3 итоговая химия


1. Теория химического строения А.М. Бутлерова. Электронное строение атома углерода и виды гибридизации.
В 1861 году А.М. Бутлеровым была предложена теория химического строения органических соединений, которая состоит из следующих основных положений.
В молекулах веществ существует строгая последовательность химического связывания атомов, которая называется химическим строением.
Химические свойства вещества определяются природой элементарных составных частей, их количеством и химическим строением.
Если у веществ с одинаковым составом и молекулярной массой различное строение, то возникает явление изомерии.
Так как в конкретных реакциях изменяются только некоторые части молекулы, то исследование строения продукта помогает определить строение исходной молекулы.
Химическая природа (реакционная способность) отдельных атомов в молекуле меняется в зависимости от окружения, т.е. от того, с какими атомами других элементов они соединены.
Атом углерода в возбужденном состоянии содержит четыре неспаренных электрона на внешнем энергетическом уровне и способен образовать четыре ковалентных связи.

В образовании связей участвуют гибридные орбитали.
Первое валентное состояние – sp3-гибридизация. В результате гибридизации с участием одной s и трех p орбиталей атома углерода образуются четыре эквивалентные sp3-гибридные орбитали, направленные к вершинам тетраэдра под углами 109,5о:
В состоянии sp3-гибридизации атом углерода образует четыре s -связи с четырьмя заместителями и имеет тетраэдричекую конфигурацию с валентными углами, равными или близкими 109,5о. (например, метан)
Второе валентное состояние – sp2-гибридизация. В результате гибридизации с участием одной s- и двух p-орбиталей атома углерода образуются три эквивалентные sp2-гибридные орбитали, лежащие в одной плоскости под углами 120о, а не участвующая в гибридизации p-орбиталь расположена перпендикулярно плоскости гибридных орбиталей.
В состоянии sp2-гибридизации атом углерода образует три s -связи за счет гибридных орбиталей и одну p -связь за счет не участвующей в гибридизации p-орбитали и имеет три заместителя. (например, этилен)
Третье валентное состояние углерода – sp-гибридизация. В результате гибридизации с участием одной s- и одной p–орбитали образуются две эквивалентные sp-гибридные орбитали, лежащие под углом 1800, а не участвующие в гибридизации p-орбитали расположены перпендикулярно плоскости гибридных орбиталей и друг другу. В состоянии sp-гибридизации атом углерода образует две s -связи за счет гибридных орбиталей и две p -связи за счет не участвующих в гибридизации p-орбиталей и имеет два заместителя. (например, ацетилен)
2.Классификация и номенклатура органических соединений. Виды изомерии.
Номенклатура – совокупность правил составления названий химических веществ, классов, групп и др.
Главное место в органической химии занимает международная систематическая номенклатура, разрабатываемая комиссией Международного союза теоретической и прикладной химии (ИЮПАК).
Название органического соединения отражает особенности его строения.
У соединений жирного ряда корень слова обозначает число углеродных атомов главной цепи. Главной считают самую длинную и непрерывную цепь атомов углерода, имеющую наибольшее число заместителей или связанную со старшей функциональной группой.













3.Понятие о сопряженных системах. Понятие об ароматичности.Правило Хюккеля.Сопряжение – это образование в молекуле единого делокализованного электронного облака в результате перекрывания негибридизованных р-орбиталей.
π-π – сопряжение: делокализованная МО образуется за счет двух или более двойных связей:

р-π – сопряжение: в сопряжении участвуют соседние с π-связью атомы, имеющие негибрилизованные р-орбитали:

