частного.
Теорема 23. Для того чтобы существовало частное двух натуральных чисел а и b, необходимо, чтобы b < а.
Доказательство. Пусть частное натуральных чисел а и b существует, т.е. есть такое натуральное число c, что bс = а. Так как для любого натурального числа 1 справедливо неравенство 1 ( с, то, умножив обе его части на натуральное число b, получим b ( bс. Но bс = а, следовательно, b ( а.
Теорема 24. Если частное натуральных чисел а и b существует, то оно единственно.
Доказательство этой теоремы аналогично доказательству теоремы о единственности разности натуральных чисел.
Исходя из определения частного натуральных чисел и условия его существования, можно обосновать известные правила деления суммы (разности, произведения) на число.
Теорема 25. Если числа а и b делятся на число с, то и их сумма а + b делится на с, причем частное, получаемое при делении суммы а + b на число с, равно сумме частных, получаемых при делении а на с и b на с, т.е. (а + b):с = а:с + b:с.
Доказательство. Так как число а делится на с, то существует такое натуральное число х = а;с, что а = сх. Аналогично существует такое натуральное число у = b:с, что
b = су. Но тогда а + b = сх + су =- с(х + у). Это значит, что а + b делится на c, причем частное, получаемое при делении суммы а + b на число c, равно х + у, т.е. ах + b : с.
Доказанную теорему можно сформулировать в виде правила деления суммы на число: для того чтобы разделить сумму на число, достаточно разделить на это число каждое слагаемое и полученные результаты сложить.
Теорема 26. Если натуральные числа а и b делятся на число с и а > b, то разность а - b делится на c, причем частное, получаемое при делении разности на число c, равно разности частных, получаемых при делении а на с и b на c, т.е. (а - b):с = а: с - b:с.
Доказательство этой теоремы проводится аналогично доказательству предыдущей теоремы.
Эту теорему можно сформулировать в виде правила деления разности на число: для того, чтобы разделить разность на число, достаточно разделить на это число уменьшаемое и вычитаемое и из первого частного вычесть второе.
Теорема 27. Если натуральное число а делится на натуральное число с, то для любого натурального числа b произведение аb делится на с. При этом частное, получаемое при делении произведения аb на число с, равно произведению частного, получаемого при делении а на с, и числа b: (а ( b):с - (а:с) ( b.
Д о к азательство . Так как а делится на с, то существует такое натуральное число х, что а:с = х, откуда а = сх. Умножив обе части равенства на b, получим аb = (сх)b. Поскольку умножение ассоциативно, то (сх) b = с(х b). Отсюда (а b):с = х b= (а:с) b. Теорему можно сформулировать в виде правила деления произведения на число: для того чтобы разделить произведение на число, достаточно разделить на это число один из множителей и полученный результат умножить на второй множитель.
В начальном обучении математике определение деления как операции обратной умножению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с первых уроков ознакомления с делением. Учащиеся должны хорошо понимать, что деление связано с умножением, и использовать эту взаимосвязь при вычислениях. Выполняя деление, например, 48 на 16, учащиеся рассуждают так: «Разделить 48 на 16 - это значит найти такое число, при умножении которого на 16 получится 48; таким числом будет 3, так как 16(3 = 48. Следовательно, 48 : 16 = 3.
Упражнения
1. Докажите, что:
а) если частное натуральных чисел а и b существует, то оно единственно;
б) если числа а и b делятся на с и а > b, то (а - b): с = а: с - b: с . 2. Можно ли утверждать, что все данные равенства верные: а) 48:(2(4) = 48:2:4; б) 56:(2(7) = 56:7:2;
в) 850:170 =850:10:17.
Какое правило является обобщением данных случаев? Сформулируйте его и докажите.
3. Какие свойства деления являются теоретической основой для выполнения следующих заданий, предлагаемых школьникам начальных классов:
можно ли, не выполняя деления, сказать, значения каких выражений будут одинаковыми:
а) (40+ 8):2; в) 48:3; д) (20+ 28):2;
б) (30 + 16):3; г)(21+27):3; е) 48:2;
. верны ли равенства:
а) 48:6:2 = 48:(6:2); б) 96:4:2 = 96:(4-2);
в) (40 - 28): 4 = 10-7?
4. Опишите возможные способы вычисления значения выражения вида:
а) (а + b):с; б) а: b: с; в) ( а ( b): с .
Предложенные способы проиллюстрируйте на конкретных примерах.
5. Найдите значения выражения рациональным способом; свои действия обоснуйте:
а) (7( 63):7; в) (15( 18):(5(6);
б) (3( 4( 5): 15; г) (12 ( 21): 14.
6. Обоснуйте следующие приемы деления на двузначное число:
а) 954:18 = (900 + 54): 18 = 900:18 + 54:18 =50 + 3 = 53;
б) 882:18 = (900 - 18): 18 = 900:18 - 18:18 = 50 - 1 =49;
в) 480:32 = 480: (8 (4) = 480:8:4 = 60:4 = 15:
г) (560 ( 32): 16 = 560(32:16) = 560(2 = 1120.
7. Не выполняя деления уголком, найдите наиболее рациональным способом частное; выбранный способ обоснуйте:
а) 495:15; в) 455:7; д) 275:55;
6) 425:85; г) 225:9; е) 455:65.





Лекция 34. Свойства множества целых неотрицательных чисел
План:
1. Множество целых неотрицательных чисел. Свойства множества целых неотрицательных чисел.
2. Понятие отрезка натурального ряда чисел и счета элементов конечного множества. Порядковые и количественные натуральные числа.

66. Множество целых неотрицательных чисел
Присоединим к множеству N натуральных чисел еще один элемент, который называется нулем и обозначается 0. Полученное множество называется множеством целых неотрицательных чисел и обозначается Zо. Таким образом, Zо = N ( {0}.
Относительно числа 0 условимся, что оно меньше любого натурального числа, а арифметические операции в случае, когда одна из компонент равна нулю, определяются равенствами:
(( а (N) а + 0 = 0 + а = a; (( а (N) а - 0 = а;
(( а (N) а - 0 = 0 - а = 0; (( а (N) 0 : а = 0 .
Кроме того, будем считать, что:
0 + 0 = 0, 0- 0 = 0, 0 – 0 = 0, а – а = 0.
Теорема 28. Деление на нуль невозможно.
Доказательство. Пусть даны целое неотрицательное число а и b = 0.
Рассмотрим случай, когда а ( 0, Предположим, что частное такого числа и нуля существует. Тогда, по определению деления, найдется такое целое неотрицательное число c, что а – с = 0, откуда а = 0. Пришли к противоречию с условием, значит, частное чисел а ( 0 и b = 0 не существует.
Пусть теперь а = 0. Предположим опять, что частное а = 0 и b = 0 существуют, и тогда найдется такое целое неотрицательное число с, что выполняется равенство 0 = с ( 0, истинное при любых значениях с.
Таким образом, частным чисел а = 0 и b = 0 может быть любое целое неотрицательное число, т.е. результат деления определяется не единственным образом. Поэтому в математике считают, что деление нуля на нуль также невозможно.
Рассматривая деление на множестве целых неотрицательных чисел, мы имеем в виду деление нацело, т.е. такое, при котором частное является также целым неотрицательным числом. Но такое частное существует не всегда. Например, нельзя разделить на 9 число 31. Но существуют числа 3 и 4 такие, что 31 =9(3+4. Говорят, что мы разделили число 31 на 9 с остатком 4, а число 3 называют неполным частным. В общем случае деление с остатком определяют так.
Определение. Пусть а - целое неотрицательное число, а b - число натуральное. Разделить а на b с остатком - это значит найти такие целые неотрицательные числа q и r, что а = b q + r , причем 0 < r г < b.
Из этого определения следует, что делить с остатком можно не только большее число на меньшее, но и меньшее на большее. Например, при делении числа 5 на 9 получаем, что неполное частное равно 0, а остаток 5: 5=0(9 + 5. Вообще если а < b то при делении а на b с остатком получаем q = 0 и r = а.
Если при делении а на b с остатком оказывается, что r = 0. то говорят, что имеем деление нацело. Вообще r = 0 тогда и только тогда, когда а делится на b.
В связи с этим новым действием возникают вопросы: если заданы числа а и b, всегда ли можно найти такие q и r, что будет выполняться равенство а = b q + r , причем 0 < r г < b. Если такая пара чисел q и r существует, то единственна ли она для заданных чисел а и b. Ответ на эти вопросы дает следующая теорема.
Теорема 29. Для любого целено неотрицательного числа а и натурального b > существуют целые неотрицательные числа q и r, такие, что а = b q + r, причем 0 < r < b. И эта пара чисел q и r г единственная для: заданных а и b .
Доказательство существования. Обозначим через М множество целых неотрицательных чисел, кратных b и не превосходящих а:
М = {х\х = bу, х ( а}
Так как для всех чисел из этого множества выполняется неравенство х ( а + 1, то в множестве М есть наибольшее число, которое обозначим через х.
Это число = имеет вид х = bq, причем число b(q + 1) уже не принадлежит множеству М и поэтому b(q + 1) > а. Итак, найдено число q, такое, что bq <а< b(q + 1) . Из этих неравенств следует, что 0 < а - bq < b Если обозначить а – bq через r. то имеем: а - bq = r, т.е. а = b q + r и 0 ( r < b. Это означает, что q - неполное частное, а rг - остаток при делении а на b.
Доказательство единственности. Предположим, что b q + r, где 0 ( r < b и а = b q + r, где 0 ( r < b, причем, например, r > r,. Тогда имеем: b q + r = b q + r, и поэтому r - r = b q - b q= b( q - q). Поскольку 0 ( r < r < b, то r - r < b. С другой стороны, r - r = b( q - q) и потому делится на b.
Пришли к противоречию, так как натуральное число, меньшее, чем b, не может делиться на b . Это противоречие и доказывает, что другой пары чисел с требуемыми свойствами не существует, следовательно, деление с остатком однозначно определено.
В любом начальном курсе математики изучается деление с остатком, так как оно лежит в основе алгоритма деления многозначного числа на многозначное. При этом часто используется запись: 9:2 = 4 (ост. 1). Учащиеся запоминают, что если при делении получается остаток, то он всегда меньше делителя.
Упражнения
Объясните, почему не существует значения выражения 7:0, проведя рассуждения, аналогичные тем, которые использовались при доказательстве теоремы 28.
Разделите с остатком:
а) 37 на 5; б) 83 на 4; в) 12 на 15.
3. Какие остатки могут получаться при делении чисел на 4? Какой вид имеют числа, при делении которых на 4 в остатке получается:
а) 1; б) 3?
Известно, что при делении х на у получили неполное частное г и остаток 17. Известно также, что одно из чисел х, у и z равно 13. Какое?
На множестве А - {х \ х е N и 1( х ( 100} задано отношение «иметь один и тот же остаток при делении на 5». На какие классы разобьются числа множества А при помощи данного отношения? Почему это разбиение возможно? В каком классе окажется 27? 98? 100?
На сколько классов разбивается множество N при помощи отношения:
а) «иметь один и тот же остаток при делении на 2»;
б) «иметь один и тот же остаток при делении на 7»?
Почему возможно такое разбиение? Назовите по одному представителю из каждого класса разбиения множества N в случае б).
7. Одно число на 62 больше другого. При делении одного из них на другое с остатком в частном получается 5 и в остатке 6. Найдите эти числа.






Лекция 35. Метод математической индукции
План:
1. Метод математической индукции.
2. Решение задач.

67. Метод математической индукции
Метод доказательства, который основан на аксиоме 4 (с. 254) и который мы использовали при доказательстве свойств сложения и умножения, можно применять и для доказательства других утверждений о натуральных числах. Основой для этого служит следующая теорема.
Теорема 30. Если утверждение А(п) с натуральной переменной п истинно для п = 1 и из того, что оно истинно для п = к (к – произвольное натуральное число), следует, что оно истинно и для следующего числа п = к , то утверждение А(п) истинно для любого натурального числа п.
Доказательство. Обозначим через М множество тех и только тех натуральных чисел, для которых утверждение А(п) истинно. Тогда из условия теоремы имеем: 1) 1 ( М; 2) к ( М => к' ( М. Отсюда, на основании аксиомы 4, заключаем, что М = N, т.е. утверждение А(п) истинно для любого натурального числа п.
Метод доказательства, основанный на этой теореме, называется методом математической индукции. Состоит оно из двух частей: 1) доказывают, что утверждение А(п) истинно для п = 1, т.е. что истинно высказывание А(1):
2) предполагают, что утверждение А(п) истинно для п = к, и, исходя из этого предположения, доказывают, что утверждение А(п) истинно и для п = к+1, т.е. что истинно высказывание А {к) => А (к + 1).
Если А(1) ^ А(к) => А(к + 1) - истинное высказывание, то делают вывод о том. что утверждение А(п) истинно для любого натурального числа п.
Доказательство методом математической индукции можно начинать не только с подтверждения истинности утверждения для п = 1, но и с любого натурального числа т. В этом случае утверждение А(п) будет доказано для всех натуральных чисел п
· т.
Приведем примеры доказательства утверждений методом математической индукции.
Пример 1. Докажем, что для любого натурального числа истинно равенство 1 + 3 + 5 + ... + (2п- 1) = п
·.
Пример 2. Докажем, что для любого натурального числа истинно утверждение:
(8 + 6) делится на 7.
Упражнения
Опишите в общем виде процесс доказательства методом математической индукции. Из скольких этапов он состоит?
Используя метод математической индукции, докажите, что для любого натурального числа п истинны утверждения:
а) 1
· + 2
· + 3
· + + n
· = (n (n+1) (2n+1)) : 6;
б) 1(2 + 2(3 + 3(4 ++ n (n+1) = ((n (n+1) (n+2)) : 3;
в) 1(4 + 2(7 + 3(10 + ... +п(3п + 1) = п(п +1)
·;
г) (п
· + 3n):6;
д)(4 + 15n - 1) :9;




68. Количественные натуральные числа. Счет
Аксиоматическая теория описывает натуральное число как элемент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматике раскрывается порядковый смысл натурального числа. Но натуральные числа имеют и количественный смысл. Чтобы выяснить, как связаны между собой эти два смысла натурального числа, рассмотрим такие понятия, как отрезок натурального ряда, конечное множество, счет, и другие.
Определение. Отрезком Nа натурального ряда называется множество натуральных чисел, не превосходящих натурального числа а.
Используя запись множества, для элементов которого указано характеристическое свойство, можно записать, что Nа = {х\ х ( N и х ( а}.
Например, отрезок N7 - это множество натуральных чисел, не превосходящих числа 7, т.е. N7 = {1,2,3,4, 5, 6, 7}.
Отметим два важных свойства отрезков натурального ряда.
1) Любой отрезок Nа содержит единицу. Это свойство вытекает из определения отрезка Nа.
2) Если число х содержится в отрезке Nа и х ( а, то и непосредственно следующее за ним число х+1 также содержится в Nа.
Действительно, если х ( Nа, и х ( а, то х < а. Это означает, что существует такое натуральное число с, что а = х + с. Если с= 1, то а= х + с. Если с = 1, то а = х + 1, а значит, х + 1 содержится в Nа. Если же с > 1, то с - 1 – натуральное число и, следовательно, а = х + с = (х + 1) + (с - 1). Но тогда х + 1 < а, т.е. х + 1 - натуральное число, принадлежащее отрезку Nа.
Определение. Множество А называется конечным, если оно равномощно некоторому отрезку Nа натурального ряда.
Например, множество А вершин треугольника - конечное множество так как оно равномощно отрезку N3 = {1, 2, 3}, т, е. А ~ N3.
Теорема 31. Всякое непустое конечное множество равномощно одному и только одному отрезку натурального ряда,
Доказательство этой теоремы мы опускаем.
Определение. Если непустое конечное множество А равномощно отрезку Nа, то натуральное число а называют числом элементов множества А и пишут п(А) = а.
Например, если А - множество вершин треугольника, то п(А) = 3. Из данного определения и теоремы 31 получаем, что для любого непустого конечного множества А число а = п(А) единственное.
Определение. Установление взаимно однозначного соответствия между элементами непустого конечного множества А и отрезком натурального ряда называется счетом элементов множества Л.
Так как всякое непустое конечное множество равномощно только одному отрезку натурального ряда, то число элементов, т.е. результат счета не зависит от того, в каком порядке будут пересчитываться элементы множества. Поэтому можно какому-либо элементу множества А поставить в соответствие число 1 и больше этот элемент не рассматривать. Затем какому-либо из оставшихся элементов сопоставить число 2 и больше его не рассматривать. Продолжая это построение, последнему оставшемуся элементу мы поставим в соответствие число а.
В процессе счета мы не только найдем число элементов множества А, но и упорядочим его: элемент, которому соответствует число 1, первый; элемент, которому сопоставлено число 2, - второй, и т.д.
Таким образом, всякое натуральное число а можно рассматривать как характеристику численности некоторого конечного множества А. Натуральное число а имеет при этом количественный смысл.
Упражнения
1. Можно ли назвать отрезком натурального ряда множество:
а) {1, 2, 3, 4}; в) {2, 3, 4, 5};
б) {1, 3, 5, 7}; г) {1, 2, 4, 5}?
2. Докажите, что множество В конечное, если:
а) В - множество букв в слове «параллелограмм»;
б) В - множество учащихся в классе;
в) В множество букв в учебнике математики.
3. Прочитайте записи n(А) = 5; n(А) = 7. Приведите примеры множеств, содержащих указанное число элементов.
4. Что значит сосчитать элементы конечного множества? Сформулируйте правила, которые должны соблюдать учащиеся при счете предметов и которые вытекают из определения счета элементов конечного множества.

69. Основные выводы § 14
В этом параграфе мы рассмотрели подход к построению системы натуральных чисел, основанный на аксиоматике Пеано. При этом подходе натуральное число определяется как элемент множества, на котором задано отношение «непосредственно следовать за», удовлетворяющее аксиомам Пеано. Несмотря на определенную абстрактность, при данном подходе хорошо раскрывается суть натурального числа, он соответствует историческому процессу развития понятия числа в практике.
Кроме понятия числа, мы определили понятия четырех арифметических действий, отношения «меньше», отрезка натурального ряда, конечного множества, числа элементов множества, счета.
Нами доказаны основные свойства сложения, умножения, вычитания и деления.
Мы установили, что всякое натуральное число, рассматриваемое в аксиоматической теории как порядковое, может иметь и количественный смысл, если является характеристикой численности некоторого конечного множества.


§ ТЕОРЕТИКО-МНОЖЕСТВЕННЫЙ
СМЫСЛ НАТУРАЛЬНОГО ЧИСЛА, НУЛЯ И ОПЕРАЦИЙ НАД ЧИСЛАМИ

Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел
План:
Теоретико-множественный смысл натурального числа и нуля. Понятие отрезка натурального ряда. Порядковые и количественные натуральные числа. Упорядоченность множества целых неотрицательных чисел. Теоретико-множественное обоснование отношений «больше на», «меньше на», «больше в», «меньше в». Обоснование выбора действий при решении простых задач на «нахождение суммы», на «нахождение остатка», на «увеличение (уменьшение) на несколько единиц», на «увеличение (уменьшение) в несколько раз», на «деление на части», на «деление по содержанию».