В результате сопряжения выделяется энергия, внутренняя энергия уменьшается, и молекула становится термодинамически более устойчивой.
Энергия сопряжения – это энергия, выделяющаяся в результате сопряжения (т.е. это энергетический выигрыш в результате сопряжения)
- с увеличением цепи сопряжения энергия сопряжения увеличивается.
Различаются линейные и циклическиесистемы сопряжения, последние в отличие от первых имеют замкнутую цепь сопряжения, в которой все входящие в неё атомы имеют негибридизованную р-орбиталь.
АРОМАТИЧНОСТЬ
Ароматичность – это понятие, обозначающее совокупность особых свойств некоторых циклических сопряженных систем.
Ароматические соединения, несмотря на высокую степень ненасыщенности: 1) предпочтительно вступают в реакции замещения, а не присоединения;
2) устойчивы к мягкому окислению.
Типичными представителями ароматических систем являются арены и их производные. Особенности электронного строения ароматических углеводородов наглядно проявляются в атомно-орбитальной модели молекулы бензола. Каркас бензола образуют шесть sp2-гибридизованных атомов углерода. Все σ-связи (C-C и C-H) лежат в одной плоскости.
Ароматические системы (молекулы)– системы, отвечающие критериям ароматичности:
1) наличие плоского σ-скелета, состоящего из sp2-гибридизованных атомов;
2) делокализация электронов, приводящая к образованию единого π-электрон-ного облака, охватывающего все атомы цикла (циклов);
3) соответствие правилу Э. Хюккеля, т.е. электронное облако должно насчитывать 4n+2 π-электронов, где n=1,2,3,4… (обычно цифра указывает на количество циклов в молекуле);
4) высокая степень термодинамической устойчивости (высокая энергия сопряжения).

Правило Хюккеля:
N= 4n+ 2, гдеN– число π- и р-электронов в сопряженной системе;
n = 0,1,2,3 …
Ароматическая система– это циклическая сопряженная система, удовлетворяющая правилу Хюккеля.
сопряженные и ароматические системы обладают повышенной термодинамической устойчивостью. Они содержат меньший запас внутренней энергии и в основном состоянии занимают более низкий энергетический уровень по сравнению с несопряженными системами. По разнице этих уровней можно количественно оценить термодинамическую устойчивость сопряженного соединения, т. е. его энергию сопряжения(энергию делокализации). С увеличением длины сопряженной цепи энергия сопряжения и соответственно термодинамическая устойчивость соединений возрастают. Конденсированные бензоидные ароматические системы


Небензоидные ароматические системы

4.Конформации молекул алифатического ряда : этана, бутана, этаноламина. Проекции Ньюмена. Энергетика образования конформеров.


Этан


Бутан

5.Понятие о конфигурации молекул. Оптическая, или зеркальная изомерия. Элементы симметрии молекул (ось, плоскость, центр). Ассиметрический атом углерода как центр хиральности. Оптическая активность и удельное вращение веществ.




6.Молекулы с одним центром хиральности (энантиомерия). Глицериновый альдегид как кон-фигурационный стандарт. Проекционные формулы Фишера. Относительная и абсолютная конфигурация. D-, L- и R-, S-системы. Понятие о рацематах.
Энантиомеры - стереоизомеры, относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отображение.
В виде энантиомеров могут существовать только хиральные молекулы.
Хиральность - это свойство объекта быть несовместимым со своим зеркальным отражением. Хиральными (от греч. cheir - рука), или асимметричными, объектами являются левая и правая рука, а также перчатки, ботинки и др. Эти парные предметы представляют собой объект и его зеркальное отражение (рис. 7.1, а). Такие предметы не могут быть полностью совмещены друг с другом.
В то же время существует множество окружающих нас предметов, которые совместимы со своим зеркальным отражением, т. е. они являются ахиральными (симметричными), например тарелки, ложки, стаканы и т. д. Ахиральные предметы обладают по крайней мере одной плоскостью симметрии, которая делит объект на две зеркальноидентичные части (см. рис. 7.1, б).
Подобные взаимоотношения наблюдаются также в мире молекул, т. е. молекулы делятся на хиральные и ахиральные. У ахиральных молекул есть плоскости симметрии, у хиральных их нет.
В хиральных молекулах имеется один или несколько центров хиральности. В органических соединениях в качестве центра хиральности чаще всего выступает асимметрический атом углерода.
Асимметрическим является атом углерода, связанный с четырьмя различными атомами или группами.
При изображении стереохимической формулы молекулы символ «С» асимметрического атома углерода обычно опускается.

Для изображения конфигурационных изомеров на плоскости можно пользоваться стереохимическими формулами. Однако удобнее применять более простые в написании проекционные формулы Фишера (проще - проекции Фишера).
Тетраэдрическую модель одного из энантиомеров располагают в пространстве так, чтобы цепь атомов углерода оказалась в вертикальном положении, а карбоксильная группа - сверху. Связи с неуглеродными заместителями (Н и ОН) у хирального центра должны быть направлены к наблюдателю. После этого модель проецируют на плоскость. Символ асимметрического атома при этом опускается, под ним понимают точку пересечения вертикальной и горизонтальной линий.
Тетраэдрическую модель хиральной молекулы перед проецированием можно располагать в пространстве по-разному,. Необходимо только, чтобы связи, образующие на проекции горизонтальную линию, были направлены к наблюдателю, а вертикальные связи - за плоскость рисунка.
•  в проекционной формуле разрешается менять местами два любых заместителя у одного и того же хирального центра четное число раз (двух перестановок бывает достаточно);
•  проекционную формулу разрешается поворачивать в плоскости рисунка на 180? (что эквивалентно двум перестановкам), но не на 90?. За конфигурационный стандарт был принят глицериновый альдегид. Его левовращающему энантиомеру была произвольно приписана формула (I). Такая конфигурация атома углерода была обозначена буквой l (от лат. laevus - левый). Правовращающему энантиомеру соответственно была приписана формула (II), а конфигурация обозначена буквой d (от лат. dexter - правый).
Заметим, что в стандартной проекционной формуле l-глицеринового альдегида группа ОН находится слева, а у d-глицеринового альдегида - справа.

Отнесение к d- или l-ряду других родственных по структуре оптически активных соединений производится путем сравнения конфигурации их асимметрического атома с конфигурацией d- или l-глицеринового альдегида. Например, у одного из энантиомеров молочной кислоты (I) в проекционной формуле группа ОН находится слева, как у l-глицеринового альдегида, поэтому энантиомер (I) относят к l-ряду. Из тех же соображений энантиомер (II) относят к d-ряду. Так из срав- нения проекций Фишера определяют относительную конфигурацию.

Следует отметить, что l-глицериновый альдегид имеет левое вращение, а l-молочная кислота - правое (и это не единичный случай). Более того, одно и то же вещество может быть как лево-, так и правовращающим в зависимости от условий определения (разные растворители, температура).
Знак вращения плоскости поляризованного света не связан с принадлежностью к d- или l-стереохимическому ряду.
Практическое определение относительной конфигурации оптически активных соединений проводят с помощью химических реакций: либо исследуемое вещество превращают в глицериновый альдегид (или другое вещество с известной относительной конфигурацией), либо, наоборот, изd- или l-глицеринового альдегида получают исследуемое вещество. Разумеется, что в ходе всех этих реакций не должна изменяться конфигурация асимметрического атома углерода.
Произвольное приписание лево- и правовращающему глицериновому альдегиду условных конфигураций было вынужденным шагом. В то время абсолютная конфигурация не была известна ни для одного хирального соединения. Установление абсолютной конфигурации стало возможным только благодаря развитию физико-химических методов, особенно рентгеноструктурного анализа, с помощью которого в 1951 г. впервые была определена абсолютная конфигура,ция хиральной молекулы - это была соль (+)-винной кислоты. После этого стало ясно, что абсолютная конфигурация d- и l-глицериновых альдегидов действительно такая, какая им была первоначально приписана.
d,l-Система в настоящее время применяется для α-аминокислот, гидроксикислот и (с некоторыми дополнениями) для углеводов
R,S-Система обозначения конфигурации. d,L-Система имеет весьма ограниченное применение, так как часто невозможно соотнести конфигурацию какого-либо соединения с глицериновым альдегидом. Универсальной системой обозначения конфигурации центров хиральности является R,S-система (от лат. rectus - прямой, sinister - левый). В ее основе лежит правило последовательности, основанное на старшинстве заместителей, связанных с центром хиральности.
Старшинство заместителей определяется атомным номером элемента, непосредственно связанного с центром хиральности, - чем он больше, тем старше заместитель.
Так, группа ОН старше NH2, которая, в свою очередь, старше любой алкильной группы и даже СООН, поскольку в последней с асимметрическим центром связан атом углерода. Если атомные номера оказываются одинаковыми, старшей считается группа, у которой следующий за углеродом атом имеет больший порядковый номер, причем, если этот атом (обычно кислород) связан двойной связью, он учитывается дважды. В результате следующие группы так располагаются в порядке падения старшинства: -СООН > -СН=О > -СН2ОН.
Для определения конфигурации тетраэдрическую модель соединения располагают в пространстве так, чтобы самый младший замес- титель (в большинстве случаев это атом водорода) был наиболее удален от наблюдателя. Если старшинство трех остальных заместителей убывает по часовой стрелке, то центру хиральности приписывают R-конфигурацию (рис. 7.4, а), если против часовой стрелки - S-конфигурацию (см. рис. 7.4, б), как это видно водителю, находящемуся за рулем (см. рис. 7.4, в).