Введя понятие отрезка натурального ряда, мы выяснили, что счет элементов конечного множества приводит к числу количественному. Используя теоретико-множественные понятия, можно разъяснить смысл количественного натурального числа, не связывая его со счетом. Сделаем это в рамках так называемого теоретико-множественного подхода к числу. Учителю начальных классов знание этого подхода поможет понять, как построены те курсы начальной математики, которые основаны на теоретико-множественной модели системы натуральных чисел, используемой явно или неявно.


70. Теоретико-множественный смысл
натурального числа, нуля и отношения «меньше»
Как было установлено ранее, количественное натуральное число а получается в результате счета элементов конечного множества А: а = n(А). Это же число а может быть получено и при пересчете элементов другого множества, например, В. Но если а = п(В), то множества А и В равномощны, поскольку содержат поровну элементов.
Так как любому непустому конечному множеству соответствует только одно натуральное число, то вся совокупность конечных множеств разбивается на классы равномощных множеств. В одном классе будут содержаться все одноэлементные множества, в другом - двухэлементные и т. д. Множества одного класса различны по своей природе, но все они содержат одинаковое число элементов. И это число можно рассматривать как общее свойство класса конечных равномощных множеств.
Таким образом, с теоретико-множественной точки зрения, натуральное число - это общее свойство класса конечных равномощных множеств.
Так как каждый класс равномощных конечных множеств однозначно определяется выбором какого-нибудь его представителя, то о натуральном числе «три» можно сказать, что это общее свойство класса множеств, равномощных, например, множеству сторон треугольника, а о натуральном числе «четыре», что это общее свойство класса множеств, равномощных, например, множеству вершин квадрата.
Число «нуль» с теоретико-множественных позиций рассматривается как число элементов пустого множества: 0 = п(0).
Итак, натуральное число а как характеристику количества можно рассматривать с двух позиций:
1) как число элементов в множестве А, получаемое при счете, т.е. а = п(А), причем А ~ Nа;
2) как общее свойство класса конечных равномощных множеств.
Установленная связь между конечными множествами и натуральными числами позволяет дать теоретико-множественное истолкование отношения «меньше».
В аксиоматической теории это отношение определено следующим образом:
а < b ( ((c ( N) а + с = b.
Если а < b, то это означает, что отрезок натурального ряда Nа является собственным подмножеством отрезка Nв, т.е. Nа ( Nв и Nа ( Nв. Справедливо и обратное утверждение: если Nа - собственное подмножество Nв, то а < b. Тем самым отношение «меньше» получает теоретико-множественное истолкование: а < b в том и только в том случае, когда отрезок натурального ряда Nа является собственным подмножеством отрезка Nв,:
а < b <=> Nа ( Nв и Nа ( Nв.
Так, справедливость неравенства 3 < 7 вытекает из того, что {1, 2, 3}( {1,2, 3,4, 5,6, 7).
Если воспользоваться терминологией, принятой в школьном курсе математики, то последнее определение отношения «меньше» можно сформулировать так: «Число а меньше числа b тогда и только тогда, когда при счете число а называют раньше числа b».
Данная трактовка отношения «меньше» позволяет сравнивать числа,

·
·
·
О О О О О О О
Рис. 111
опираясь на знание их места в натуральном ряду. Однако сравнение чисел (особенно небольших) часто выполняют иначе, используя связь чисел с конечными множествами. Например, если 3 - это число квадратов на рисунке, а 7 - число кружков на этом рисунке, то 3 < 7, потому что во втором множестве можно выделить собственное подмножество, равномощное множеству квадратов. Этот способ установления отношения между числами 3 и 7 вытекает из трактовки отношения «меньше», данной выше: множество квадратов равномощно отрезку N3, а множество кружков – отрезку N7 и N3 ( N7.
В общем виде рассмотренный подход к определению отношения «меньше» можно обосновать следующим образом: пусть а = n(А), b = n(В), и а < b. Тогда А ~ Nа, В ~ Nв и Nа ( Nв. Последнее отношение означает, что в множестве В можно выделить собственное подмножество В1, равномощное множеству А:
а = n(А), b = n(В) и а ( b <=> А ~ В, где В ( В, В ( В, В ( (.
Свойства отношения «меньше» для натуральных чисел также получают теоретико-множественное истолкование: транзитивность и симметричность этого отношения связаны с тем. что транзитивпо и асимметрично отношение «быть подмножестром».
Теоретико-множествснный смысл неравенства 0 < а, истинного для любого натурального числа а, связан с тем, что пустое множество является подмножеством отрезка Nа (или любого такого множества А, для которого а = n(А)).
Заметим, что приведенные трактовки отношения «меньше» основываются на понятии подмножества конечного множества. Так как в реальной жизни мы, как правило, имеем дело с конечными множествами, то наш опыт говорит о том, что и любое подмножество конечного множества - конечно. Однако с математической точки зрения этот факт нуждается в доказательстве.
Теорема 1. Любое непустое подмножество конечного множества конечно.
Доказательство этой теоремы мы опускаем.
В связи с тем, что при определении числа, соответствующему множеству А, приходится прибегать к счету, а для этого нужен некоторый отрезок натурального ряда, то изучение математики в начальных классах начинается, как правило, с усвоения чисел первого десятка. Параллельно раскрывается смысл каждого из этих чисел, причем количественное натуральное число часто рассматривается как общее свойство класса конечных равномощных множеств. Например, когда учащиеся изучают число «три», они рассматривают множества, содержащие три элемента: три кубика, три карандаша и др Так происходит при изучении всех чисел первого десятка, но число элементов в множестве каждый раз определяется путем пересчета, т.е. количественный и порядковый смысл числа, а также его запись выступают в тесной взаимосвязи.
Сравнение чисел в начальном курсе математики осуществляется различными способами - оно основано на всех рассмотренных нами подходах к трактовке отношения «меньше».

Упражнения
1. Почему на уроке, где изучается число «четыре», можно использовать картинку с изображением четырех яблок, четырех тетрадей, а можно воспользоваться и другими примерами четырехэлементных множеств?
2. Какой подход к определению отношения «меньше» используется при ознакомлении младших школьников с неравенством 3 < 4, если выполняются следующие действия: возьмем три розовых кружка и четыре синих и каждый розовый кружок наложим на синий; видим, что синий кружок остался незакрытым, значит, розовых кружков меньше, чем синих, поэтому можно записать: 3 < 4.
3. Исходя из различных определений отношения «меньше», объясните, почему 2 < 5.
4. Как, используя теоретико-множественный подход к числу, объяснить, что 4 = 4?











Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
Определение суммы, ее существование и единственность. Законы сложения.
Определение разности, ее существование и единственность. Теоретико-множественный смысл правил вычитания числа из суммы и суммы из числа.

71. Теоретико-множественный смысл суммы
Сложение целых неотрицательных чисел связано с объединением конечных непересекающихся множеств. Например, если множество А содержит 5 элементов, а множество В - 4 элемента и пересечение множеств А и В пусто, то число элементов в их объединении равно сумме 5 + 4.
Теорема 2. Пусть А и В - конечные множества, не имеющие общих элементов. Тогда их объединение тоже конечно, причем n(А ( В) = n(А) + n(В).
Доказательство. Докажем сначала, что если а и b - натуральные числа, то существует взаимно однозначное отображение отрезка натурального ряда Nb на множество Х таких чисел, что а + 1 ( х ( а + b. Действительно, если поставить в соответствие числу с ( Nb число с + а, то в силу монотонности сложения этим будет задано взаимно однозначное отображение отрезка Nb на множество Х, Например, если а = 3, b = 5, то соответствие между множествами N5. и X = {4. 5, 6, 7, 8} может быть установлено так: числу с ( N5 сопоставим число х = 3 + с: числу 1 - число 3+1=4, числу 2 - число 3 + 2 = 5 и т.д.. числу 5 - число 3 + 5 = 8.
Пусть n(А) = а, n(В) = b. Тогда существуют взаимно однозначные отображения А на Nа и В на Nb. Но, согласно доказанному выше, отрезок Nb можно взаимно однозначно отобразить на множество Х таких чисел, что а + 1 ( х ( а + b. Тем самым множество В взаимно однозначно отображается на X. Отображая взаимно однозначно множество А на Nа, множество В - на X, получаем взаимно однозначное отображение множества А ( В на отрезок Nа+в. Поскольку нет элементов, одновременно принадлежащих А и В, то это отображение определено на всем множестве А ( В. Значит, в множестве А ( В имеется а + b элементов, что и требовалось доказать.
Из рассмотренной теоремы следует, что с теоретико-множественных позиций сумма натуральных чисел а и b представляет собой число элементов в объединении конечных непересекающихся множеств А и В таких, что а = n(А), b = n(В):
а + b = n(А) + n(В) = n(А( В), если, если А ( В = (.
Выясним теперь, каков теоретико-множественный смысл равенства а + 0 = а. Если а = n(А),
0 = n((), то. согласно теореме 2, а + 0 = n(А) + п(() = n(А ( (). Но, как известно, А( ( = А, следовательно, n(А ( () = n(А), откуда а + 0 = а.
Взаимосвязь сложения целых неотрицательных чисел и объединения множеств позволяет истолковать с теоретико-множественных позиций известные свойства сложения. Так, коммутативность сложения связана с тем, что для любых множеств А и В выполняется равенство
А ( В = В ( А. Действительно, если а = n(А), b = n(В) и А ( В = (, то а + b = n(А ( В) = n (В ( А) = b + а.
Аналогично можно показать, что ассоциативность сложения вытекает из равенства.:
(А ( В) ( С = А ( (В ( С). Действительно, если а = n(А), b = n(В) , с = n (С) и А ( В = (. А ( С = (. С ( В = (, то (а + b) + с = n((А ( В) ( С) = n((А ( (В ( С)) = n(А) + n (В ( С) = а +(b+с).
Взаимосвязь сложения целых неотрицательных чисел и объединения множеств позволяет обосновывать выбор действий при решении тек)пых задач определенного вида. Выясним, например, почему следующая задача решается при помощи сложения: «Катя нашла 3 гриба, а Саша - 4. Сколько всего грибов нашли девочки?»
В задаче рассматриваются три множества: множество А грибов Кати, множество В грибов Маши и их объединение. Требуется узнать число элементов в этом объединении, а оно находится сложением. Так n(А) = 3, n{В) = 4 и А ( В = (, то n (А(В) = 3 + 4. Сумма 3 + 4 – это математическая модель данной задачи. Вычислив значение этого выражения, получим ответ на вопрос задачи: 3 + 4 - 7. Следовательно, девочки нашли 7 грибок.


Упражнения
I. Каков теоретико-множественный смысл суммы: а) 3 + 5; б) 0 + 4; в) 0 + 0.
2. Дайте теоретико-множественное истолкование суммы k слагаемых и, используя полученный вывод, объясните теоретико-множественный смысл суммы:
а) 3+4 + 2; б) 1 + 2 + 3 + 4.
3. Объясните, почему нижеприведенные задачи решаются сложением.
а) Дима сорвал 8 слив, Нина - 4. Сколько всего слив сорвали Дима и Нина вместе?
б) Из коробки взяли 6 красных карандашей и 4 синих. Сколько всего карандашей взяли из коробки?

72. Теоретико-множественный смысл разности
В аксиоматической теории вычитание натуральных чисел было определено как операция, обратная сложению:
а - b = с <=> (((N) b + с = a
Вычитание целых неотрицательных чисел определяется аналогично. Выясним, каков смысл разности таких чисел, если а = n(А), b = n(В) .
Теорема 3. Пусть А - конечное множество и В - его собственное подмножество. Тогда множество А\В - тоже конечно, причем выполняется равенство n(А\В) = n(А) - n(В)

Рис. 112
Доказательство. Так как по условию В - собственное подмножество множества А, то с помощью кругов Эйлера их можно представить так, как на рисунке 112. Разность А\В на этом рисунке заштрихована. Видим, что множества В и А\В не пересекаются и их объединение равно А. Поэтому число элементов в множестве А можно найти по формуле n(А) = n(В) + n(А\В), откуда, по определению вычитания как операции, обратной сложению, получаем, что n(А\В) = n(А) - n(В).
Из рассмотренной теоремы следует, что с теоретико-множественных позиций разность натуральных чисел а и b представляет собой число элементов в дополнении множества В до множества А, если а = n(А), b = n(В) и В(А.
а – b = n(А) - n(В) = n(А\В) , если В(А.
Аналогичное истолкование получает вычитание нуля, а также вычитание а из а.
Так как А \ ( = А, А \ А = (, то а - 0 = а и а - а = 0.
Взаимосвязь вычитания чисел и вычитания множеств позволяет обосновать выбор действия при решении текстовых задач. Выясним, например, почему следующая задача решается при помощи вычитания : «У школы росло 7 деревьев, из них 4 березы, остальные липы. Сколько лип росло у школы?»
В задаче рассматриваются три множества: множество А всех деревьев, множество В берез, оно является подмножеством множества А; и множество С лип - оно представляет собой дополнение множества В до А. В задаче требуется найти число элементов в этом дополнении.
Так как по условию n(А) = 7, n(В) = 4 и В(А, то n(С) = n(А\В) = n(А) - n(В) = 7 – 4.
Разность 7 - 4 - это математическая модель данной задачи. Вычислив значение этого выражения, получим ответ на вопрос задачи: 7 -- 4 = 3. Следовательно, у школы росло 3 липы.
Рассматриваемый подход к сложению и вычитанию целых неотрицательных чисел позволяет истолковать с теоретико-множественных позиций правила вычитания числа из суммы и суммы из числа.
Выясним, например, теоретико-множественный смысл правила: «Если а. b, с - натуральные числа и а > с, то (а + b ) - с = (а - с) + b».

Пусть А, В и С - такие множества, n(А) = а, n(В) = b и А ( В = (, С(А (рис. 113). Нетрудно доказать, что для данных множеств А, В имеет место равенство (А ( В) \ С = (А\С) ( В.
Но n( (А ( В) \ С) = n (А ( В) – n(С) = (а + b ) – с, а n((А\С) ( В) = n(А\С) + n(В) – (а – с) + b.
И следовательно (а + b ) - с = (а - с) + b
С теоретико-множественной позиции можно рассмотреть и смысл отношений «больше на» и «меньше на».
В аксиоматической теории определение отношения «меньше на» («больше на») естественным образом вытекает из определения отношения «меньше». Действительно, из того, что а < b тогда и только тогда, когда существует такое натуральное число с, что а + с = b, имеем, что «а меньше b на с» или «b больше а на с».
Если n(А) = а, n(В) = b и установлено, а < b , то. исходя из теоретико-множественного смысла отношения «меньше», в множестве В можно выделить собственное подмножество В, равномощное множеству А, и непустое множество В\В. Если число элементов в множестве В\В. обозначить через с (с ( 0), то в множестве В будет столько же элементов, сколько их в А, и еще с элементов:
n(В) = n(В) + n(В\ В.) или b = а + с, что означает, что «а меньше b на с» (или «больше а на с»). Итак, с теоретико-множественной точки зрения «а меньше b на с» (или «b больше а на с») означает, что если n(А) = а, n(В) = b, то в множестве В содержится столько элементов, сколько их в А, и еще с элементов.
Так как с= п(В\В). где В ( В, n(В) = b, n(В) = а, то, по определению разности, с = а - b. Следовательно, чтобы узнать, на сколько одно число меньше или больше другого, надо из большего числа вычесть меньшее.
Взаимосвязь действии над множествами с действиями над числами, теоретико-множественный смысл отношений «меньше на» и «больше на» позволяют обосновывать выбор действий при решении задач с этими отношениями.
Рассмотрим, например, такую задачу: «На столе 5 чашек, а ложек на 2 больше. Сколько на столе ложек?» Легко видеть, что она решается при помощи сложения. Почему?
В задаче речь идет о двух множествах: множестве чашек (А) и множестве ложек (В). Известно, что в первом множестве 5 элементов, т.е. п(А) = 5. Число элементов во втором множестве требуется найти при условии, что в нем на 2 элемента больше, чем в первом. Отношение «больше на 2» означает, что в множестве В элементов столько же, сколько их в А. и еще 2 элемента (рис. 114). Применимо к тем множествам, о которых идет речь в задаче, это означает, что ложек на столе столько же, сколько чашек, и еще 2. Используя правило подсчета элементов в объединении непересекающихся множеств, получаем: п(В) = п(В) + п(В\ В) =5+2. Так как 5 + 2 = 7, то получим ответ на вопрос задачи: на столе 7 ложек.
О О О О О
Х Х Х Х Х Х Х
Рис. 114
Рассмотрим еще одну задачу: «На столе 5 чашек, а ложек на 2 меньше. Сколько на столе ложек?» Выясним, почему она решается при помощи вычитания.
В задаче речь идет о двух множествах: множестве чашек (А) и множестве ложек (В). Известно, что в первом множестве 5 элементов, n (А)= 5. Число элементов во втором множестве надо найти при условии, что в нем на 2 элемента меньше, чем в первом. Отношение меньше на 2» означает, что в множестве В элементов столько же, сколько их в А, но без двух (рис. 115). Применимо к тем множествам, о которых идет речь в задаче, это означает, что ложек на столе столько же, сколько чашек, но без двух. Таким образом, п(А) = п(А\А) = 5 - 2. Так как 5-2=3, то получим ответ на вопрос задачи: на столе 3 ложки.
О О О О О
Х Х Х
Рис. 115
Упражнения
1. Объясните с теоретико-множественной точки зрения смысл выражений:
а) 8-3; 6)4-4; в) 4 - 0.
2.. Объясните, почему нижеприведенные задачи решаются при помощи вычитания.
а) В корзине было 7 морковок, 3 из них отдали кроликам. Сколько морковок осталось?
б) На столе 8 чашек, их на 3 больше, чем стаканов. Сколько стаканов на столе?
в) На верхней полке шкафа 7 книг, а на нижней 4. На сколько книг больше на верхней полке, чем на нижней?
3. Обоснуйте выбор действий при решении задач.
а) На одной полке 5 книг, на другой на 3 больше. Сколько книг на двух полках?
б) Во дворе гуляли 6 мальчиков, а девочек на 2 меньше. Сколько детей гуляло во дворе?
4. Запишите, используя символы, правило вычитания суммы из числа и дайте его теоретико-множественное истолкование.








Лекция 37. Произведение и частное целых неотрицательных чисел
Определение произведения, его существование и единственность. Законы умножения. Определение произведения через сумму.
Определение частного целого неотрицательного числа на натуральное, его существование и единственность. Теоретико-множественный смысл правил деления суммы и произведения на число.


73. Теоретико-множественный смысл произведения
Определение умножения натуральных чисел в аксиоматической теории основывается на понятии отношения «непосредственно следовать за» и сложении. В школьном курсе математики используется другое определение умножения, оно связано со сложением одинаковых слагаемых. Покажем, что оно вытекает из первого.
Теорема 4. Если о > 1, то произведение чисел а и b равно сумме b слагаемых, каждое из которых равно а.
Доказательство. Обозначим сумму b слагаемых, каждое из которых равно а, через а
· b. И, кроме того, положим, что а
· 1 = а. Тогда выражение а°(b + 1) будет означать, что рассматривается сумма b + 1 слагаемого, каждое из которых равно а, т.е. а
·( b + 1) = а + а + ... + а + а. Сумму а + а + ... + а + а можно представить в виде
b + 1 слаг.
выражения (а + а + ... + а + а) + а , которое равно а
· b + а. Значит, операция а
· b обладает теми же свойствами, что и умножение, определенное в аксиоматической теории, а именно, а
· 1 = а и а
·(b+1) = а
· b + а. В силу единственности умножения получаем, что
а
· b = а( b
Итак, если а и b - натуральные числа и b > 1, то произведение а ( b можно рассматривать как сумму b слагаемых, каждое из которых равно а.
Умножение на I определяется так: а (1 = а.
Если умножение рассматривается на множестве целых неотрицательных чисел, то к этим двум случаем надо добавить третий - определение умножения на нуль: а (0 = 0.
Таким образом, получаем следующее определение умножения целых неотрицательных чисел.
Определение. Если а, b - целые неотрицательные числа, то произведением а ( b называется число, удовлетворяющее следующим условиям:
1) а ( b = а + а + ... + а + а, если b > 1;
b слаг.
а( b = а, если b = 1;
а( b = 0, если b = 0.
Случаю 1) этого определения можно дать теоретико-множественную трактовку. Если множества А, А, ..., Аb имеют по а элементов каждое, причем никакие два из них не пересекаются, то их объединение А( А( ... (Аb содержит а( b элементов.
Таким образом, с теоретико-множественных позиций а( b (b > 1) представляет собой число элементов в объединении b множеств, каждое из которых содержит по а элементов и никакие два из них не пересекаются.
а( b = n(А( А( ... (Аb), если n(А) = n(А)== n(Аb)= а и множества попарно не пересекаются.
Взаимосвязь умножения натуральных чисел с объединением равночисленных попарно непересекающихся подмножеств позволяет обосновывать выбор действия умножения при решении текстовых задач.
Рассмотрим, например, такую задачу: «На одно пальто пришивают 4 пуговицы. Сколько пуговиц надо пришить на 3 таких пальто?» Выясним, почему она решается при помощи умножения.
В задаче речь идет о трех множествах, и каждом из которых 4 элемента. Требуется узнать число элементов в объединении этих трех множеств.
Если n(А) = n(А)= n(А)= 4 и множества попарно не пересекаются, то n(А( А( А) = n(А) + n(А) + n(А)= 4+4+4 = 4(3. Произведение 4(3 является математической моделью данной задачи. Так как 4(3 = 12. то получаем ответ на вопрос: на 3 пальто надо пришить 12 пуговиц.
Можно дать другое теоретико-множественное истолкование произведения целых неотрицательных чисел. Оно связано с понятием декартова произведения множеств.
Теорема 5. Пусть А и В - конечные множества. Тогда их декартово произведение также является конечным множеством, причем выполняется равенство:
n(АхВ)= п(А)( п(В).
Доказательство. Пусть даны множества А = {а, а, ...,аn}, В = {b, b, ...,bk}, причем k > 1. Тогда множество А х В состоит из пар вида (аi, bj), где 1 ( i ( п, 1 ( j ( к. Разобьем множество АхВ на такие подмножества А, А, ... , Аk, что подмножество Аj состоит из пар вида (а, bj), (а. bj), ..., (аn, bj). Число таких подмножеств равно к, т.е. числу элементов в множестве В. Каждое множество А] состоит из n пар, и никакие два из этих множеств не содержат одну и ту же пару. Отсюда следует, что число элементов в декартовом произведении АхВ равно сумме к слагаемых, каждое из которых равно n, т.е. произведению чисел n и к. Таким образом, равенство
п(АхВ) = п(А)( п(В) доказано при к > I. При к = 1 оно тоже верно, так как в этом случае В содержит один элемент, например, В = {b}, а тогда АхВ состоит из пар вида (а, b), (а. b), ..., (аn, b), число которых равно n/ Поскольку п(А) = п, п(В)= 1, то и в этом случае имеем: n(АхВ)= п(А)( п(В) = п(1.
При к = 0 данное равенство также верно, поскольку В = ( и п(Ах() = п(А)( п(() = п((0 = 0.
Из рассмотренной теоремы следует, что с теоретико-множественной точки зрения произведение а( b целых неотрицательных чисел есть число элементов в декартовом произведении множеств А и В, таких, что п (А) = а, и п (В) =b.
а( b = п(А)( п(В) = п(АхВ).
Этот подход к определению умножения позволяет раскрыть теоретико-множественный смысл свойств умножения. Например, смысл равенства а( b = b( а состоит в том, что хотя множества АхВ и ВхА различны, они являются равномощными: каждой паре (а, b) из множества АхВ можно поставить в соответствие единственную пару (b, а) из множества ВхА, и каждая пара из множества ВхА сопоставляема только одной паре из множества АхВ. Значит, п(АхВ) = п (ВхЛ) и потому а( b = b( .
Аналогично можно раскрыть теоретико-множественный смысл ассоциативного свойства умножения. Множества Ах(ВхС) и (АхВ)хС различны, но они являются равномощными: каждой паре (а, (b, с)) из множества Ах(ВхС) можно поставить в соответствие единственную пару ((а, b), с) из множества (АхВ)хС, и каждая пара из множества (АхВ)хС сопоставляется единственной паре из множества Ах(ВхС). Поэтому п(Ах(ВхС)) = п((АхВ)хС) и следовательно, а(b с) = (а b)с.
Дистрибутивность умножения относительно сложения выводится из равенства А х (В ( С)= (А х В) ( (А х С), а дистрибутивность умножения относительно вычитания - из равенства Ах(В\С) = (АхВ) \ (А х С).
В начальных курсах математики произведение целых неотрицательных чисел чаще всего определяют через сумму. Скучай а(1 = а и а( 0 = 0 принимаются по определению.
Упражнения
Используя определение произведения чисел через сумму, объясните, каков теоретико-множественный смысл произведения 2( 4.
Раскройте теоретико-множественный смысл произведения 2( 4, используя определение произведения чисел через декартово произведение множеств.
Докажите, что дистрибутивность умножения относительно сложения вытекает из равенства А х (В ( С) = (А х В) ( (А х С), а относительно вычитания - из равенства (А \В) х С) = (А х В)\(А х С).
Объясните, почему следующие задачи решаются при помощи умножения.
а) На каждую из трех тарелок положили по 2 яблока. Сколько всего яблок положили?
б) Школьники посадили в парке 4 ряда деревьев, по 5 штук в ряду. Сколько деревьев они посадили?
5. Используя теоретико-множественный смысл действий над числами, обоснуйте выбор действий при решении задач.
А) Первоклассники заняли в кинотеатре 3 ряда, второклассники – 4 ряда, а третьеклассники - 5 рядов. Сколько учеников начальных классов было в кинотеатре, если в каждом ряду они занимали по 9 мест?
Б) В саду 8 рядов деревьев, по 9 в каждом. Из них 39 яблонь, 18 груш, остальные сливы. Сколько сливовых деревьев в саду?
6. Какие рассуждения учащихся вы будете считать правильными при выполнении ими следующих заданий.
А) Вера и Надя сажали тюльпаны. Вера посадила 8 рядов тюльпанов, по 9 в каждом, а Надя 9 рядов по 8 тюльпанов. Можно ли, не выполняя вычислений, утверждать, что Вера посадила столько же тюльпанов, сколько Надя?
Пользуясь данным условием, объясните, что означают выражения: 72+72; 72(2; 8(9 – 8.
Б) В гараже в 6 рядов стояло по 9 машин. Из каждого ряда выехало 8 машин. Сколько машин осталось в гараже?
Объясните, что означают выражения, составленные по условию каждой задачи:
9 ( 6; 8 ( 2; 8 ( 6; 9 - 8; (9 - 8) ( 2; (9 - 8) ( 6.
74. Теоретико-множественный смысл частного натуральных чисел
В аксиоматической теории деление определяется как операция, обратная
а-Ь = с
умножению, поэтому между делением

а- с:г)


и умножением устанавливается тесная взаимосвязь. Если а( b = с, то, зная произведение с и один из множителей, можно при помощи деления найти другой множитель.
Выясним теоретико-множественный смысл полученных частных с : b и с : а.
Произведение а ( b = с с теоретико-множественной точки зрения представляет собой число элементов в объединении b попарно непересекающихся множеств, в каждом из которых содержится а элементов, т.е.
а( b = n(А( А( ... (Аb), где n(А) = n(А)== n(Аb). Так как множества попарно не пересекаются, а при их объединении получается множество - назовем его А, - в котором с элементов, то можно говорить о разбиении множества А на равночисленные подмножества А, А, ..., Аb. Тогда частное с: а - это число подмножеств в разбиении множества А, а частное с :b - число элементов в каждом подмножестве этого разбиения.
Мы установили, что с теоретико-множественной точки зрения деление чисел оказывается связанным с разбиением конечного множества на равночисленные попарно непересекающиеся подмножества и с его помощью решаются две задачи: отыскание числа элементов в каждом подмножестве разбиения (деление на равные части) и отыскание числа таких подмножеств (деление по содержанию).
Таким образом, если а = п(А) и множество А разбито на попарно непересекающиеся равночисленные подмножества и если:
b - число элементов в каждом подмножестве, то частное а:b - это число таких подмножеств;
b - число подмножеств, то частное а:b- это число элементов в каждом подмножестве.
Взаимосвязь деления натуральных чисел с разбиением конечных множеств на классы позволяет обосновывать выбор действия деления при решении задач, например, такого вида: «12 карандашей разложили в 3 коробки поровну. Сколько карандашей в каждой коробке?»
В задаче рассматривается множество, в котором 12 элементов. Это множество разбивается на 3 равночисленных подмножества. Требуется узнать число элементов в каждом таком подмножестве. Это число, как установлено выше, можно найти при помощи деления – 12 :3. Вычислив значение этого выражения, получаем ответ на вопрос задачи -в каждой коробке по 4 карандаша.
Если дана задача: «В коробке 12 карандашей, их надо разложить в коробки, по 3 карандаша в каждую. Сколько коробок понадобится'?», - то для решения выбор действия деления можно обосновать следующим образом. Множество из 12 элементов разбивается на подмножества, в каждом из которых по 3 элемента. Требуется узнать число таких подмножеств. Его можно найти при помощи деления - 12:3. Вычислив значение этого выражения, получаем ответ на вопрос задачи - понадобится 4 коробки.
Используя теоретико-множественный подход к действиям над целыми неотрицательными числами, можно дать теоретико-множественное истолкование правила деления суммы на число: если частные а:с и b:с существуют, то (а + b):с = а:с + b:с. Пусть а = п{А) и b = п(В), причем А ( В = (. Если множества А и В можно разбить на равночисленные подмножества, состоящие из с элементов каждое, то и объединение этих множеств допускает такое же разбиение. Если при этом множество А состоит из а: с подмножеств, а множество В - из b: с подмножеств, то А ( В состоит из а:с + b:с подмножеств. Это и значит, что (а + b ):с =а:с + b:с.
Аналогично проводятся рассуждения и в случае, когда с рассматривается как число равночисленных подмножеств в разбиении множеств А и В.
С теоретико-множественной точки зрения можно рассмотреть и смысл отношений «больше в» и «меньше в», с которыми младшие школьники встречаются при решении текстовых задач.
В аксиоматической теории определение этих отношений вытекает из определения деления натуральных чисел: если а:b = с, то можно говорить, что «а больше b в с раз» или что «b меньше а в с раз». И чтобы узнать, во сколько раз одно число больше или меньше другого, надо большее число разделить на меньшее.
Если же а = п(А), b = п(В) и известно, что «а меньше b в с раз», то поскольку а < b, то в множестве В можно выделить собственное подмножество, равномощное множеству А, но так как а меньше b в с раз, то множество В можно разбить на с подмножеств, равномощных множеству А.
Так как с - это число подмножеств в разбиении множества В, содержащего b элементов, а в каждом подмножестве - а элементов, то с = b :а.
Теоретико-множественным смыслом отношения «а больше (меньше) b в с раз» можно воспользоваться при обосновании выбора действий при решении задач. Рассмотрим, например, такую задачу: «На участке растут 3 ели, а берез в 2 раза больше. Сколько берез растут на участке?»
В задаче речь идет о двух множествах: множестве елей (А) и множестве берез (В). Известно, что п(А) = 3 и что в множестве В элементов в 2 раза больше, чем в множестве А. Требуется найти число элементов в множестве В, т.е. п(В).
Рис. 116
Так как в множестве В элементов в 2 раза больше, чем в множестве А, то множество В можно разбить на 2 подмножества, равномощных множеству А (рис. 116). Поскольку в каждом из подмножеств содержится по 3 элемента, то всего в множестве В будет 3 + 3 или 3(2 элементов. Выполнив вычисления, получаем ответ на вопрос задачи: на участке растет 6 берез.



Теоретико-множественное истолкование можно дать и делению с остатком. Напомним, что разделить натуральное число а на натуральное число b с остатком - ото значит найти такие натуральные целые неотрицательные числа q и r, что а = b q + r , где 0 ( r < b.
Пусть а = n(А) и множество А разбито на множества А, А, ... , Аq, R, так, что множества А, А, ... , Аq равночисленны, а множество R содержит меньше элементов, чем каждое из множеств А, А, ... , Аq. Тогда, если n(А)= n(А)== n(Аq) = b, а n(R) = r, где 0 ( r < b, причем число q равночисленных множеств является неполным частным при делении а на b, а число элементов в R - остатком при этом делении.

Упражнения
1. Используя теоретико-множественный смысл частного, объясните смысл выражений:
а) 10:2; 6)5:1; в) 5:5.
2. Объясните, почему нижеприведенные задачи решаются при помощи деления.
а) 15 редисок связали в пучки по 5 редисок в каждом. Сколько получилось пучков?
б) 15 тетрадей раздали поровну 5 ученикам. Сколько тетрадей получил каждый?
3. Назовите отношения, которые рассматриваются в задачах, решите задачи арифметическим методом, выбор действий обоснуйте.
а) Для украшения елки девочка вырезала 4 звездочки, а флажков в 3 раза больше. Сколько флажков вырезала девочка?
б) У Коли в 4 раза больше открыток, чем у Вовы. А у Лены их на 20 меньше, чем у Коли. Сколько открыток у Лены, если у Вовы их 7?
в) Миша поймал 48 окуней. Саша - на 6 меньше, чем Миша, а Коля - в 7 раз меньше, чем Саша. Сколько окуней поймали все мальчики?
4. Какое правило является обобщением различных арифметических способов решения задачи.
а) В коробке лежало 12 зеленых и 20 красных хлопушек. Все хлопушки раздали детям, по 4 каждому. Сколько ребят получили хлопушки?
б) В лапту играли 8 девочек и 6 мальчиков. Они разделились на 2 команды. Сколько человек было в каждой команде?
5. Обоснуйте с теоретико-множественной позиции выбор действия при решении задачи.
В мастерской было 7 колес для велосипедов. При ремонте поставили на каждый велосипед по 2 колеса. На сколько велосипедов поставили колеса и сколько колес осталось в мастерской?

75. Основные выводы § 15
Изучая материал данного параграфа, установили, что натуральное число как характеристику количества можно рассматривать и как результат счета элементов конечного множества, и как общее свойство класса конечных равномощных множеств.
Число «нуль» с теоретико-множественных позиций - это число элементов пустого множества: n(() = 0.
Если отношение «меньше» рассматривать с теоретико-множественной точки зрения, то:
1) а < b <=> Nа ( Nb, где N а ={1, 2 ,..., а}, Nb = {1, 2,..., b};
2) а < b <=> А - В, где В ( В и В ( В, В ( ( , а = п(В), b = п(В).
Так как количественные натуральные числа связаны с конечными тожествами, то действия над числами оказались связанными с действиями над множествами:
сложение чисел - с объединением конечных непересекающихся множеств;
вычитание чисел - с дополнением подмножества;
умножение чисел - с объединением равночисленных попарно непересекающихся множеств;
деление чисел - с разбиением множества на попарно непересекающиеся подмножества.
Так как действия над числами получили теоретико-множественную трактовку, то такую же трактовку оказалось возможным дать и их свойствам.




Лекция 38. Натуральное число как результат измерения величины
План:
1. Понятие о величине. Понятие об измерении положительной скалярной величины. Натуральное число как мера отрезка.
2. Определение арифметических действий над числами, рассматриваемыми как меры отрезков. Обоснование выбора арифметических действий при решении текстовых задач.


§16. НАТУРАЛЬНОЕ ЧИСЛО КАК МЕРА ВЕЛИЧИНЫ

Известно, что числа возникли из потребности счета и измерения, но если для счета достаточно натуральных чисел, то для измерения величин нужны и другие числа. Однако в качестве результата измерения величин будем рассматривать только натуральные числа. Определив смысл натурального числа как меры величины, мы выясним, какой смысл имеют арифметические действия над такими числами. Эти знания нужны учителю начальных классов не только для обоснования выбора действий при решении задач с величинами, но и для понимания еще одного подхода к трактовке натурального числа, существующего в начальном обучении математике.
Натуральное число мы будем рассматривать в связи с измерением положительных скалярных величин-длин, площадей, масс, времени и др., поэтому прежде, чём говорить о взаимосвязи величин и натуральных чисел, напомним некоторые факты, связанные с величиной и ее измерением, тем более что понятие величины, наряду с числом, является основным в начальном курсе математики.
76. Понятие положительной скалярной величины и ее измерения
Рассмотрим два высказывания, в которых используется слово «длина»:
Многие окружающие нас предметы имеют длину.
Стол имеет длину.
В первом предложении утверждается, что длиной обладают объекты некоторого класса. Во втором речь идет о том, что длиной обладает конкретный объект из этого класса. Обобщая, можно сказать, что термин «длина» употребляется для обозначения свойства, либо класса объектов (предметы имеют длину), либо конкретного объекта из этого класса (стол имеет длину).
Но чем это свойство отличается от других свойств объектов этого класса? Так, например, стол может иметь не только длину; но и быть изготовленным из дерева или металла; столы могут иметь разную форму. О длине можно сказать, что разные столы обладают этим свойством в разной степени (один стол может быть длиннее или короче другого), чего не скажешь о форме - один стол не может быть «прямоугольнее» другого.
Таким образом, свойство «иметь длину» - особое свойство объектов, оно проявляется тогда, когда объекты сравнивают по их протяженности (по длине). В процессе сравнения устанавливают, что либо два объекта имеют одну и ту же длину, либо длина одного меньше (больше) длины другого.
Аналогично можно рассматривать и другие известные величины: площадь, массу, время и т.д. Они представляют собой особые свойства окружающих нас предметов и явлений и проявляются при сравнении предметов и явлений по этому свойству, причем каждая величина связана с определенным способом сравнения.
Величины, которые выражают одно и то же свойство объектов, называются величинами одного рода или однородными величинами. Например, длина стола и длина комнаты - это величины одного рода.
Напомним основные положения, связанные с однородными величинами.
1. Для величин одного рода имеют место отношения «равно», «меньше» и «больше», и для любых величин А и В справедливо одно и только одно из отношений: А < В, А= В, А > В.
Например, мы говорим, что длина гипотенузы прямоугольного треугольника больше, чем длина любого катета этого треугольника, масса яблока меньше массы арбуза, а длины противоположных сторон прямоугольника равны.
2. Отношение «меньше» для однородных величин транзитивно: если А<В и В<С, то А<С.
Так, если площадь треугольника F1 меньше площади треугольника F2, и площадь треугольника F2 меньше площади треугольника F3, то площадь треугольника F1 меньше площади треугольника F3.
3. Величины одного рода можно складывать, в результате сложения получается величина того же рода. Иными словами, для любых двух величин А и В однозначно определяется величина С = А + В, которую называют суммой величин А и В.
Сложение величин коммутативно и ассоциативно.
Например, если А - масса арбуза, а В - масса дыни, то С = А +В - это масса арбуза и дыни. Очевидно, что А+В = В+А и (А+В) + С = А+(В+С).
4. Величины одного рода можно вычитать, получая в результате величину того же рода. Определяют вычитание через сложение.
Разностью величин А и В называется такая величина С = А - В, что А = В + С.