Рис. 7.4. Определение конфигурации энантиомеров молочной кислоты по R,S- системе (объяснение в тексте)
Для обозначения конфигурации по RS-системе можно применить проекции Фишера. Для этого проекцию преобразуют так, чтобы 
7. Молекулы с двумя центрами хиральности (диастереомерия). Оптическая изомерия винных кислот.
Диастереомерами называют стереоизомеры, не относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отражение, т. е. не являющиеся энантиомерами.
Наиболее важными группами диастереомеров являются σ-диастереомеры и π-диастереомеры.
σ-Диастереомеры.Многие биологически важные вещества содержат в молекуле более одного центра хиральности. При этом возрастает число конфигурационных изомеров, которое определяется как 2n, где n - число центров хиральности. Например, при наличии двух асимметрических атомов соединение может существовать в виде четырех стереоизомеров (22 = 4), составляющих две пары энантиомеров.
2-Амино-3-гидроксибутановая кислота имеет два центра хиральности (атомы С-2 и С-3) и, следовательно, должна существовать в виде четырех конфигурационных изомеров, один из которых является природной аминокислотой.
Структуры (I) и (II), соответствующие L- и D-треонину, а также (III) и (IV), соответствующие L- и D-аллотреонину (от греч. alios - другой), относятся друг к другу, как предмет и несовместимое с ним зеркальное отражение, т. е. они представляют собой пары энантиомеров. При сопоставлении структур (I) и (III), (I) и (IV), (II) и (III), (II) и (IV) видно, что в этих парах соединений у одного асимметрического центра конфигурация одинаковая, а у другого - противоположная. Такие пары стереоизомеров представляют собой диастереомеры. Подобные изомеры называют σ-диастереомерами, так как заместители в них связаны с центром хиральности σ-связями.
Аминокислоты и гидроксикислоты с двумя центрами хиральности относят к D- или L-ряду по конфигурации асимметрического атома с наименьшим номером.
Диастереомеры, в отличие от энантиомеров, различаются физическими и химическими свойствами. Например L-треонин, входящий в состав белков, и L-аллотреонин имеют разные значения удельного вращения (как показано выше).
Мезосоединения.Иногда в молекуле содержатся два асимметрических центра и более, но молекула в целом остается симметричной. Примером таких соединений может служить один из стереоизомеров винной (2,3-дигидроксибутандиовой) кислоты.
Теоретически эта кислота, в которой имеется два центра хиральности, могла бы существовать в виде четырех стереоизомеров (I)-(IV).
Структуры (I) и (II) соответствуют энантиомерам D- и L-ряда (отнесение проведено по «верхнему» центру хиральности). Может показаться, что структуры (III) и (IV) также соответствуют паре энантиомеров. В действительности это формулы одного и того же соединения - оптически неактивной мезовинной кислоты.В идентичности формул (III) и (IV) легко убедиться, повернув формулу (IV) на 180°, не выводя ее из плоскости. Несмотря на два центра хиральности, молекула мезовинной кислоты в целом является ахиральной, так как имеет плоскость симметрии, проходящую по середине связи С-2-С-3. По отношению к D- и L-винным кислотам мезовинная кислота является диастереомером.
Таким образом, существует три (а не четыре) стереоизомера винных кислот, не считая рацемической формы.
Рацемическая смесь (racemic mixture) - смесь в равных пропорциях двух энантиомеров- веществ, проявляющих оптическую активность. Один из них - правовращающий, т.е. поворачивающий плоскость поляризации света, проходящего через него, в правую сторону; другой - левовращающий, отличается только направлением поворота. В результате оба эффекта взаимно гасят друг друга, и рацемическая смесь не обнаруживает оптической активности. Название происходит от рацемической винной кислоты, представляющей собой смесь равных количеств D-(правовращающей) и L-(левовращающей) винных кислот.
π-Диастереомеры.К ним относятся конфигурационные изомеры, содержащие π-связь. Этот вид изомерии характерен, в частности, для алкенов. Относительно плоскости π-связи одинаковые заместители у двух атомов углерода могут располагаться по одну (цис) или по разные (транс) стороны. В связи с этим существуют стереоизомеры, известные под названием цис- и транс-изомеров, как показано на примере цис- и транс-бутенов (см. 3.2.2). π-Диастереомерами являются простейшие ненасыщенные дикарбоновые кислоты - малеиновая и фумаровая.
Малеиновая кислота является термодинамически менее стабильным цис-изомером по сравнению с транс-изомером - фумаровой кислотой. Под действием некоторых веществ или ультрафиолетовых лучей между обеими кислотами устанавливается равновесие; при нагревании (~150°C) оно смещено в сторону более стабильного транс-изомера.
8.Электронные эффекты в молекулах: виды и механизм передачи. Классификация органиче-ских реакций.
Электронные эффекты - смещение электронной плотности в молекуле,ионе или радикале под влиянием заместителей.
Заместителем считается любой атом (кроме водорода) или группа атомов,связанная с атомом углерода.
Различают индуктивный и мезомерный электронные эффекты заместителей.