Разность величин А и В существует тогда и только тогда, когда А>В.
Например, если А - длина отрезка а, В - длина отреза b, то С = А- В - это длина отрезка с (рис. 117).
b c
13 SHAPE \* MERGEFORMAT 1415
a
Рис.117
5. Величину можно умножать на положительное действительное число, в результате получают величину того же рода. Более точно, для любой величины А и любого положительного действительного числа х существует единственная величина В = x
·А, которую называют произведением величины А на число x.
Например, если А - время, отводимое на один урок, то умножив А на число x = 3, получим величину В = 3А - время, за которое пройдет 3 урока.
6. Величины одного рода можно делить, получая в результате число. Определяют деление через умножение величины на число.
Частным величин А и B называется такое положительное действительное число х = А :В,
что А = х В.



Так, если А - длина отрезка a, B - длина отрезка b (рис. 118) и отрезок a состоит из 4-х отрезков, равных b, то А:В = 4, поскольку А = 4В.
Величины, как свойства объектов, обладают еще одной особенностью - их можно оценивать количественно. Для этого величину надо измерить. Чтобы осуществить измерение из данного рода величин выбирают величину, которую называют единицей измерения. Мы будем обозначать ее буквой Е.
Если задана величина А и выбрана единица величины Е (того же рода), то измерить величину А - это значит найти такое положительное действительное число х, что А = х
·Е.
Число х называется численным значением величины А при единице величины E. Оно показывает, во сколько раз величина А больше (или меньше) величины Е, принятой за единицу измерения.
Если А = х
·Е, то число х называют также мерой величины А при единице Е и пишут х = т Е (А).
Например, если А - длина отрезка а, Е- длина отрезка b (рис.118)то А = 4-Е. Число 4 - это численное значение длины при единице длины Е, или, другими словами, число 4- мера длины А при единице длины Е.
В практической деятельности при измерении величин люди пользуются стандартными единицами величин: так, длину измеряют в метрах, сантиметрах и т.д. Результат измерения записывают в таком виде: 2,7 кг; 13 см; 16с. Исходя из понятия измерения, данного выше, эти записи можно рассматривать как произведение числа и единицы величины. Например, 2,7кг = 2,7
·кг; 13 см = 13
·см; 16 с = 16
·с. Используя это представление, можно обосновать процесс перехода от одной единицы величины к другой. Пусть, например,
требуется выразить 5/12ч в минутах. Так как 5/12ч = 5/12
·ч и час=60мин, то 5/12ч= 5/12
·60
·мин = (5/12
· 60)мин = 25 мин
Величина, которая определяется одним численным значением, называется скалярной величиной.
Если при выбранной единице измерения скалярная величина принимает только положительные численные значения, то ее называют положительной скалярной величиной.
Положительными скалярными величинами являются длина, площадь, объем, масса, время, стоимость и количество товара и др.
Измерение величин позволяет переходить от сравнения величин к сравнению чисел, от действий над величинами к соответствующим действиям над числами, и наоборот.
1. Если величины А и В измерены при помощи единицы величины Е, то отношения между величинами А и В будет такими же, как и отношения между их численными значениями, и наоборот:
А =В <=> т(А)= т(В);
А < В <=> т(А) < т (В);
А> В <=> т(А) > т(В).
Например, если массы двух тел таковы, что А =5 кг, В= 3кг, то можно утверждать, что А > В, поскольку 5 > 3.
Если величины А и В измерены при помощи единицы величины Е, то чтобы найти численное значение суммы А + В, достаточно сложить численные значения величин А и В:
А+В = С => m (A+B) = т(А) + т(В). Например, если А = 5 кг, В =3 кг, то А + В = 5 кг + 3 кг = (5 + 3) кг = 8 кг.
Если величины А и В таковы, что В = х
·А, где х - положительное действительное число, и величина А измерена при помощи единицы величины Е, то, чтобы найти численное значение величины В при единицы Е, достаточно, число х умножить на число т(А):
В=х
·А => т(В)= х
·т(А).
Например, если масса В в 3 раза больше массы А и А = 2 кг, то B = 3A = 3
·(2
·кг) = (3
·2)
·кг=6 кг
В математике при записи произведения величины А на число х принято число писать перед величиной, т.е. х
·А. Но разрешается писать и так: А
·х. Тогда численное значение величины А умножают на х, если находят значение величины А
·х.
Рассмотренные понятия - объект (предмет, явление, процесс), его величина, численное значение величины, единица величины - надо уметь вычленять в текстах и задачах. Например, математическое содержание, предложения «Купили 3 килограмма яблок» можно описать следующим образом: в предложении рассматривается такой объект, как яблоки, и его свойство - масса; для измерения массы использовали единицу массы - килограмм; в результате измерения получили число 3 - численное значение массы яблок при единице массы - килограмм.
Один и тот же объект может обладать несколькими свойствами, которые являются величинами. Например, для человека - это рост, масса, возраст и др. Процесс равномерного движения характеризуется тремя величинами: расстоянием, скоростью и временем, между которыми существуют зависимость, выражаемая формулой s = v
· t.
Если величины выражают разные свойства объекта, то их называют величинами разного рода, или разнородными величинами. Так, например, длина и масса - это разнородные величины.
Упражнения
1. О каких величинах идет речь в следующих предложениях:
а) Груши дороже яблок.
б) Книга тяжелее тетради.
в) Таня выше Светы.
2. Какие величины могут характеризовать следующие объекты: а) карандаш; б) человек; в) озеро?
3. Имеются два куска проволоки. Каким образом можно сравнить их длины, не прибегая к измерению? Какими могут быть результаты сравнения?
4. Как можно сравнить массы двух предметов, не определяя массу каждого из них? Какими могут быть результаты сравнения?
5. На рисунке 119 изображены два прямоугольника, имеющие площади А и В. Постройте прямоугольник, площадь которого равна:
А+ В
3
·А
1/2
·В
В-А
6. Разбейте на классы тремя способами следующие величины:
А – высота дерева; В – 16кг; С – масса доски; D – 25 см; E – возраст дерева; M – площадь доски; H – 13 с; K – 26 м; L – длина веревки; Р – толщина доски. 7. Назовите стандартные единицы, с помощью которых можно измерить величины, указанные в таблице. Запишите их.
Длина
Масса
Ширина
Объем
Время
Высота
Количество










8. О каких величинах идет речь в следующих предложениях:
В одной коробке 25 яблок, а в другой 30 яблок.
15 яблок дороже, чем 8 груш.
В одном ящике 20 кг овощей, а в другом 12 кг овощей.
9. Какие из данных величин можно сравнить между собой:
1500 м; 2,5 км; 18 штук; 8 десятков;
3 ц; 1 км 500 м; 299 кг; 18 пар.
10. Сравните величины:
56 мин и 7/10 ч;
3/50 м и 4/5 дм;
1,5 см и 3/20 дм;
5/4 кг и 1250 г.
11. Назовите объект, его величину, численное значение и единицу измерения величины в каждом из следующих предложений:
а) В коробке 8 кг яблок.
б) Глубина оврага 2 м.
в) Площадка садового участка 6 соток.
г) В сервизе 6 тарелок.
д) Рост девочки 1 м 20 см.
Назовите величины и объекты, о которых говорится в задаче:
а) За тетради заплатили х р., а за карандаши на / р. меньше. Сколько стоили карандаши?
б) Мешок картофеля тяжелее ящика с луком на 2 кг. Какова масса мешка картофеля, если масса ящика с луком z кг?
в) На первой полке стояло х книг. На второй на у книг больше, а на третьей на z книг меньше, чем на первой полке. Сколько книг стояло на трех полках?
Назовите величины, о которых говорится в задаче, и действия с ними, которые будут выполнены в процессе решения:
а) В ящике было 24 кг апельсинов. Сначала из него взяли 5 кг, а потом в 3 раза больше, чем в первый раз. Сколько апельсинов осталось в ящике?
б) Для вышивания первого узора нужно 24 м ниток, для второго в 6 раз меньше, а для третьего - на 16 м больше, чем для первого. Хватит ли 7 катушек для вышивания всех узоров, если в каждой катушке по 10 м ниток?
14. Решите задачи, предварительно установив, в чем их сходство и различие:
а) Со склада отправили в столовую и в магазин 8 машин с овощами. Магазин получил 24 т овощей, а столовая – в 3 раза меньше. Сколько машин с овощами отправили в магазин и сколько в столовую, если масса овощей в каждой машине была одинаковой?
б) Со склада отправили в столовую и в магазин несколько машин с овощами. Масса овощей в каждой машине была одинаковой. Магазин получил 24 т овощей, а столовая – в 3 раза меньше. Сколько машин с овощами отправили со склада, если в столовую отправили 2 машины?

Лекция 39. Натуральное число как результат измерения величины
План
1. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
2. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
Выясняя смысл натурального числа как меры величины, все рассуждения будем вести на примере одной величины - длины отрезка.
Уточним сначала понятие «отрезок состоит из отрезков».
Определение. Считают, что отрезок х состоит из отрезков х1, х2 ,, хn, если он является их объединением и никакие два из них не имеют общих внутренних точек, хотя и могут иметь общие концы.
В этом же случае говорят, что отрезок х разбит на отрезки х1, х2 ,, хn и пишут х = х1 ( х2 ( хя. Пусть задан отрезок х, его длину обозначим X. Выберем из множества отрезков некоторый отрезок е, назовем его единичным отрезком, а длину обозначим буквой Е.
Определение. Если отрезок х состоит из а отрезков, каждый из которых равен единичному отрезку е, то число а называют численным значением длины X данного отрезка при единице длины Е.
Пишут: X = а Е или а = тЕ(Х).
Например, отрезок х (рис: 120) состоит из 6 отрезков, равных отрезку е. Если длину единичного отрезка обозначить буквой Е, а длину отрезка х буквой Х, то можно написать, что Х = 6Е или 6 = тЕ(Х).
Из данного определения получаем, что что натуральное число как результат измерения длины отрезка (или как мера длины отрезка) показывает, из скольких единичных отрезков состоит отрезок, длина которого измеряется. При выбранной единице длины Е это число единственное.

В связи с таким подходом к натуральному числу сделаем два замечания:
При переходе к другой единице длины численное значение длины заданного отрезка изменяется, хотя сам отрезок остается неизменным. Так, если в качестве единицы длины выбрать длину отрезка е, (рис. 120), то мера длины отрезка х будет равна числу 3. Записать это можно так: X = 3
· Е или mE (X) = 3.
Если отрезок х состоит из а отрезков, равных е, а отрезок у - из b отрезков, равных е, то а = b тогда и только тогда, когда отрезки х и у равны.
Аналогично можно истолковать смысл натурального числа и в связи с измерением других величин. Так, в записи 3 см2 число 3 означает, что фигура F состоит из трех единичных квадратов с площадью, равной квадратному сантиметру,
Выясним теперь, какой смысл имеют сумма и разность натуральных чисел, полученных в результате измерения величин.
Теорема. Если отрезок х состоит из отрезков у и z и длины отрезков у и z выражаются натуральными числами, то мера длины отрезка х равна сумме мер длин его частей.
Доказательство. Обозначим длины отрезков х, у и z соответственно буквами X, Y и Z. Пусть m(Y)=a, m(Z)=b при единице длины Е. Тогда отрезок у разбивается на а частей, каждая из которых равна отрезку длины Е, отрезок z разбивается на b таких частей. А потому весь отрезок х разбивается на а + b таких частей. Значит, т(X) = a + b = m(Y) + m(Z).
Из этой теоремы следует, что сумму натуральных чисел aub можно рассматривать как меру длины отрезка х, состоящего из отрезков у и z, мерами длин которых являются числа a u b.
a + b= mE(Y)+mE(Z) = mE(Y + Z). Аналогичный смысл имеет сумма натуральных чисел, полученных в результате измерения других положительных скалярных величин.
Покажем, как используется данный подход к обоснованию выбора действия сложения при решении текстовых задач: «В саду собрали 7 кг смородины и З кг малины. Сколько всего килограммов ягод собрали?»
В задаче две величины - масса смородины и масса малины. Известны их численные значения. Требуется найти численное значение массы, которая получится, если данные массы сложить. Для этого, согласно рассмотренной теореме, надо сложить численные значения массы смородины и массы малины, т.е. получить выражение 7 + 3. Это математическая модель данной задачи. Вычислив значение выражения 7 + 3, получим ответ на вопрос задачи,
Теорема. Если отрезок х состоит из отрезков у и г и длины Отрезков х и у выражаются натуральными числами, то мера длины отрезка z равна разности мер длин отрезков х и у.
Доказательство этой теоремы проводится аналогично доказательству предыдущей.
Из этой теоремы следует, что разность натуральных чисел а и b можно рассматривать как меру длины такого отрезка z , что z ( у = х, если мера длины отрезка х равна а, мера длины отрезка у равна b.
a - b=mE(X )- mE(Y) = mE(X-Y).
Аналогичный смысл имеет разность натуральных чисел, полученных в результате измерения других положительных скалярных величин.
Выясним, как используется данный подход к обоснованию выбора действия вычитания при решении текстовых задач, например, «Купили 7 кг картофеля и капусты. Сколько кило-, граммов картофеля купили, если капусты было 3 кг?»
В задаче рассматривается масса овощей, известно ее численное значение. Эта масса складывается из массы картофеля и массы капусты, численное значение которой также известно. Требуется узнать численное значение массы картофеля. Так как массу картофеля можно получить, вычитая из всей массы купленных овощей массу капусты, то численное значение массы картофеля находят действием вычитания: 7-3. (Вычислив значение этого выражения, получим ответ на вопрос задачи.
При помощи сложения или вычитания решаются также текстовые задачи, в которых величины связаны отношением «больше на» или «меньше на». Например: «Купили 3 кг моркови, а картофеля на 2 кг больше. Сколько килограммов картофеля купили?»
В задаче речь идет о двух величинах - массе моркови и массе картофеля. Численное значение первой массы известно, а численное значение второй надо найти, зная, что картофеля на 2 кг больше, чем моркови.
Если построить вспомогательную модель задачи, то можно сразу увидеть, что картофеля купили столько же, сколько моркови, и еще 2 кг, т.е. масса картофеля складывается из двух масс (З кг и 2 кг), и чтобы найти ее численное значение, надо сложить численные значения масс слагаемых. Получаем выражение 3 + 2, значение которого и будет ответом на вопрос задачи.
Упражнения
Какой смысл имеет натуральное число 7, если оно получено в результате измерения:
а) длины отрезка;
б) площади фигуры;
в) массы тела?
Верно ли, что при увеличении единичного отрезка в к раз соответствующие численные значения длин отрезка уменьшаются во столько же раз?
Объясните, почему следующие задачи решаются при помощи сложения:
а) Когда из ящика взяли 4 кг яблок, то в нем осталось 6 кг. Сколько килограммов яблок было в ящике первоначально?
б) На пошив кофты израсходовали 2 м ткани, а на платье на 3 м больше. Сколько метров ткани израсходовали на платье?.
Объясните, почему следующие задачи решаются при помощи вычитания:
а) От ленты длиной 5 м отрезали 2 м. Сколько метров ленты осталось?
б) С первого участка собрали 10 мешков картофеля, а со второго на 3 мешка меньше. Сколько мешков картофеля собрали со второго участка?
Обоснуйте выбор действий при решении следующих задач:
а) Мама купила 5 кг огурцов, 2 кг свеклы и помидоры. Сколько килограммов помидоров купила мама, если масса всех овощей 12 кг?
б) На одной полке 30 книг, на другой на 7 книг меньше. Сколько книг на двух полках?
в) От проволоки длиной 15 дм отрезали сначала 2 дм, а потом еще 4 дм. Сколько дециметров проволоки осталось?
г) За лето первоклассники собрали 8 кг лекарственных трав, второклассники на 4 кг больше первоклассников, а третьеклассники на 3 кг меньше второклассников. Сколько килограммов лекарственных трав собрали третьеклассники?

78. Смысл произведения и частного натуральных чисел,
полученных в результате измерения величин
Рассматривая смысл суммы и разности натуральных чисел - мер величин, мы установили, что сложение таких чисел связано со сложением величин, а вычитание- с вычитанием величин. И естественно возникает вопрос: с каким действием над величинами связано умножение и деление натуральных чисел? Чтобы ответить на него, проанализируем задачу: «Купили 3 пакета муки по 2 кг в каждом. Сколько килограммов муки купили?».
В этой задаче речь идет массе муки, которая сначала измерена пакетами, и известно численное значение этой массы при указанной единице массы. Требуется найти результат измерения той же массы муки, но уже при помощи другой единицы - килограмм при условии, что 1 пакет - это 2 кг муки.
Рассуждения, связанные с поиском численного значения массы муки при единице – килограмм, можно представить в таком виде:
3 пак.=3Чпак. = 3Ч(2 кг) = 3Ч2Чкг = (3Ч2) кг.
Видим, что ответ на вопрос задачи находится умножением и что оно оказалось связанным с переходом (в процессе измерения массы) от одной единицы массы к другой, более мелкой.
Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е состоит из b отрезков, длина которых равна Е
·, то мера длины отрезка х при единице длины Е
· равна аЧb.
Доказательство. По условию отрезок х состоит из а отрезков, равных е, а отрезок е – из b отрезков, равных е
·. Обозначим длину отрезка х буквой Х, длину отрезка е – буквой Е, длину отрезка е
· - буквой Е
·. Так как по условию х = е ( е ( ( е (а раз), а е = е
· ( е
· ( +(+ е
· (b раз) , то Х = аЧЕ, Е = bЧЕ
·.

Нетрудно видеть, что число частей отрезка х, равных е
·, будет равно аЧb,так

как х = е
·+е
·++е
· .
аЧb раз
Это означает, что мера длины отрезка х при единице длины Е
· равна аЧb.
Можно записать, что Х = аЧЕ = аЧ(bЧЕ
·)= (аЧb)ЧЕ
·.
Из этой теории следует, что умножение натуральных чисел связано с переходом в процессе измерения к новой единице длины: если натуральное число а – мера длины отрезка х при единице длины Е, натуральное число b – мера длины Е при единице длины Е
·, то произведение аЧb – это мера длины отрезка х при единице длины Е
·:
аЧb = m
·(Х)Чm
·
·(Е) = m
·
·(Х).
Аналогичный смысл имеет произведение натуральных чисел, полученных в результате измерения других положительных скалярных величин. И поэтому при построении вспомогательных моделей текстовых задач с величинами можно использовать отрезки (что, впрочем, мы делали и раньше). Кроме того, условимся, что в тех случаях, когда это не ведет к путанице, отрезок х и его длину Х не различать. Проиллюстрируем это на конкретном примере.
Задача 1. Объяснить смысл произведения 4Ч3, если 4 и 3 – числа, полученные в результате измерения величин.
Решение. Пусть 4 = m
·(Х), 3 = m
·
·(Е), где Х – измеряемая величина, Е - первоначальная единица величины, а Е
· – новая единица величины. Тогда, согласно доказанной теореме, 4Ч3 = m
·
·(Х), т.е. 4Ч3 – это численное значение длины Х при единице длины Е
·.
Задача 2. Обосновать выбор действия при решении задачи. «В одной коробке 6 ручек. Сколько ручек в трех таких коробках?».
Решение. В задаче речь идет о количестве ручек, которое сначала измерено коробками и известно численное значение этой величины при указанной единице. Требуется найти численное значение этой же величины при новой единице – ручка, причем известно, что коробка – это 6 ручек. Тогда 3 кор. = 3Чкор.=3Ч(6 руч.) = (3Ч6) руч. Таким образом, задача решается при помощи действия умножения, поскольку в ней при измерении осуществляется переход от одной единицы величины (коробка) к другой – ручка.
Чтобы установить смысл частного натуральных чисел, полученных в результате измерения величин, рассмотрим задачу: «6 кг муки надо разложить в пакеты, по 2 кг в каждый. Сколько получится пакетов?»
В задаче рассматривается масса муки, которая сначала измерена при помощи единицы массы – килограмм, и известно численное значение этой массы при указанной единице массы. Требуется найти результат измерения этой же массы, но уже при помощи другой единицы – пакета, причем известно, что 1 пакет – это 2 кг.
Рассуждения, связанные с поиском численного значения массы муки при новой единице – пакет, можно представить в таком виде:
6 кг = 6Чкг = 6Ч(1/2 пак.) = (6Ч1/2) пак. = (6:2) пак.
Видим, что ответ на вопрос задачи находится делением и что оно связано с переходом (в процессе измерения) от одной единицы массы к другой, более крупной.
Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е
· состоит из b отрезков длины Е, то мера длины отрезка х при единице длины Е
· равна а:b.
Данная теорема доказывается аналогично рассмотренной выше.
Из этой теоремы следует, что деление натуральных чисел связано с переходом в процессе измерения к новой единице длины: если натуральное число а – мера длины отрезка х при единице длины Е, а натуральное число b - мера новой единицы длины Е
· при единице длины Е, то частное а:b –это мера длины отрезка х при единице длины Е
·:
а:b= m
·(Х) : m
·(Е
·) = m
·
·(Х).
Аналогичный смысл имеет частное натуральных чисел, полученных в результате измерения других положительных скалярных величин. Заметим, что такая трактовка частного возможна только для деления по содержанию.
Задача 3. Обосновать выбор действия при решении задачи.
«Из 12 м ткани сшили платья, расходуя на каждое по 4 м. Сколько платье сшили?»
Решение. В задаче рассматривается длина ткани, которая измерена сначала при помощи единицы длины – метр, и известно численное значение заданной величины. Требуется найти численное значение той же длины при условии, что она измеряется новой единицей – платьем, причем известно, что платье – это 4 м, откуда метр – это ј платья.
Рассуждения, связанные с поиском численного значения длины при единице – платье, можно представить в таком виде:
12 м = 12Чм = 12Ч(1/4 пл.) = (12Ч1/4)Чпл. = (12:4)пл.
Таким образом, ответ на вопрос задачи находится при помощи деления, поскольку в задаче нужно перейти от одной единицы величины к другой в процессе измерения одной и той же величины.
Выбор действий умножения и деления при решении текстовых задач с величинами можно обосновывать иначе, используя понятие умножения и деления величины на натуральное число.
Напомним, что умножить величину А на натуральное число х – это значит получить такую величину В того же рода, что В = хЧА или В = АЧх , причем В = А+А++А.
х слаг.
Чтобы найти численное значение величины В при единице величины Е, достаточно численное значение величины А, полученное при той же единице Е, умножить на число х, т.е. если В = АЧх, то m
·(В) = m
·(А)Чх.
Рассмотрим, например, задачу: «Купили 3 пакета муки, по 2 кг в каждом. Сколько килограммов муки купили?» Чтобы ответить на вопрос задачи, надо массу 2 кг повторить слагаемым три раза, т.е. массу 2 кг умножить на число 3. Численное значение полученной при этом величины находим, умножив численное значение массы муки в одном пакете на число 3. Произведение 2Ч3 будет математической моделью данной задачи. Вычислив его значение, будем иметь ответ на вопрос задачи.
Если В = АЧх, где х – натуральное число, В и А – величины одного рода, то с помощью деления решают две задачи:
- зная А и В, находят число х (х = В:А), причем х = m
·(В):m
·(А); это деление по содержанию;
- зная В и х, находят А (А = В:х),причем m
·(А) = m
·(В) : х; это деление на равные части.
С этих позиций выбор действия при решении задачи «6 кг муки разложили на пакеты по 2 кг в каждый. Сколько получилось пакетов?» можно обосновать так. В задаче надо узнать, сколько раз масса 2 кг укладывается в 6 кг, т.е. надо массу 6 кг разделить на массу 2 кг. В результате должно получиться число, которое находим, разделив численное значение одной величины на численное значение другой. Таким образом, получаем частное 6:2. Его значение и будет ответом на вопрос задачи.
Пользуясь описанным подходом к трактовке умножения и деления натуральных чисел, можно обосновывать выбор действия и при решении текстовых задач с отношениями «больше в» «меньше в».
Задача 4. Обосновать выбор действия при решении задачи.
«Купили 3 кг моркови, а картофеля в 2 раза больше. Сколько килограммов картофеля купили?»
Решение. В задаче рассматриваются масса моркови и масса картофеля, причем численное значение первой массы известно, а численное значение второй надо найти, зная, что она в два раза больше первой.
Если воспользоваться вспомогательной моделью задачи, то можно сказать, что масса картофеля складывается из двух масс по 3 кг, и, следовательно, ее численное значение можно найти, умножив 3 на 2. Найдя значение выражения 3
· 2, получим ответ на вопрос задачи

Упражнения
1. Объясните различными способами, почему следующие задачи решаются при помощи умножения:
а) В одной корзине 5 кг яблок. Сколько килограммов яблок в трех таких корзинах?
б) За один день Саша прочитывает 4 страницы книги. Сколько страниц в книге, если Саша прочитал ее за 6 дней.
2. Объясните различными способами, почему следующие задачи решаются при помощи деления:
а) 8 кг варенья надо разложить в банки по 2 кг в каждую. Сколько получится банок?
б) На садовом участке посадили 15 кустов смородины по 5 кустов в каждом ряду. Сколько было рядов?
3. Обоснуйте выбор действий при решении следующих задач:
а) С трех овец настригли 18 кг шерсти. Сколько шерсти можно получить с 5 таких овец?
б) В пятиэтажном доме 80 квартир. На каждом этаже в подъезде по 4 квартиры. Сколько подъездов в этом доме?
в) Когда из гаража выехали 18 машин, в нем осталось машин в 3 раза меньше, чем было. Сколько машин было в гараже?

79. Основные выводы § 16

При изучении материала данного параграфа мы установили, что объекты (предметы, явления, процессы) могут обладать особыми свойствами, которые называются величинами. Чтобы свойство можно было считать величиной, оно должно удовлетворять ряду условий, которые сформулированы в п.76. Величины как свойства объектов проявляются при их сравнении, причем для каждой величины существует свой способ сравнения. Если выбрана единица величины, то величину можно измерить. В результате измерения получается число, которое называют численным значением величины или мерой величины при выбранной единице величины.
Кроме названных нами рассмотрены понятия:
- положительная скалярная величина;
- однородные величины;
- разнородные величины.
Установлено, что измерение величины позволяет переходить от сравнения величин к сравнению чисел, от действий над величинами к соответствующим действиям над числами, и наоборот.
Введены записи Х = аЧЕ и а = m
·(Х), в которых Х – обозначает величину, Е – единицу величины, а – действительное число.
Если а – натуральное число, то запись Х = аЧЕ означает, что
Х = Е+Е++Е.
а слаг.
Установлено, что действия над натуральными числами и действия над положительными скалярными величинами взаимосвязаны: сложение чисел – со сложением величин, вычитание чисел – с вычитанием величин, а умножение и деление чисел – с переходом в процессе измерения от одной единицы величины к другой.
Кроме того, установлено, что обосновывать выбор действий умножения и деления при решении текстовых задач можно, используя понятие умножения величины на число.


Лекция 40. Системы счисления. Десятичная система счисления
План:
1. Понятие системы счисления. Позиционные и непозиционные системы счисления.
2. Запись числа в десятичной системе счисления.
3. Алгоритм сложения
При изучении материала данного параграфа мы выяснили, что десятичная запись натурального числа - это его представление в виде
х = an ·10n +a n-1 ·10n-1 +... +а1·10+а0= an a n-1. а1 а0, где an a n-1. а1 а0 принимают значения 0,1,2,3,4,5,6,7,8,9 и ап ± 0.
В таком виде можно записать любое натуральное число и эта запись единственная.
Десятичная запись натуральных чисел позволяет их сравнивать и выполнять, по определенным правилам (алгоритмам), над ними действия. Мы рассмотрели теоретические основы этих алгоритмов и сформулировали их в общем виде.
Натуральные числа можно записывать не только в десятичной системе счисления, но и вообще в позиционных системах с основанием р
· 2.
При этом записью числа х считается его представление в виде
х = an ·pn +a n-1 ·pn-1 +... +а1·p+а0= an a n-1. а1 а0, где an a n-1. а1 а0 принимают значения 0,1,2,, p-1 и an ± 0.
Действия над числами в позиционных системах счисления, отличных от десятичной, выполняются по правилам, аналогичным принятым в десятичной системе счисления.
80. Позиционные и непозиционные системы счисления
Понятие числа возникло в глубокой древности. Тогда же возникала и необходимость в названии и записи чисел.
Язык для наименования, записи чисел и выполнения действий над ними называют системой счисления.
Называть числа и вести счет люди научились еще до появления Письменности. В этом им помогали, прежде всего, пальцы рук и ног. Издревле употреблялся еще такой вид инструментального счета, как деревянные палочки с зарубками, шнуры и веревки с узлами. Веревочные Счеты с узелками употреблялись в России и во многих странах Европы.
Способ «записи» чисел при помощи зарубок или узлов был не слишком удобным, так как для записи больших чисел приходилось делать много зарубок или узлов, что затрудняло не только запись, «о и сравнение чисел друг с другом, трудно было выполнять и действия над ними. Поэтому возникли иные, более экономичные записи чисел: счет стали вести группами, состоящими из одинакового числа цементов. Наряду с группами по 10 элементов встречались группы 5, 12, 20 элементов. Так, счет двадцатками использовали люди племени майя. «Следы» такого счета сохранились в датском и некоторых других европейских языках. Иногда применялся счет пятками, а также группами по 12 элементов. В Древнем Вавилоне считали группами по 60 единиц. Например, число 185 представлялось как 3 раза по 60 и еще 5. Записывалось такое число с помощью всего двух знаков, один из которых обозначал, сколько раз взято по 60, а другой сколько взято единиц. Древневавилонская система используется до сих пор при измерении времени и углов в минутах и секундах.
Наибольшее распространение получила десятичная система записи чисел. Эта система, принятая сейчас почти всюду, основана на группировании десятками и берет свое начало от счета на пальцах. Десятичная система счисления возникла в Индии в VI в. Однако вид индийских цифр значительно отличается от современной их записи. В течение многих столетий, переходя от народа к народу, старинные индийские цифры много раз изменялись, пока приняли современную форму.
Первыми заимствовали у индийцев цифры и десятичную систему счисления арабы. Распространению же этого способа записи чисел и правил выполнения арифметических действий над числами способствовала книга среднеазиатского ученого аль-Хорезми «Об индийском счете», созданная им в начале IX в.
Европейцы познакомились с достижениями индо-арабской математики в XI в. Расширение торговли повлекло за собой значительное усложнение счета, появилась потребность в совершенствовании методов счета. Поэтому европейские математики обратились к трудам греческих и арабских ученых, перевели их на латинский язык. С десятичной системой счисления европейцы познакомились через перевод книги аль-Хорезми. В 1202 г. выходит «Книга абака» Л. Фибоначчи, где также вводятся индийские цифры и нуль. С XIII в. начинается внедрение десятичной системы, и к XVI в. она стала повсеместно использоваться в странах Западной Европы.
Распространению десятичной системы в России способствовала книга первого русского выдающегося педагога-математика Л.Ф.Магницкого «Арифметика, сиречь наука числительная», вышедшая в 1703 г. на славянском языке. Она являлась энциклопедией математических знаний того времени. Все вычисления в ней проводятся при помощи цифр индийской нумерации. В «Арифметике» выделено особое действие «нумерация, или счисление»: «Нумерация есть счисление (называние) словами всех чисел, которые изображаемы быть могут десятью такими знаками: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Из них девять значащих; последняя же 0 (которая цифрой или ничем именуется), если стоит одна, то сама по себе значения не имеет. Когда же она присоединяется к какой-нибудь значащей, то увеличивает в десять раз, как будет показано в дальнейшем». Однозначные числа в книге Л.Ф.Магницкого называются «перстами»; числа, составленные из единиц и нулей, - «суставами»; все остальные числа - «сочинениями». Таблица с названиями круглых чисел доведена Магницким до числа с 24 нулями. В «Арифметике» в стихотворной форме подчеркнуто: «Число есть бесконечно...»
Различают позиционные и непозиционные системы счисления. В позиционных системах один и тот же знак может обозначать различные числа в зависимости от места (позиции), занимаемого этим знаком в записи числа. Так, шестидесятеричная вавилонская и десятичная системы счисления являются позиционными.
Непозиционные системы характеризуются тем, что каждый знак (из совокупности знаков, принятых в данной системе для обозначения чисел) всегда обозначает одно и то же число, независимо от места (позиции), занимаемого этим знаком в записи числа. Примером такой системы может служить римская система, возникшая в средние века. В )той системе счисления имеются знаки для узловых чисел: единица обозначается - I, пять - V, пятьдесят - L, сто - С, пятьсот - D , тысяча - М. Все остальные числа получаются при помощи двух арифметических операций: сложения и вычитания. Вычитание производится тогда, когда знак, соответствующий меньшему узловому числу, стоит перед знаком большего узлового числа. Например, IV - четыре, ХС – девяносто. Запишем несколько чисел в римской нумерации.
193 - это сто (С) плюс девяносто, т.е. сто без десяти (ХС), плюс три (III); следовательно, число 193 записывается как СХСIII.
564 - это пятьсот (D) плюс пятьдесят (L) плюс десять (X) плюс четыре, т.е. пять без одного (IV). Следовательно, 564 записывается как 1) DLХ1У.
2708 - это две тысячи (ММ) плюс пятьсот (D) плюс сто (С) плюс сто (С) плюс пять (V) плюс три (III). Следовательно, число 2708 записывается так: ММDССVIII.
Если число содержит несколько (немного) тысяч, то для его записи в римской нумерации пользуются повторением знака М. Вообще же числа четырех-, пяти- и шестизначные записывались с помощью буквы m (от лат. слова mille - тысяча), слева от которой записывали тысячи, а справа - сотни, десятки, единицы. Так, запись СХХХШmDСССХLII является записью числа 133842.
В России до XVII в. в основном употреблялась славянская нумерация, более стройная и удобная, чем римская, но тоже непозиционная. В ней числа изображались буквами славянского алфавита, над которыми для отличия ставили особый знак - титло.
Естественно, что такие системы записи чисел, как римская или славянская, были удобнее, чем зарубки на бирках, поскольку позво-1или записывать большие числа. Однако выполнение действий над ними в таких системах было весьма сложным делом. Поэтому на смену им пришла десятичная система счисления.
Упражнения
Запишите в десятичной системе счисления: XXVII, XXI, ХLIV, LXII, LХХVШ, ХСV, СDХХШ, МСDVII, МСDХIХ, МDСССLХХI.
Запишите в римской системе счисления: 24, 117, 468, 1941, 1997, 2000.

х = an ·10n +a n-1 ·10n-1 +... +а1·10+а0= an a n-1. а1 а0, где an a n-1. а1 а0 принимают значения 0,1,2,3,4,5,6,7,8,9 и ап ± 0.