+М-эффект характерен для групп -OH и -NH2 . -М-эффект проявляют заместители с электроотрицательными атомами и смещающие электронную плотность на себя. -М-эффект характерен для групп -CH=O, -COOH, -NO2. Хотя эти группы имеют неподеленные электронные пары,пространственное расположение орбиталей с этими электронами не позволяет им вступать в систему сопряжения. Таким образом, в данном случае заместитель может лишь оттягивать электроны из общей системы сопряжения за счет своей более высокой электроотрицательности.
Вопрос 9
Кислотность и основность органических соединений.
Для оценки кислотности и основности органических соединений наибольшее значение имеют две теории – теория Бренстеда и теория Льюиса.
По теории Льюиса кислотные и основные свойства соединений определяются их способностью принимать или отдавать пару электронов с образованием связи. В соответствии с принципом ЖМКО кислоты и основания Льюиса делятся на жесткие и мягкие.
Кислотами Льюиса могут быть атомы, молекулы или катионы, обладающие вакантной орбиталью и способные принимать пару электронов с образованием ковалентной связи.
Кислоты Льюиса – акцепторы пары электронов; основания Льюиса – доноры пары электронов. Основания Льюиса (атом, молекула или анион) должны обладать по крайней мере одной парой валентных электронов, которую они способны предоставить партнеру для образования ковалентной связи. Все основания Льюиса представляют собой нуклеофильные реагенты.
По теории Бренстеда (протолитической теории) кислотность и основность соединений связывается с переносом протона Н+. Кислота и основание образуют сопряженную кислотно-основную пару, в которой чем сильнее кислота, тем слабее сопряженное ей основание, и напротив, чем сильнее основание, тем слабее сопряженная ему кислота.
Кислоты Бренстеда (протонные кислоты) – нейтральные молекулы или ионы, способные отдавать протон (доноры протонов).
Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).
Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии кислоты. В качестве растворителя при изучении кислотно-основных равновесий обычно используется вода.
В зависимости от природы элемента, с которым связан протон, различают ОН- кислоты (карбоновые кислоты, фенолы, спирты), SH-кислоты (тиолы), NН-кислоты (амины, амиды, имиды), СН-кислоты (углеводороды и их производные). Элемент и связанный с ним атом водорода называют кислотным центром. Во всех случаях присутствует сдвиг электронной плотности от атома водорода к более электроотрицательному атому, протону более или менее легко отщепиться. Чем выше электроотрицательность элемента, с которым связан протон, тем больше кислотность соединения (так, карбоновые кислоты являются более сильными кислотами, чем тиолы или амины).
Наличие в молекуле электроноакцепторных групп, обладающих отрицательными электронными эффектами, увеличивает положительный заряд на протоне, что приводит к усилению кислотных свойств.
Для образования ковалентной связи с протоном основания Бренстеда должны предоставлять либо неподелениую пару электронов, либо электроны p-связи. В соответствии с этим основания Бренстеда делятся на п-основания и p-основания.
n-основания могут быть нейтральными или отрицательно заряженными. Как правило, анионы обладают более сильно выраженным основным характером, чем нейтральные вещества. То есть амид-ион NН2– или гидроксид-ион НО– по основности превосходят аммиак NН3 и воду Н2О.
В p-основаниях, к которым относятся алкены, алкадиены, арены, центром основности, т.е. местом присоединения протона, являются электроны p-связи. Это очень слабые основания, так как протонируемые электронные пары несвободны.
Наличие электронодонорных заместителей увеличивает основность органических соединений.
1. Зависимость кислотности от гетероатома.
Под природой гетероатома понимают его электроотрицательность (Э.О.) и поляризуемость. Чем больше (Э.О.) тем легче осуществляется гетеролитический разрыв в молекуле. В периодах слева направо с ростом заряда ядра растет (Э.О), т.е. способность элементов удерживать отрицательный заряд. В результате смещения электронной плотности связь между атомами поляризуется. Чем больше электронов и чем больше радиус атома, тем дальше электроны внешнего энергетического уровня расположены от ядра, тем выше поляризуемость и выше кислотность.
Пример: СН- NH- OH- SH-