81. Запись числа в десятичной системе счисления
Как известно, в десятичной системе счисления для записи чисел используется 10 знаков (цифр): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Из них образуются конечные последовательности, которые являются краткими записями чисел. Например, последовательность 3745 является краткой записью числа З (103 + 7 (102 + 4(10 + 5.
Определение. Десятичной записью натурального числа х называется его представление в виде: х = an ·10n + a n-1 ·10n-1 + ... +а1·10 + а0, где коэффициенты an, a n-1, . , а1, а0, принимают значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и ап ± 0.
Сумму an ·10n + an-1 ·10n-1 + ... +а1·10 + а0 в краткой форме принято записывать так:
апаn-1 ...а1а0.
Так как понятие числа и его записи нетождественны, то существование и единственность десятичной записи натурального числа надо доказывать.
Теорема. Любое натуральное число х можно представить в виде:
х = an ·10n + a n-1 ·10n-1 + ... +а1·10 + а0, где коэффициенты an, a n-1, . , а1, а0, принимают значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и ап ± 0, и такая запись единственна.
Доказательство существования записи числа х в виде (1). Среди последовательных чисел 1, 10, 102, 103,..., 10",... найдем наибольшую степень, содержащуюся в х, т.е. такую, что 10 n < х < 10 n +1, что всегда можно сделать.
Разделим (с остатком) число х на 10 n . Если частное этих чисел обозначить через an , а остаток через хп, то х = an ·10n + хп , где ап < 10 и хп < 10 n. Далее, разделив хп на 10n-1 , получим: хп = an-1 ·10n-1 + хn-1 откуда х= an ·10n + an-1 ·10n-1 + хn-1
где an-1 < 10 и хn-1 < 10n-1. Продолжая деление, дойдем до равенства х2 = а1·10 + х1. Положив х1 = а0, будем иметь х = an ·10n + a n-1 ·10n-1 + ... +а1·10 + а0, т.е. число х будет представлено в виде суммы степеней числа 10 с коэффициентами, меньшими 10, что и означает возможность записи числа х в десятичной системе счисления.
Доказательство единственности представления числа х в виде (1). Число п в равенстве (1) однозначно определяется условием 10 n < х < 10 n +1. После того как п определено, коэффициент ап находят из условия: an ·10n < х < (ап + 1) ·10n. Далее, аналогичным образом определяются коэффициенты a n-1, . , а1, а0.
Десятичная запись числа позволяет просто решать вопрос о том, какое из них меньше.
Теорема. Пусть х и у - натуральные числа, запись которых дана в десятичной системе счисления:
х = an ·10n + a n-1 ·10n-1 + ... +а1·10 + а0,
у = bn ·10n + b n-1 ·10n-1 + ... +b1·10 + b0,
Тогда число х меньше числа у, если выполнено одно из условий:
а) п < т;
б)п = т,но ап < bп
в)п = т, ап = b п... ,ак = b к, но а к-1., < b к-1/
Доказательство не приводится.
Например, если х = 345, а у = 4678, то х < у, так как первое число трехзначное, а второе - четырехзначное. Если х = 345, а у = 467, то х < у, так как в первом из двух трехзначных чисел меньше сотен. Если х = 3456, а у = 3467 , то х < у, так как, несмотря на то что в каждом из четырехзначных чисел число тысяч и сотен одинаковое, десятков в числе х меньше, чем в числе у.
Если натуральное число х представлено в виде х = an ·10n + a n-1 ·10n-1 + ... +а1·10 + а0, то числа 1, 10, 102, ..., 10 n называют разрядными единицами соответственно первого, второго, ..., п + 1 разряда, причем 10 единиц одного разряда составляют одну единицу следующего высшего разряда, т.е. отношение соседних разрядов равно 10 - основанию системы счисления.
Три первых разряда в записи числа соединяют в одну группу и называют первым классом, или классом единиц. В первый класс входят единицы, десятки и сотни.
Четвертый, пятый и шестой разряды в записи числа образуют второй класс - класс тысяч. В него входят единицы тысяч, десятки тысяч и сотни тысяч.
Затем следует третий класс - класс миллионов, состоящий тоже из трех разрядов: седьмого, восьмого и девятого, т.е. из единиц миллионов, десятков миллионов и сотен миллионов.
Последующие три разряда также образуют новый класс и т.д. Выделение классов единиц, тысяч, миллионов и т.д. создает удобства для записи и прочтения чисел.
В десятичной системе всем числам можно дать название (имя). Это постигается следующим образом: имеются названия первых десяти чисел, затем из них в соответствии с определением десятичной записи и путем прибавления еще немногих слов образуются названия последующих чисел. Так, числа второго десятка (они представляются в виде
1
·10 + а0 образуются из соединения первых десяти названий и несколько измененного слова десять («дцать»): одиннадцать - один на десять, двенадцать - два на десять и т.д.
Может быть, естественнее было бы говорить «два и десять», но наши предки предпочли говорить «два на десять», что и сохранилось в речи.
Слово «двадцать» обозначает два десятка.
Числа третьего десятка (это числа вида 2
·10 + а0 ) получают путем прибавления к слову «двадцать» названий чисел первого десятка: двадцать один, двадцать два и т.д.
Продолжая далее счет, получим название чисел четвертого, пятого, шестого, седьмого, восьмого, девятого и десятого десятков. Названия этих чисел образуются так же, как и в пределах третьего десятка, только в трех случаях появляются новые слова: сорок (для обозначения четырех десятков), девяносто (для обозначения девяти десятков) и сто (для обозначения десяти десятков). Названия чисел второй сотни составляются из слова «сто» и названий чисел первого и последующих десятков. Таким путем образуются наименования: сто один, сто два, ..., сто двадцать и т.д. Отсчитав новую сотню, будем иметь две сотни, которые для краткости называют «двести». Для получения чисел, больших двухсот, снова воспользуемся названиями чисел первого и последующих десятков, присоединяя их к слову «двести». Затем получим особые названия: триста, четыреста, пятьсот и т.д. до тех пор пока не отсчитаем десять сотен, которые носят название тысяча.
Счет за пределами тысячи ведется так: прибавляя к тысяче по единице (тысяча один, тысяча два и т.д.), получим две тысячи, три тысячи и т.д. Когда же отсчитаем тысячу тысяч, то это число получит особое наименование - миллион. Далее считаем миллионами до тех пор, пока не дойдем до тысячи миллионов. Полученное новое число - тысяча миллионов - носит особое название миллиард, или биллион. В вычислениях миллион принято записывать в виде 106, миллиард - 109. По аналогии можно получить записи еще больших чисел: триллион - 1012, квадриллион - 1015 и т.д.
Таким образом, для того чтобы назвать все натуральные числа в пределах миллиарда, потребовалось только 16 различных слов: один, два, три, четыре, пять, шесть, семь, восемь, девять, десять, сорок, девяносто, сто, тысяча, миллион, миллиард. Остальные названия чисел (в пределах миллиарда) образуются из основных.
Вопросы наименования и записи чисел рассматриваются в начальном курсе математики в разделе «Нумерация». При этом десятичной записью натурального числа считают его представление в виде суммы разрядных слагаемых. Например, 3000 + 700 + 40 + 5 есть сумма разрядных слагаемых числа 3745. Представление числа в виде таких сумм удобно для его наименования: три тысячи семьсот сорок пять.
Упражнения
1. Запишите число в виде суммы разрядных слагаемых:
а) 4725; 6)3370; в) 10255.
2. Какие числа представлены следующими суммами:
а) 6
·103 + 5
·10 + 8; б) 7
·103 + 1
· 10;
в)8
·104+ 103+3
·10 + 1; г) 105 + 102?
3. Напишите наибольшее трехзначное и десятизначное числа, в которых все цифры различны.
4. Решите арифметическим методом задачи из начального курса математики:
а) Сумма цифр двузначного числа равна 9, причем цифра десятков вдвое больше цифры единиц. Найдите это число.
б) Сумма цифр двузначного числа равна наименьшему двузначному числу. Цифра десятков обозначает число в 4 раза меньшее, чем цифра единиц. Какое это двузначное число?
Какие некорректности допущены в формулировках данных задач? Следует ли их исправлять?
Каждая цифра пятизначного числа на единицу больше предыдущей, а сумма его цифр равна 30. Какое это число?
Младшим школьникам предложена задача: «Запиши 5 четырехзначных чисел, используя цифры 2, 5, 0, 6 (одна и та же цифра не должна повторяться в записи числа)». А сколько вообще всевозможных четырехзначных чисел можно записать, используя цифры 2, 5, 0 и 6 гак, чтобы одна и та же цифра не повторялась в записи числа?
82. Алгоритм сложения
Сложение однозначных чисел можно выполнить, основываясь на определении этого действия, но чтобы всякий раз не обращаться к определению, все суммы, которые получаются при сложении однозначных чисел, записывают в особую таблицу, называемую таблицей сложения однозначных чисел, и запоминают.
Естественно, смысл сложения сохраняется и для многозначных чисел, но практическое выполнение сложения происходит по особым правилам. Сумму многозначных чисел обычно находят, выполняя сложение столбиком. Например,
+ 341
7238
7579
Выясним, каким образом возникает этот алгоритм, какие теоретические положения лежат в его основе.
Представим слагаемые 341 и 7238 в виде суммы степеней десяти с коэффициентами:
341 + 7238 = (3
·102 + 4
·10 + 1) + (7
·103 + 2
·102 + 3
·10 + 8). Раскроем скобки в полученном выражении, поменяем местами и сгруппируем слагаемые так, чтобы единицы оказались рядом с единицами, десятки с десятками и т.д. Все эти преобразования можно выполнить на основании соответствующих свойств сложения. Свойство ассоциативности разрешает записать выражение без скобок: 3
·102 + 4
·10 + 1 + 7
·103 + 2
·102 + 3
·10 + 8.
На основании свойства коммутативности поменяем местами слагаемые: 7
·103 + 3
·102 + 2
·102 + 4
·10 + 3
·10 + 1+8. Согласно свойству ассоциативности, произведем группировку: 7
·103 + (3
·102 + 2
·102 ) + (4
·10 + 3
·10) + (1 + 8). Вынесем за скобки в первой выделенной группе число 102, а во второй - 10. Это можно сделать в соответствии со свойством дистрибутивности умножения относительно сложения: 7
·103 + 5
·102 + 7
·10 + 9.
Итак, сложение данных чисел 341 и 7238 свелось к сложению однозначных чисел, изображенных цифрами соответствующих разрядов. Эти суммы находим по таблице сложения. Полученное выражение есть десятичная запись числа 7579.
Видим, что в основе алгоритма сложения многозначных чисел лежат следующие теоретические факты:
способ записи чисел в десятичной системе счисления;
свойства коммутативности и ассоциативности сложения;
дистрибутивность умножения относительно сложения;
таблица сложения однозначных чисел.
Нетрудно убедиться в том, что в случае сложения чисел «с переходом через десяток» теоретические основы алгоритма сложения будут теми же. Рассмотрим, например, сумму 748 + 436.
Представим слагаемые в виде суммы степеней десяти с соответствующими коэффициентами: (7
·102 + 4
·10 + 8) + (4
·102 + 3
·10 + 6). Воспользуемся свойствами сложения и дистрибутивностью умножения относительно сложения и преобразуем полученное выражение к такому виду: (7 + 4)
·102 + (4 + 3)
·10 + (8 + 6). Видим, что в этом случае сложение данных чисел также свелось к сложению однозначных чисел, но суммы 7 + 4, 8 + 6 превышают 10 и поэтому последнее выражение не является десятичной записью числа. Необходимо сделать так, чтобы коэффициенты перед степенями 10 оказались меньше 10. Для этого выполним ряд преобразований. Сначала сумму 8 + 6 представим в виде 1
·10 + 4:
Затем воспользуемся свойствами сложения и умножения и приведем .Полученное выражение к виду: (7 + 4)
·102 + (4 + 3 + 1)
·10 + 4. Суть последнего преобразования такова: десяток, который получился при 1 сложении единиц, прибавим к десяткам данных чисел. И наконец, записав сумму 7 + 4 в виде 1
·10+ 1, получаем: (1
· 10 + 1)102 + 8
·10 + 4. Последнее выражение есть десятичная запись числа 1184. Следовательно. 748+436= 1184.
Выведем алгоритм сложения многозначных чисел в общем виде. Пусть даны числа:
х = an ·10n + a n-1 ·10n-1 + ... +а1·10 + а0,
у = bn ·10n + b n-1 ·10n-1 + ... +b1·10 + b0,

х + у =(an + bn ) ·10n + ( a n-1 + b n-1 ) ·10n-1 + ... + ( а1+b1 ) ·10 + ( а0 + b0)
- преобразования выполнены на основе свойств ассоциативности и коммутативности
сложения, а также дистрибутивности умножения относительно сложения.
Лишь в случае, когда все суммы aк + bк не превосходят 9, операцию сложения можно считать законченной. В противном случае выбираем наименьшее к, для которого ак + bк > 10. Если ак + bк > 10, то из того, что 0 <ак < 9 и 0 < bк < 9, следует неравенство 0 < ак + bк < 18 и поэтому ак + bк можно представить и виде ак + bк = 10 + ск, где 0 < ск < 9. Но тогда (ак + bк) ·10к = (10 + ск) ·10 к = 10 к +1 + ск ·10 и т.д.
В случае когда десятичные записи слагаемых имеют разное количество цифр, надо приписать к числу, имеющему меньшее количество цифр, несколько нулей впереди, уравняв количество цифр в обоих слагаемых. После этого применяется описанный выше процесс сложения.
В общем виде алгоритм сложения натуральных чисел, записанных и десятичной системе счисления, формулируют так:
Записывают второе слагаемое под первым так, чтобы соответствующие разряды находились друг под другом.
Складывают единицы первого разряда. Если сумма меньше десяти, записывают ее в разряд единиц ответа и переходят к следующему разпряду (десятков).

Если сумма единиц больше или равна десяти, то представляют ее в виде ао + Ьо~ 1 10 + с0, где с0 - однозначное число; записывают с() в разряд единиц ответа и прибавляют 1 к десяткам первого слагаемого, после чего переходят к разряду десятков.
Повторяют те же действия с десятками, потом с сотнями и т.д. Процесс заканчивается, когда оказываются сложенными цифры старших разрядов. При этом, если их сумма больше или равна десяти, то приписываем впереди обоих слагаемых нули, увеличиваем нуль перед первым слагаемым на 1 и выполняем сложение 1+0=1.
Заметим, что в этом алгоритме (как и в некоторых других) для краткости употребляется термин «цифра» вместо «однозначное число, изображаемое цифрой».
Упражнения
На примере сложения чисел 237 и 526 покажите, какие теоретические факты лежат в основе алгоритма сложения многозначных чисел.
При изучении алгоритма сложения трехзначных чисел в начальной школе последовательно рассматриваются такие случаи сложения: 231 + 342; 425 + 135; 237 + 526; 529 + 299. Каковы особенности каждого из этих случаев?
3. Вычислите устно значение выражение; использованный прием обоснуйте:
а) 2746 + 7254 + 9876; б) 7238 + 8978 + 2768;
в) (4729 + 8473) + 5271; г) 4232 + 7419 + 5768 + 2591;
д) (357 + 768 + 589) + (332 + 211+ 643).
4. Какие рассуждения школьников вы будете считать правильными при выполнении задания.
а) Можно ли утверждать, что значения сумм в каждом столбике одинаковы:

2459+ 121 53075 + 2306
2458+ 122 53076 + 2305
2457+123 53006 + 2375
2456+ 124 53306 + 2075
б) Можно ли записать значения этих сумм в порядке возрастания:
4583 + 321 4593 + 311 4573 + 331


Лекция 41. Алгоритмы арифметических действий над целыми неотрицательными числами в десятичной системе счисления
План:
1. Алгоритм вычитания
2. Алгоритм умножения
3. Алгоритм деления
2. Решение примеров.
83. Алгоритм вычитания
Вычитание однозначного числа b из однозначного или двузначного числа а, не превышающего 18, сводится к поиску такого числа с, что b + с = а, и происходит с учетом таблицы сложения однозначных чисел.
Если же числа а и b многозначные и b < а, то смысл действия вычитания остается тем же, что и для вычитания в пределах 20, но техника нахождения разности становится иной: разность многозначных чисел чаще всего находят, производя вычисления столбиком, по определенному алгоритму. Выясним, каким образом возникает этот алгоритм, какие теоретические факты лежат в его основе.
Рассмотрим разность чисел 485 и 231. Воспользуемся правилом записи чисел в десятичной системе счисления и представим данную разность в таком виде: 485-231 = (4
·102 + 8
·10 + 5)-(2
·102 + 3
·10 + 1). Чтобы вычесть из числа 4
·102 + 8
·10 + 5 сумму 2
·102 + 3
·10 + 1, достаточно вычесть из него каждое слагаемое этой суммы одно за другим, и тогда:
(4
·102 + 8
·10 + 5) – (2
·102 + 3
·10 + 1) =
(4
·102 + 8
·10 + 5) – 2
·102 - 3
·10 - 1.
Чтобы вычесть число из суммы, достаточно вычесть его из какого-либо одного слагаемого (большего или равного этому числу). Поэтому число 2
·102 вычтем из слагаемого
4
· 102, число 3
·10 - из слагаемого 8
·10, а число 1 - из слагаемого 5, тогда:
(4
·102 + 8
·10 + 5) – 2
·102 - 3
·10 – 1 =
(4
·102 – 2
·102) + (8
·10 - 3
·10) + (5 – 1)
Воспользуемся дистрибутивностью умножения относительно вычитания и вынесем за скобки 102 и 10. Тогда выражение будет иметь вид: (4 - 2)
·102 + (8 - 3)
· 10 + (5 - 1). Видим, что вычитание трехзначного числа 231 из трехзначного числа 485 свелось к вычитанию однозначных чисел, изображенных цифрами соответствующих разрядов в записи заданных трехзначных чисел. Разности 4-2, 8-Зи5-1 находим по таблице сложения и получаем выражение: 2
·102 + 5
·10 + 4, которое является записью числа 254 в десятичной системе счисления. Таким образом, 485 - 231 = 254. Выражение (4 - 2)
·102 + (8 - 3)
· 10 + (5 - 1) задает правило вычитания, которое обычно выполняется столбиком:
_485
231
254
Видим, что вычитание многозначного числа из многозначного основывается на:
способе записи числа в десятичной системе счисления;
правилах вычитания числа из суммы и суммы из числа;
свойстве дистрибутивности умножения относительно вычитания;
таблице сложения однозначных чисел.
Нетрудно убедиться в том, что если в каком-нибудь разряде уменьшаемого стоит однозначное число, меньше числа в том же разряде вычитаемого, то в основе вычитания лежат те же теоретические факты и таблица сложения однозначных чисел. Найдем, например, разность чисел 760 - 326. Воспользуемся правилом записи чисел в десятичной системе счисления и представим эту разность в таком виде:
760 - 326 = (7
·102 + 6
·10 + 0) – (3
·102 + 2
·10 + 6)
Поскольку из числа 0 нельзя вычесть 6, то выполнить вычитание аналогичное тому, как было сделано в первом случае, невозможно. Поэтому возьмем из числа 760 один десяток и представим его в виде 10 единиц - десятичная система счисления позволяет это сделать - тогда будем иметь выражение: (7
·102 + 6
·10 + 0) – (3
·102 + 2
·10 + 6).
Если теперь воспользоваться правилами вычитания суммы из числа и числа из суммы, а также дистрибутивностью умножения относительно вычитания, то получим выражение (7 - 3)
·102 + (5 - 2)
·10 + (10 - 6) или 4
·102 + 3
·10+4. Последняя сумма есть запись числа 434 в десятичной системе счисления. Значит, 760 - 326 = 434.
Рассмотрим процесс вычитания многозначного числа из многозначного в общем виде.
Пусть даны два числа
х = an ·10n + a n-1 ·10n-1 + ... +а1·10 + а0,
у = bn ·10n + b n-1 ·10n-1 + ... +b1·10 + b0,
х - у =(an + bn ) ·10n + ( a n-1 - b n-1 ) ·10n-1 + ... + ( а1+b1 ) ·10 + ( а0 + b0)

Известно также, что у < х. Используя правила вычитания числа из суммы и суммы из числа, дистрибутивность умножения относительно вычитания, можно записать, что
х - у =(an - bn ) ·10n + ( a n-1 - b n-1 ) ·10n-1 + ... + ( а1 - b1 ) ·10 + ( а0 - b0) (1)
Эта формула задает алгоритм вычитания, но при условии, что для всех к выполняется условие ак > bк. Если же это условие не выполняется, то берем наименьшее к, для которого
ак < bк. Пусть т - наименьший индекс, такой, что т > к и ат
· 0, а ат-1 = ... = ак+1 = 0. Имеет место равенство ат ·10 т = (ат - 1) ·10 т + 9· 10 т-1 + ... + 9· 10 к+1 +10·1013 EMBED Equation.3 1415 (например, если т = 4, к = 1, ат = 6, то 6
·10 = 5
·10 + 9
·10і+9
·10І+10·10). Поэтому в равенстве (1) выражение (am - b m ) ·10 т ++ (a к - b к) ·1013 EMBED Equation.3 1415
можно заменить на (am - b m - 1) · 10 т + (9 - b m-1) ·10 13 EMBED Equation.3 1415 + + (9 - b к+1) ·1013 EMBED Equation.3 1415+ (a к+10 - b к) ·1013 EMBED Equation.3 1415.