увеличение Э.О. и кислотности
С, N,О – элементы одного периода. Э.О. по периоду растет, кислотность увеличивается. В этом случае поляризуемость влиять на кислотность не будет.
Поляризуемость атомов в периоде изменяется незначительно, поэтому главным фактором определяющим кислотность является Э.О.
Теперь рассмотрим ОН- SH-

увел-е кислотности
О, S – находятся в одной группе, радиус в группе сверху вниз увеличивается, следовательно, растет и поляризуемость атома, что ведет к увеличению кислотности. У S радиус атома больше, чем у О, поэтому тиолы проявляют более сильные кислотные свойства по сравнению со спиртами.
2. Влияние углеводородного радикала и присутствующих в нем заместителей
Электроноакцепторные (Э.А.) заместители способствуют делокализации электронной плотности, что ведёт к стабильности аниона и соответственно увеличению кислотности.
Электронодонорные (Э.Д.) заместители наоборот способствуют концентрации электронной плотности в кислотном центре, что ведет к понижению кислотности и увеличению основности.
Влияние растворителя.
Взаимодействие молекул или ионов растворенного вещества с растворителем называется процессом сольватации. Стабильность аниона существенно зависит от его сольватации в растворе: чем больше ион сольватирован, тем он устойчивее, а сольватация тем больше, чем меньше размер иона и чем меньше делокализация в нем отрицательного заряда.
10. Спирты. Номенклатура и классификация спиртов. Химические свойства предельных одноатомных спиртов.
Спиртами называют производные углеводородов, содержащие вместо одного или нескольких атомов водорода одну или несколько гидроксигрупп (-OH). Общая формула спиртов, таким образом,R-OH.
1. По числу гидроксильных групп в молекуле спирты разделяют на одноатомные, двухатомные, трехатомные и т.д. до многоатомных.
2. По строению углеводородной цепи спирты разделяют на предельные (насыщенные спирты) и непредельные.
3. По положению гидроксильной группы в цепи различают первичные, вторичные и третичные спирты:
При наименовании спиртов по номенклатуре IUPAC находят самую длинную цепь атомов углерода, содержащую гидрокисльную группу, и нумеруют ее с края, к которому ближе гидроксильная группа. После перечисления заместителей добавляется название, соответствующее углеводороду главной цепи с добавлением окончания –ол и цифры, показывающей место гидроксильной группы в цепи.
 Химические свойства обуславливают гидроксильные группы. Реакции могут протекать в 2х направлениях:
Реакции с разрывом О-Н связи:
А) действие на спирты минеральных и органических кислот, в результате чего образуются сложные эфиры:
 
Б) Низшие спирты взаимодействуют с щелочными металлами очень бурно, а с щелочами не реагируют. С ростом радикала скорость реакции падает:
 
В) Под действием перманганата или дихромата калия спирты окисляются, причем первичные – до альдегидов, а вторичные превращаются в кетоны:
 
Третичные спирты окисляются с разрывом С-С связи.
 Реакции с разрывом С-О связи:
А) дегидратация. Реакция идет при нагревании и при участии водоотнимающего агента до образования алкена:
 Если нагрев слабый, то происходит внутримолекулярная дегидратация, в результате чего образуются простые эфиры:
 
Б) Спирты могут реагировать с галогенводородами, причем третичные спирты реагируют очень быстро, а первичные и вторичные - медленно:
 
6. Образование ацеталей и полуацеталей

3. Кислотные свойства спиртов
При взаимодействии с сильными основаниями и щелочными металлами спирты ведут себя как кислоты:

11. Многоатомные спирты: химические свойства. Образование хелатных комплексов как качественная реакция на α-диольный фрагмент. Этиленгликоль, глицерин, инозит. Полиамины: этилендиамин, путресцин, кадаверин. Их биологическая роль.
 