Из того, что ак < bк < 10, вытекает неравенство 0 < 10 + ак - bк < 10, а из того, что 0 < bк < 9, вытекает неравенство 0
· 9 - bк < 10, где к + 1 < s < т - 1. Поэтому в записи
х - у =(an - bn ) ·10n ++ (am - b m - 1) ·10 т + (9 - b m-1) ·10 13 EMBED Equation.3 1415 13 EMBED Equation.3 1415+ ... + (9 - b к+1) ·1013 EMBED Equation.3 1415+
(a к+10 - b к) ·1013 EMBED Equation.3 1415++. ( а1 - b1 ) ·10 + ( а0 - b0) все коэффициенты с индексом, меньшим т, неотрицательны и не превосходят 9. Применяя далее те же преобразования к коэффициентам an - bn, ..., am - b m - 1, через п шагов придем к записи разности х - у в виде
х - у = сn ·10n + с n-1 ·10n-1 + ... +с1·10 + с0,
где для всех к выполняется неравенство 0 < ск < 10. Если при этом окажется, что сп = 0, то надо отбросить первые слагаемые, вплоть до первого коэффициента, отличного от нуля.
Описанный процесс позволяет сформулировать в общем виде алгоритм вычитания чисел в десятичной системе счисления.
1. Записываем вычитаемое под уменьшаемым так, чтобы соответствующие разряды находились друг под другом.
Если цифра в разряде единиц вычитаемого не превосходит соответствующей цифры уменьшаемого, вычитаем ее из цифры уменьшаемого, записываем разность в разряд единиц искомого числа, после чего переходим к следующему разряду.
Если же цифра единиц вычитаемого больше единиц уменьшаемого, т.е. b0 > а0, а цифра десятков уменьшаемого отлична от нуля, то уменьшаем цифру десятков уменьшаемого на 1, одновременно увеличив цифру единиц уменьшаемого на 10, после чего вычитаем из числа 10 + а0 число b0 и записываем разность в разряде единиц искомого числа, далее переходим к следующему разряду.
Если цифра единиц вычитаемого больше цифры единиц уменьшаемого, стоящие в разряде десятков, сотен и т.д. уменьшаемого, равны нулю, то берем первую отличную от нуля цифру в уменьшаемом (после разряда единиц), уменьшаем ее на 1, вес цифры в младших разрядах до разряда десятков включительно увеличиваем на 9, а цифру в разряде единиц на 10: вычитаем b0 из 10 + а0, записываем разность в разряде единиц искомого числа и переходим к следующему разряду.
В следующем разряде повторяем описанный процесс.
Вычитание заканчивается, когда производится вычитание из старшего разряда уменьшаемого.
Упражнения
На примере нахождения разности чисел 469 и 246, 757 и 208 проиллюстрируйте теоретические основы алгоритма вычитания чисел столбиком.
Выполните вычитание, используя запись и объясняя каждый шаг алгоритма:
а) 84072 - 63894; в) 935204 - 326435;
б) 940235 - 32849; г) 653481 - 233694.
Сколько пятизначных чисел можно записать, используя цифры 1 и 0? Чему равна разность между наибольшим и наименьшим из этих пятизначных чисел?
Назовите способы проверки правильности вычитания многозначных чисел и дайте им обоснование.
Вычислите (устно) значение выражения, использованные приемы обоснуйте:
а) 2362-(839+ 1362);
б) (1241 +576)-841;
в) (7929 + 5027 + 4843) - (2027 + 3843).
6. Докажите, что а + (b-с) =
(а + b) - с, если b
· с,
(а - c) + b, если а
· с, b
· с
Используя это правило, вычислите значение выражения:
а) 6420+ (3580-1736);
б) 5480 + (6290 - 3480).
7. Докажите, что а-(b -с) =
(а - b) + с, если b
· с, а
· b
(а + c) - с, если b
· с, b
· а+ с
Используя это правило, вычислите значение выражения:
а) 3720-(1742-2678),
б) 2354-(965-1246).
8. Докажите, что (а - b) - с =
(а - с) - b , если а
· с, а
· b
а – (b + c), если а
· b + с
Используя это правило, вычислите значение выражения:
а) (4317 -1928) -317;
б) (5243-1354)-1646.
9. Не выполняя вычислений, найдите пары выражений, значения которых равны:
а) 6387 - 1486 - 821; г) 6387 - 1486 + 821;
б) 6387 - (1486 - 821); д) 6387 + 1486 - 821;
в) 6387 - (1486 + 821); е) 6387 + (1486 - 821).
10. Как изменится разность, если:
а) уменьшаемое уменьшить на 277, а вычитаемое увеличить на 135;
б) к уменьшаемому и вычитаемому прибавить 198;
в) к уменьшаемому прибавить, а из вычитаемого вычесть 198?
11. Решить следующие задачи арифметическим методом, решение запишите в виде числового выражения; выбор действий обоснуйте, используя соответствующую математическую теорию:
а) Первый овощной магазин получил с базы на 500 кг овощей больше, чем второй магазин. Первый магазин продал за день 1 т 300 кг овощей, второй 1 т 100 кг. На сколько меньше овощей осталось к концу дня во втором магазине?
б) В двух мешках лежат яблоки; в первом мешке на 70 яблок больше, чем во втором. В каком мешке яблок будет меньше и на сколько, если переложить из первого мешка во второй 45 яблок?
в) В первой библиотеке 6844 книги, что на 959 книг меньше, чем во второй, а в третьей на 2348 книг меньше, чем в первой и второй библиотеках вместе. Сколько книг в третьей библиотеке?

84. Алгоритм умножения
Умножение однозначных чисел можно выполнить, основываясь на определении этого действия. Но чтобы всякий раз не обращаться к определению, все произведения однозначных чисел записывают в особую таблицу, называемую таблицей умножения однозначных чисел, и запоминают.
Естественно, что смысл умножения сохраняется и для многозначных чисел, но меняется техника вычислений. Произведение многозначных чисел, как правило, находят, выполняя умножение столбиком, по определенному алгоритму. Выясним, каким образом возникает этот алгоритм, какие теоретические факты лежат в его основе.
Умножим, например, столбиком 428 на 263.
х 428
263
1284
+
2568
856
112564

Видим, что для получения ответа нам пришлось умножить 428 на 3, 6 и 2, т.е. умножить многозначное число на однозначное; но, умножив на 6, результат записали по-особому, поместив единицы числа 2568 под десятками, так как умножали на 60 и получили число 25680, но нуль в конце записи опустили. Слагаемое 856 - »то результат умножения на 2 сотни, т.е. число 85600. Кроме того, нам пришлось найти сумму многозначных чисел.
Итак, чтобы выполнять умножение многозначного числа на многозначное, необходимо уметь:
умножать многозначное число на однозначное и на степень десяти;
складывать многозначные числа.
Сначала рассмотрим умножение многозначного числа на однозначное. Умножим, например, 428 на 3. Согласно правилу записи чисел в десятичной системе счисления, 428 можно представить в виде 4
·10І + 2
·10 + 8 и тогда 428
·3 = (4
·10І + 2
·10 + 8)
· З; На основании дистрибутивности умножения относительно сложения раскроем скобки: (4
·10І)
· З + (2
·10)
· З + 8
· З
Произведения в скобках могут быть найдены по таблице умножения однозначных чисел. Видим, что умножение многозначного числа на однозначное свелось к умножению однозначных чисел. Но чтобы получить окончательный результат, надо преобразовать выражение 12
·10І + 6
·10 + 24 - коэффициенты перед степенями 10 должны быть меньше 10. Для этого представим число 12 в виде 1 10 + 2, а число 24 в виде 210 + 4. Затем раскроем скобки и на основании ассоциативности сложения и дистрибутивности умножения относительно сложения сгруппируем слагаемые.
Таким образом, умножение многозначного числа на однозначное основывается на:
- записи чисел в десятичной системе счисления;
- свойствах сложения и умножения;
- таблицах сложения и умножения однозначных чисел.
Выведем правило умножения многозначного числа на однозначное в общем виде. Пусть требуется умножить х = х = an ·10 n + a n-1 ·10 n-1 + ... +а1·10 + а0,
на однозначное число у:
х
· у = (an ·10 n + a n-1 ·10 n-1 + ... +а1·10 + а0)
· у
причем преобразования выполнены на основании свойств умножения. После этого, используя таблицу умножения, заменяем все произведения ак
· у =b к
·
·10 + с и получаем:

х
· у = (bn
· 10 + сn) ·10 n + ( b n-1
·10 + c n-1·)
·10 n-1 + + (b1
·10 + с1 ) ·10 + (b0 ·10 + с 0 ) =
bn
· 10 n + (сn + b n-1)
·10 n + + ( с1 + b0 ) · 10 + с 0

По таблице сложения заменяем суммы ск + b к-1, где 0 ( к ( n и к: = 0, 1, 2, ..., n, их значениями. Если, например, с 0 однозначно, то последняя цифра произведения равна с 0. Если же с 0 = 10 + m 0, то последняя цифра равна m 0, а к скобке ( с1 + b0 ) надо прибавить 1. Продолжая этот процесс, получим десятичную запись числа х
· у.
Описанный процесс позволяет сформулировать в общем виде алгоритм умножения многозначного числа х = аn а n-1 а1 а0 на однозначное число у.
1. Записываем второе число под первым.
2. Умножаем цифры разряда единиц числа х на число у. Если произведение меньше 10, его записываем в разряд единиц ответа и переходим к следующему разряду (десятков).
3. Если произведение цифр единиц числа х на число у больше или равно 10, то представляем его в виде 10 q1 + c0; , где c0 – однозначное число; записываем c0 в разряд единиц ответа и запоминаем q1 - перенос в следующий разряд.
4. Умножаем цифры разряда десятков на число у, прибавляем к полученному произведению число q1 и повторяем процесс, описанный в пп. 2 и 3.
5. Процесс умножения заканчивается, когда окажется умноженной цифра старшего разряда.
Как известно, умножение числа х на число вида 1013 EMBED Equation.3 1415 сводится к приписыванию к десятичной записи данного числа к нулей. Покажем это. Умножим число )
х = an ·10 n + a n-1 ·10 n-1 + ... +а1·10 + а0 на 1013 EMBED Equation.3 1415:
(an ·10 n + a n-1 ·10 n-1 + ... +а1·10 + а0) (1013 EMBED Equation.3 1415
Полученное выражение является суммой разрядных слагаемых числа
аn а n-1 а1 а0 00 , так как равно
an ·10 n+ 13 EMBED Equation.3 1415+ a n-1 ·10 n+ 13 EMBED Equation.3 1415-1 + ... + а0 · 1013 EMBED Equation.3 1415 + 0 ( 1013 EMBED Equation.3 1415+ 0 ( 1013 EMBED Equation.3 1415++ 0 ( 10 + 0.
Например, 347 ( 10 і = (3( 10 І + 4 (10 + 7) ( 10 і = 3 ( 10 + 4 ( 10 + 7 ( 10 і + 0 ( 10 І + 0 ( 10 + 0 = 347000.
Заметим еще, что умножение на число у ( 1013 EMBED Equation.3 1415 , где у - однозначное число, сводится к умножению на однозначное число у и на число 1013 EMBED Equation.3 1415 . Например, 52 ( 300 = 52 ( (3 ( 10 І ) = (52( 3) = 156 ( 10 І = 15600.
Рассмотрим теперь алгоритм умножения многозначного числа на многозначное. Обратимся сначала к примеру, с которого начинали, т.е. к произведению 428 ( 263. Представим число 263 в виде суммы 2( 10 І + 6 (10 + 3 и запишем произведение 428 ( (2( 10 І + 6 (10 + 3 ). Оно, согласно дистрибутивности умножения относительно сложения, равно 428 ( (2( 10 І) + 428 ( (6 (10 ) + 428 ( 3 . Отсюда, применив ассоциативное свойство умножения, получим: (428 ( 2) ( 10 І + (428 ( 6) (10 + 428 ( 3 . Видим, что умножение многозначного числа 428 на многозначное число 263 свелось к умножению многозначного числа 428 на однозначные числа 2, 6 и 3, а также на степени 10.
Рассмотрим умножение многозначного числа на многозначное в общем виде. Пусть х и у - многозначные числа, причем у

у = b13 EMBED Equation.3 1415 ·10 13 EMBED Equation.3 1415 + b13 EMBED Equation.3 1415 ·10 13 EMBED Equation.3 1415 + ... + b1·10 + b0,

В силу дистрибутивности умножения относительно сложения, а также ассоциативности умножения можно записать: х ( у = (х · b13 EMBED Equation.3 1415 ·10 13 EMBED Equation.3 1415 + b13 EMBED Equation.3 1415 ·10 13 EMBED Equation.3 1415 + ... + b1·10 + b0 ) =
(х · b13 EMBED Equation.3 1415) ·10 13 EMBED Equation.3 1415 + (х · b13 EMBED Equation.3 1415) ·10 13 EMBED Equation.3 1415 + ... + (х · b1) · 10 + х · b0 . Последовательно умножая число х на однозначные числа b13 EMBED Equation.3 1415 , b13 EMBED Equation.3 1415 , ... , b1 , b0, а затем на степени 10,
получаем слагаемые, сумма которых равна х · у.
Сформулируем в общем виде алгоритм умножения числа х на число у.
1. Записываем множитель х и под ним второй множитель у.
2. Умножаем число х на младший разряд b0 числа у и записываем произведение х · b0 под числом у.
3. Умножаем число х на следующий разряд b1 числа у и записываем произведение х · b1, но со сдвигом на один разряд влево, что соответствует умножению х · b1 на 10.
4. Продолжаем вычисление произведений до вычисления х · bк.
5. Полученные к + 1 произведения складываем.
Изучение алгоритма умножения многозначных чисел в начальном курсе математики, как правило, проходит в соответствии с выделенными этапами. Различия имеются только в записи. Например, при обосновании случая умножения многозначного числа на однозначное пишут:
428 ( 3 = (400 + 20 + 8) ( 3 = 400 ( 3 + 20 ( 3 + 8 ( 3 = 1200 + 60 + 24 = 1284. Основой выполненных преобразований являются:
- представление первого множителя в виде суммы разрядных слагаемых (т.е. запись числа в десятичной системе счисления);
правило умножения суммы на число (или дистрибутивность умножения относительно сложения);
умножение «круглых» (т.е. оканчивающихся нулями) чисел на однозначное число, что сводится к умножению однозначных чисел.

Упражнения
1. На примере умножения числа 357 на 4 проиллюстрируйте теоретические основы алгоритма умножения многозначного числа на однозначное.
2. На примере умножения 452 на 186 проиллюстрируйте теоретические основы алгоритма умножения многозначного числа на многозначное.
3. Объясните, почему нижеприведенные задачи решаются при помощи умножения чисел и решите их.
а) Земля при обращении вокруг Солнца за сутки проходит примерно 2 505 624 км. Какой путь проходит Земля за 365 дней?
б) В школу привезли 56 пачек книг, по 24 книги в каждой пачке. Сколько всего книг привезли в школу?
4. Решение задачи запишите в виде числового выражения, а затем найдите его значение:
а) На элеватор отвезли 472 т овса, ржи на 236 т больше, чем овса, а пшеницы в 4 раза больше, чем овса и ржи вместе. Сколько тонн пшеницы отвезли на элеватор?
б) Столяр делает в день 18 рам, а его помощник на 4 рамы меньше. Сколько рам они сделают за 24 дня, если каждый день будут работать вместе?
5. Как могут рассуждать учащиеся, выполняя следующее задание: «Ширина земельного участка прямоугольной формы равна 24 м. Это в 6 раз меньше его длины. Объясни, что обозначают выражения, записанные по условию задачи, и вычисли их значения: 24 ( 6; 24( (24( 6); (24 + 24 ( 6) ( 6; 24 ( 2; 24( 2 + 24 ( 6 ( 2».
6. Выполните умножение чисел, используя запись столбиком, и объясняя каждый шаг алгоритма:
а) 984 ( 27; в) 7040 ( 234;
6) 8276 ( 73; г) 4569 ( 357.
7. Используя свойства умножения, найдите наиболее рациональным способом значение выражения:
а) 8( 13 ( 4125( 25; г) 124( 4 + 116( 4;
б) 24( (27 ( 125); д) (3750 - 125) ( 8;
в) (88 + 48) ( 125; е) 1779( 1243 – 779( 1243.
8. Зная, что 650-34 = 22100, найдите произведение чисел, не выполняя умножения столбиком:
а) 650 36; б) 650 32; в) 64934.
9. Найдите и обоснуйте приемы умножения 24 на 35 и, пользуясь ими, умножьте на 35 числа: 12, 18, 24, 32, 48, 64.
10. Вычислите рациональным способом значение выражения:
а) (420 -394) 405 – 25 405;
б) 105 209 + (964 - 859) 209 400.
11. Найдите значения выражений 1311, 2711, 3511, 4311, 5411. Верно ли: чтобы найти результат умножения двузначного числа на 11 в случае, когда сумма цифр двузначного числа меньше 10, достаточно между цифрами данного числа написать число, равное сумме его цифр?
12. Найдите значение выражений 29 11, 37 11, 47 11, 85 11, 97 11. Верно ли: чтобы найти результат умножения двузначного числа на 11 в случае, когда сумма цифр двузначного числа больше или равна 10, достаточно между цифрой десятков, увеличенной на 1, и цифрой единиц написать число, равное разности между суммой его цифр и числом 10?
13. На множестве выражений, приведенных ниже, задано отношение «содержать в произведении цифру 0». Определяет ли оно разбиение этого множества на классы? Если да, то выполните его, не вычисляя произведений.
26023 18036 170094
26027 18032 170194
260028 180037 170197.