Кислотные свойства
1. С активными металлами: 
HO-CH2-CH2-OH + 2Na → H2↑+ NaO-CH2-CH2-ONa    (гликолят натрия) 
2. С гидроксидом меди(II) – качественная реакция!
Качественной реакцией на двухатомные и многоатомные спирты (диольный фрагмент) является реакция с Си(ОН)2 в щелочной среде, в результате которой образуется комплексное соединение гликолят меди в растворе, дающем синее окрашивание.
Упрощённая схема
Основные свойства 
1. С галогенводородными кислотами                                             
HO-CH2-CH2-OH + 2HCl  H+↔ Cl-CH2-CH2-Cl + 2H2O
2. С азотной кислотой
Тринитроглицерин - основа динамита
Этиленгликольтоксичен – сильный Яд! Угнетает ЦНС и поражает почки.
Глицерин (пропантриол-1,2,3) – не ядовит. Без запаха. Хорошо смешивается с водой. Распространён в живой природе. Играет важную роль в обменных процессах, так как входит в состав жиров (липидов) животных и растительных тканей. Применяется как компонент мазей для смягчения кожи.
Многоатомный циклический спирт инозит относится к витаминоподобным соединениям (витамины группы В) и является структурным компонентом сложных липидов – фосфатидилинозитов. 
Этилендиамин применяется для полученияэтилендиаминтетрауксусной кислоты взаимодействием схлоруксусной кислотой. Его соли сжирными кислотами используются как смягчающие агенты при производстве текстиля. Также этилендиамин применяется в производстве красителей,эмульгаторов, стабилизаторовлатексов, пластификаторов ифунгицидов. Этилендиамин токсичен; предельно допустимая концентрация его паров в воздухе составляет 0,001 мг/л.
Из полиаминов аиболее известны тетраметилендиамин, или путресцин H2N(CH2)4NH2, и пентаметилендиамин, или кадаверин H2N(CH2)5NH2. Их долгое время считали трупными ядами, т.е. веществами, образующимися при декарбоксилировании диаминокислот и обусловливающими ядовитость гниющих белков.
12. Фенолы.Общая характеристика. INCLUDEPICTURE "http://cs636818.vk.me/v636818935/72fa/-fMRtxzMre4.jpg" \* MERGEFORMATINET INCLUDEPICTURE "http://cs636818.vk.me/v636818935/72fa/-fMRtxzMre4.jpg" \* MERGEFORMATINET INCLUDEPICTURE "http://cs636818.vk.me/v636818935/72fa/-fMRtxzMre4.jpg" \* MERGEFORMATINET INCLUDEPICTURE "http://cs636818.vk.me/v636818935/72fa/-fMRtxzMre4.jpg" \* MERGEFORMATINET
13.Электронное строение карбонильной группы. Реакции нуклеофильного присоединения АN по карбонильной группе. Реакции присоединения воды, синильной кислоты, спиртов, би-сульфита натрия. Механизм альдольной конденсации и реакции Канницаро.


Строение карбонильной группы C=O.
Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.
Атомы углерода и кислорода в карбонильной группе находятся в состоянии sp2-гибридизации. Углерод своими sp2-гибридными орбиталями образует 3 -связи (одна из них - связь С–О), которые располагаются в одной плоскости под углом около 120° друг к другу. Одна из трех sp2-орбиталей кислорода участвует в -связи С–О, две другие содержат неподеленнные электронные пары. -Связь образована р-электронами атомов углерода и кислорода.