85. Алгоритм деления
Когда речь идет о технике деления чисел, то этот процесс рассматривают как действие деления с остатком: разделить целое неотрицательное число а на натуральное число b - это значит найти такие целые неотрицательные числа q и r, что a = bq + r, причем 0
· r Выясним сначала, как осуществляется деление на однозначное число. Если на однозначное число делят однозначное или двузначное (не превышающее 89), то используется таблица умножения однозначных чисел. Например, частным чисел 54 и 9 будет число 6, так как 9·6 = 54. Если же надо разделить 51 на 9, то находят ближайшее к нему меньшее число, которое делится на 9 - это число 45, и, следовательно, неполным частным при делении 51 на 9 будет число 5. Чтобы найти остаток, надо из 51 вычесть 45:51 - 45 = 6. Таким образом, 51 = 9·5 + 6, т.е. при делении 51 на 9 получается неполное частное 5 и остаток, равный 6. Записать это можно иначе, при выполнении деления уголком:
_51|9
- 45 5
6
Будем теперь делить трехзначное число на однозначное, например, 378 на 4. Разделить 378 на 4- это значит найти неполное частное q и остаток r, что 378 = 4q + r, причем остаток r должен удовлетворять условию 0
· r · 378 < 4(q +1).
Определим, сколько цифр будет содержаться в записи числа q. Однозначным число q быть не может, так как тогда произведение 4q может быть максимально равно 36 и, значит, не будут выполняться условия, сформулированные выше для г и q. Если число q двузначное, т.е. если 10 < q < 100, то тогда 40 <4 q< 400 и, следовательно,
40 < 378 < 400, что верно. Значит, частное чисел 378 и 4 - число двузначное.
Чтобы найти цифру десятков частного, умножим последовательно делитель 4 на 20, 30, 40 и т.д. Поскольку 4·90 = 360, а 4·100= 400, и 360 < 378 < 400, то неполное частное заключено числами 90 и 100, т.е. q = 90 + q0 . Но тогда должны выполняться неравенства:
4·(90 + q0)
· 378 < 4·(90q + q0 + 1), откуда 360 + 4q0
· 378 < 360 + 4(q0 + 1) и 4q9
·18 < 4(q„ + 1). Число q0 (цифра единиц частного), удовлетворяющее последнему неравенству, можно найти подбором, воспользовавшись таблицей умножения. Получаем, что q0 = 4 и, следовательно, неполное частное q = 90 + 4 = 94; Остаток находится вычитанием: 378-4·94 = 2.
Итак, при делении числа 378 на 4 получается неполное частное 94 и остаток 2: 378 = 4·94 + 2:
Описанный процесс является основой деления уголком:
_378|4
36 94
18
16
2
Аналогично выполняется деление многозначного числа на многозначное. Разделим, например, 4316 на 52. Выполнить это деление - значит найти такие целые неотрицательные числа q и r , что 4316 = 52q + r, 0
· r <52, а неполное частное должно удовлетворять неравенству
52q
· 4316 < 52(q + 1).
Определим число цифр в частном q. Очевидно, частное заключено между числами 10 и 100 (т.е. q - двузначное число), так как 520 < 4316 < 5200. Чтобы найти цифру десятков частного, умножим последовательно делитель 52 на 20, 30, 40, 50 и т.д. Поскольку 52·80 = 4160, а 52·90 = 4680 и 4160 < 4316 < 4680, то неполное частное заключено между числами 80 и 90, т.е. q = 80 + q0. Но тогда должны выполняться неравенства:
52·(80 + q0)
· 4316 < 52·(80 + q0 + 1),
4160 + 52q0
· 4316 < 4160 + 52·(q 0+ 1),
52q0
·156<52·(q0+1).
Число q0 (цифру единиц частного), удовлетворяющее последнему неравенству, можно найти подбором: 156 = 52·3, т.е. имеем случай, когда остаток равен 0. Следовательно, при делении 4316 на 52 получается частное 83.
Приведенные рассуждения лежат в основе деления уголком:
_ 4316 |52
416 83
156
156
0
Обобщением различных случаев деления целого неотрицательного числа а на натуральное число b является следующий алгоритм деления уголком.
1. Если а = b, то частное q=1, остаток r= 0.
2. Если а > b и число разрядов в числах а и b одинаково, то частное q находим перебором, последовательно умножая b на 3, 4, 5, 6, 7, 8, 9, так как а < 10b. Этот перебор можно ускорить, выполнив деление с остатком цифр старших разрядов a и b.
3. Если а > b и число разрядов в числе а больше, чем в числе b, то записываем делимое а и справа от него делитель b, который отделяем от а уголком и ведем поиск частного и остатка в такой последовательности:
a) Выделяем в числе а столько старших разрядов, сколько разрядов в числе b или, если необходимо, на один разряд больше, но так, чтобы они образовывали число d1, больше или равное b. Перебором находим частное q1, чисел d1, и b, последовательно умножая b на 1, 2, 3, 4, 5, 6, 7, 8, 9. Записываем q1 под уголком (ниже b).
б) Умножаем b на q1, и записываем произведение под числом a так, чтобы младший разряд числа bq1, был написан под ним разрядом выделенного числа d1.
в) Проводим черту под bq1 и находим разность r1 = d1 - bq1.
г) Записываем разность r1 под числом bq1, приписываем справа к r1 старший разряд из неиспользованных разрядов делимого а и сравниваем полученное число d2 с числом b.
д) Если полученное число d2 больше или равно b, то относительно него поступаем согласно п. 1 или п. 2. Частное q2 записываем после q 1 .
е) Если полученное число d2 меньше b, то приписываем еще столько следующих разрядов, сколько необходимо, чтобы получить первое число d3, большее или равное b. В этом случае записываем после q1 такое же число нулей. Затем относительно d3 поступаем согласно пп. 1, 2. Частное q2 записываем после нулей. Если при использовании младшего разряда числа а окажется, что d3
Упражнения
Не выполняя деления, определите число цифр частного чисел:
а) 486 и 7; в) 5792 и 27;
б) 7243 и 238; г) 43126 и 543.
2. На примере деления числа 867 на 3 проиллюстрируйте теоретические основы алгоритма деления трехзначного числа однозначное.
Обоснуйте процесс деления уголком а на b, если
а) а = 4066, b = 38; б) а = 4816, b = 112.
Как, не вычисляя, можно установить, что деление выполнено неправильно, если:
а) 51054:127 = 42;
б)405945:135 = 307?
Не вычисляя значений выражений, поставьте знаки > или < , чтобы получились верные неравенства.
а) 1834:7...783:9;
б) 8554:91 ...7488:72;
в) 137532:146... 253242:198;
г) 7248:6... 758547:801.
Объясните, почему при делении р на k в частном получаются нули, если:
а) p = 753, k= 5; г) р = 613, k =3;
б) p =1560, k=6 д) р =4086, k =2;
в) p =84800, k=4; е) p = 4012, k=4.
Не производя деления, разбейте данное выражение на классы при помощи «иметь в частном одно и то же число цифр»:
а) 20 700:300; г) 20300: 700;
б) 5460:60; д) 14640: 80;
в) 30720: 40; е) 1500: 300.
Объясните, почему следующие задачи решаются при помощи деления чисел, и решите их.
а) В 125 коробок разложили поровну 3000 карандашей. Сколько карандашей в каждой коробке?
б) Расфасовали 12 кг 600 г конфет в коробки по 300 г в
каждой. Сколько коробок конфет получилось?
Решение задачи запишите в виде числового выражения, а затем найдите его значение.
а) Туристы совершили экскурсию по реке на катере, проплыв всего 66 км. Сначала 2 ч они плыли со скоростью 18 км/ч, а остальной путь - со скоростью 15 км/ч. Сколько всего часов находились в пути туристы?
б) Печенье упаковали в пачки по 250 г. Пачки сложили в ящик в 4 слоя. Каждый слой имеет 5 рядов по 6 пачек в каждом. Определите массу сложенного в ящик печенья.
10. Найдите значение первого выражения, а затем исполь- зуйте его при вычислении значения второго.
а) 45120:(376 ·12), б) 241·(1264:8), 45120: (376·3); 241 ·(1264:4).
11. Найдите двумя способами значение выражения. а) (297+ 405+ 567): 27; в) 56 ·(378:14); б) (240·23):48; г) 15120:(14·5-18).
12. Найдите значение выражения.
а) 8919:9 + 114240:21;
б) 1 190-35360:34 + 271;
в) 8631 -(99+ 44352:63);
г) 48600 ·(5045 - 2040):243 - (86043:43 + 504) ·200;
д) 4 880 · (546 + 534): 122 - 6 390 · (8 004 - 6924) - 213.


Лекция 42. Системы счисления, отличные от десятичной
План:
1. Запись числа в р-ичной системе счисления
2. Арифметические действия в позиционных системах, отличных от десятичной.
3. Двоичная система счисления


86. Позиционные системы счисления, отличные от десятичной
Основанием позиционной системы счисления может быть не только число 10, но и вообще любое натуральное число р
·2. Система счисления с основанием р называется р -ичной. Так, если р = 2, то - двоичной, если р = 8 - восьмеричной, если р = 10- десятичной.
Для записи чисел в системе с основанием р необходимо р символов. Принято использовать знаки десятичной системы счисления: 0, 1, 2, ..., р - 1. Например, числа в троичной системе счисления записывают при помощи символов 0, 1, 2, а в пятиричной - при помощи символов 0,1,2,3, 4.
Определение. Записью натурального числа х в системе счисления с основанием р называется его представление в виде:
x= a n p n + a n-1 p n-1 ++ a 1 p+ a0 (1) , где коэффициенты a n, a n-1 ,, a 1, a0 принимают значения 0, 1, 2, , p-1 и a n,
· 0.
Теорема. Пусть р
· 2 - заданное натуральное число. Тогда натуральное число х представимо, и притом единственным образом в виде (1).
Доказательство этой теоремы, аналогично доказательству теоремы о существовании и единственности записи числа в десятичной системе счисления.
Вместо представления в виде (1) число х записывают кратко:
_________________
х = an an-1a1 a0. Например, если р=3, то число x = 2·33 + 0·32 +1·3 +2 можно записать в виде 20123, причем читать следует так: «два, ноль, один, два в троичной системе счисления».
Задача. Сосчитать число клеток в фигуре, изображенной на рисунке 124, в троичной и пятиричной системах счисления.












Решение. В троичной системе счисления для записи чисел используются цифры 0, 1 и 2, а любое число представляется в виде
ап · 3n+ ап-1 · 3n-1, + ... + а1 ·3 + а0 , где ап, ап-1,..., а1 а0 принимают значения 0, 1, 2 и ап ( 0.Однозначные числа в этой системе - 0, 1, 2, а число 3 - основание системы счисления - записывается как 10.
При счете клеток в данной фигуре мы получим числа, запись и название которых в троичной системе счисления таковы: 1 (один); 2 (два); 10 (один, ноль); 11 (один, один); 12 (один, два); 20 (два, ноль); 21 (два, один); 22 (два, два); 100 (один, ноль, ноль). Таким образом, число клеток в фигуре на рисунке 124 в троичной системе счисления запишется как 1003.
В пятеричной системе счисления для записи чисел используются цифры 0,1,2,3,4, а любое число представляется в виде an ·5n + аn-1·5n -1 + ... +а1-5 + а0, где an, аn-1 ,, а1, а0 принимают значения 0,1, 2,3,4 и an (0.
Однозначные числа в этой системе – 0, 1, 2, 3,4, а число 5 - основание системы счисления - записывается как 10 .
При счете в пятеричной системе клеток фигуры на рисунке 124 мы получим числа: 1, 2, 3, 4, 10, 11, 12, 13, 14. Таким образом, число этих клеток в пятеричной системе счисления запишется как 145.
Сравнение чисел в системе счисления с основанием р (р (10) выполняется так же, как и в десятичной системе. Так, 2101з<2102з, поскольку при одинаковом числе разрядов и совпадении трех цифр старших разрядов число единиц в первом числе меньше числа единиц во втором.
Арифметические действия над числами в позиционных системах счисления с основанием р (р ( 10) выполняются по тем же правилам, что и в десятичной системе счисления. Надо лишь иметь для системы с основанием р соответствующие таблицы сложения и умножения однозначных чисел.
Составим, например, таблицу сложения однозначных чисел в троичной системе счисления. Однозначные числа в ней – это 0,1, 2. Число 3 записывается 10. Число 4 имеет вид 113, так как 4= 1·3+ 1 = 113.
Полностью таблицу сложения однозначных чисел в троичной системе счисления можно представить в таком виде:

0
1
2

0
0
1
2

1
1
2
10

2
2
10
11


Используя эту таблицу, можно складывать любые числа в троичной системе счисления, причем многозначные числа можно складывать столбиком по правилам, аналогичным правилам сложения чисел в десятичной системе счисления.
Например, 12213 + 1223 = 21203, так как
1221
+ 122
2120
Таблицей сложения однозначных чисел в троичной системе счисления можно пользоваться, выполняя вычитание:
21103 - 2123 = 11213.
Таблица умножения однозначных чисел в троичной системе счисления имеет вид:


0
1
2

0
0
0
0

1
0
1
2

2
0
2
11

На основе этой таблицы и таблицы сложения выполняют умножение многозначных чисел по правилам, аналогичным правилам умножения чисел в десятичной системе счисления. Найдем, например, произведение 1223 ·223:
122
Ч 22
+ 1021
1021
12001
Таким образом, 1223 · 223 = 12001 3.
Таблицей умножения можно пользоваться, выполняя деление чисел в троичной системе счисления, в частности, деление уголком.
Разделим, например, число 100113 на 123:

_10011|12
12 122
_ 111
101
_ 101
101
0
Значит, 100113 : 123 = 1223.

Лекция 43. Системы счисления, отличные от десятичной
План:

4. Переход от записи в одной системе счисления к записи в другой.
3. Основные выводы
Одно и то же натуральное число может быть записано в любой системе счисления с основанием р
· 2. Так, число клеток в фигуре на рисунке 124 в десятичной системе счисления записывается знаком 9, в троичной - 100, в пятеричной -14.
Чтобы из одной записи получить другую, достаточно научиться переходить от записи в заданной системе к записи в десятичной, и наоборот.
Пусть дана запись числа х в системе счисления с основанием р, т.е.
х = апрn + ап-1 ·рn-1+ + at ·p + а0. Найдем запись этого числа в десятичной системе счисления. Так как в записи числа х числа ап, ап-1 ,, at , а0 и р представлены в десятичной системе счисления, то выполнив над ними действия по правилам, принятым в ней, получим десятичную запись числа х. Найдем, например, десятичную запись числа 4578. Для этого представим данное число в виде суммы вида: 4·82 + 5·8 + 7. Значение этого выражения в десятичной системе счисления равно 303. Следовательно, 4578 = 30310.
Пусть теперь число х записано в десятичной системе. Найдем его запись в системе счисления с основанием р.
Число х = аn·рn + ап-1·рn-1 +... + а1р + а0 можно записать в виде
X = р(an ·pn-1 + a n-1 p n-2 ++ a1) + a0.
Так как 0
· а < р, то из последней записи числа х видно, что а0 - остаток, получаемый при делении числа х на р, а аn·рn-1 + ап-1 ·р n-2 +... + а1 -неполное частное. Точно также можно найти, что а1- остаток, получаемый при делении этого неполного частного на р. Таким образом, запись числа х в р-ичной системе находят так: число х делят (в десятичной системе) на р; остаток, полученный при делении, даст последнюю цифру а0 в р-ичной записи числа х; неполное частное снова делим на р, новый остаток даст предпоследнюю цифру р -ичной записи числа х; продолжая деление, найдем все цифры р -ичной записи числа х.
Запишем число 2436 в восьмеричной системе счисления. Разделим 2436 на 8: 2436 = 304·8 + 4. При делении числа 304 на 8 получим: 304 = 38· 8 + 0 и тогда 2436 = (38· 8 + 0) · 8 + 4или 2436 = 38· 82 + 0 · 8 + 4. Делим на 8 число 38: 38 = 4· 8 + 6 и тогда 2436 = (4·8 + 6)·82 + 0·8 + 4 или 2436 = 4·83 + 6· 82 + 0·8 + 4, т.е. 2436 = 4604 8. Описанный процесс можно "представить и в таком виде:
_2436|8
24 _ 304|8
_36 24 _38|8
32 _64 32 4
4 64 6
0
Упражнения
Запишите число в виде суммы степеней основания
с соответствующими коэффициентами:
а) 30245; б) 76108; в) 111012.


2. Сосчитайте число треугольников на рисунке 125 в пятеричной и восьмеричной системе счисления.
Рис. 125










3. Назовите наибольшее и наименьшее двузначные числа в системе счисления с основанием: 10,8,7, 5, 2.
4. Верно ли записаны числа в восьмеричной системе счисления: 347; 8025;
52; 1110; 223?
5. Для числа х назовите предшествующее и непосредственно следующее за ним число, если:
а) х = 345; б) х = 507; в) х =123.
6. Выполните действия над числами, записанными в восьмеричной системе счисления.
а) 4312+ 2767; в) 72·27;
б)6714-3505; г) 5250:76. 7. Запишите в десятичной системе числа: 123, 1445, 2019, 10112. 8. Запишите в порядке возрастания числа.
a) 117,115,112,119;
б) 3278, 11012,5136,839 , 20 1 23.
9. Запишите в двоичной системе числа, запись которых дана в десятичной системе: 27, 125, 306.
10. Что меньше: 265438 - 3257 или 265437 - 3258?
87. Основные выводы § 17
При изучении материала данного параграфа мы выяснили, что десятичная запись натурального числа - это его представление в виде
х = an ·10n +a n-1 ·10n-1 +... +а1·10+а0= an a n-1. а1 а0, где an a n-1. а1 а0 принимают значения 0,1,2,3,4,5,6,7,8,9 и ап ± 0.
В таком виде можно записать любое натуральное число и эта запись единственная.
Десятичная запись натуральных чисел позволяет их сравнивать и выполнять, по определенным правилам (алгоритмам), над ними действия. Мы рассмотрели теоретические основы этих алгоритмов и сформулировали их в общем виде.
Натуральные числа можно записывать не только в десятичной системе счисления, но и вообще в позиционных системах с основанием р
· 2.
При этом записью числа х считается его представление в виде
х = an ·pn +a n-1 ·pn-1 +... +а1·p+а0= an a n-1. а1 а0, где an a n-1. а1 а0 принимают значения 0,1,2,, p-1 и an ± 0.
Действия над числами в позиционных системах счисления, отличных от десятичной, выполняются по правилам, аналогичным принятым в десятичной системе счисления.



§ 18. ДЕЛИМОСТЬ НАТУРАЛЬНЫХ ЧИСЕЛ

Лекция 44. Делимость целых неотрицательных чисел
План:
1. Отношение делимости на множестве неотрицательных чисел.
2. Свойства отношения делимости.
3. Делимость суммы, разности и произведения целых неотрицательных чисел.

Как известно, вычитание и деление на множестве натуральных чисел выполнимо не всегда. Вопрос о существовании разности натуральных чисел а и b решается просто - достаточно установить (по записи чисел), что b < а. Для деления такого общего и простого признака нет. Поэтому в математической науке с давних пор пытались найти такие правила, которые позволили бы по записи числа а узнавать, делится оно на число b или нет, не выполняя непосредственного деления а на b. В результате этих поисков были открыты не только некоторые признаки делимости, но и другие важные свойства чисел; познакомимся с некоторыми из них.
В начальных курсах математики Делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются. Например, признак делимости суммы, разности и произведения на число тесно связаны с правилами деления суммы, разности и произведения на число, изучаемыми в начальных классах. В ряде курсов изучаются признаки делимости чисел на 2,3,5 и другие.
Вообще знания о делимости натуральных чисел расширяют представления о множестве натуральных чисел, позволяют глубже усвоить материал, связанный с делением натуральных чисел, применять полученные ранее знания о способах доказательства, о свойствах отношений и др.

88. Отношение делимости и его свойства
Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что a = bq.
В этом случае число b называют делителем числа а, а число а - кратным числа b.
Например, 24 делится на 8, так как существует такое q =3, что 24 = 8·3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8. В том случае, когда а делится на b, пишут: а :. b. Эту запись »« читают и так: «а кратно b». Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», о