Связь С=О сильно полярна. Ее дипольный момент значительно выше, чем у связи С–О в спиртах. Электроны кратной связи С=О, в особенности более подвижные -электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н+.
В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С2–C5 и кетоны С3–С4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.
Реакционные центры альдегидов и кетонов
sp2-Гибридизованный атом углерода карбонильной группы образует три σ-связи, лежащие в одной плоскости, и π-связь с атомом кислорода за счет негибридизованной p-орбитали. Вследствие различия в электроотрицательности атомов углерода и кислорода π-связь между ними сильно поляризована (рис. 5.1). В результате на атоме углерода карбонильной группы возникает частичный положительный заряд δ+, а на атоме кислорода - частичный отрицательный заряд δ-. Поскольку атом углерода электронодефицитен, он представляет собой центр для нуклеофильной атаки.
Распределение электронной плотности в молекулах альдегидов и кетонов с учетом передачи электронного влияния электроно-

Рис. 5.1. Электронное строение карбонильной группы
Схема 5.1. Реакционные центры в молекуле альдегидов и кетонов

В молекулах альдегидов и кетонов присутствует несколько реакционных центров:
•  электрофильный центр - атом углерода карбонильной группы - предопределяет возможность нуклеофильной атаки;
•  основный центр - атом кислорода - обусловливает возможность атаки протоном;
•  СН-кислотный центр, атом водорода которого обладает слабой протонной подвижностью и может, в частности, подвергаться атаке сильным основанием.
В целом альдегиды и кетоны обладают высокой реакционной способностью.

Нуклеофильное присоединение
Для альдегидов и кетонов наиболее характерны реакции нуклеофильного присоединения AN.
Общее описание механизма нуклеофильного присоединения AN
Легкость нуклеофильной атаки по атому углерода карбонильной группы альдегида или кетона зависит от величины частичного
положительного заряда на атоме углерода, его пространственной доступности и кислотно-основных свойств среды.

С учетом электронных эффектов групп, связанных с карбонильным атомом углерода, величина частичного положительного заряда δ+ на нем в альдегидах и кетонах убывает в следующем ряду:

Пространственная доступность карбонильного атома углерода уменьшается при замене водорода более объемистыми органиче- скими радикалами, поэтому альдегиды более реакционноспособны, чем кетоны.

Общая схема реакций нуклеофильного присоединения AN к карбонильной группе включает нуклеофильную атаку по карбонильному атому углерода, за которой следует присоединение электрофила к атому кислорода.

В кислой среде активность карбонильной группы, как правило, увеличивается, поскольку вследствие протонирования атома кислорода на атоме углерода возникает положительный заряд. Кислотный катализ используют обычно тогда, когда атакующий нуклеофил обладает низкой активностью.

По приведенному выше механизму осуществляется ряд важных реакций альдегидов и кетонов.

Присоединение спиртов. Спирты при взаимодействии с альдегидами легко образуют полуацетали. Полуацетали обычно не выделяют из-за их неустойчивости. При избытке спирта в кислой среде полуацетали превращаются в ацетали.

Применение кислотного катализатора при превращении полуацеталя в ацеталь становится понятным из приведенного ниже механизма реакции. Центральное место в нем занимает образование карбо- катиона (I), стабилизированного за счет участия неподеленной пары электронов соседнего атома кислорода (+M-эффект группы С2Н5О).

Реакции образования полуацеталей и ацеталей обратимы, поэтому ацетали и полуацетали легко гидролизуются избытком воды в кислой среде. В щелочной среде полуацетали устойчивы, так как алкоксидион является более трудно уходящей группой, чем гидроксид-ион.
Присоединение воды. Присоединение воды к карбонильной группе - гидратация - обратимая реакция. Степень гидратации альдегида или кетона в водном растворе зависит от строения субстрата.

Трихлороуксусный альдегид (хлораль) гидратирован полностью. Электроноакцепторная трихлорометильная группа настолько стабилизирует хлоральгидрат, что это кристаллическое вещество отщепляет воду только при перегонке в присутствии дегидратирующих веществ - серной кислоты и др.

Присоединение аминов и их производных. Амины и другие азотсодержащие соединения общей формулы NH2X (X = R, NHR) реагируют с альдегидами и кетонами в две стадии. Сначала образуются продукты нуклеофильного присоединения, которые затем вследствие неустойчивости отщепляют воду. В связи с этим данный процесс в целом классифицируют как реакцию присоединения-отщепления.

В случае первичных аминов получаются замещенные имины (их называют также основаниями Шиффа).
Имины - промежуточные продукты многих ферментативных процессов. Получение иминов проходит через стадию образования аминоспиртов, которые бывают относительно устойчивы, например при взаимодействии формальдегида с α-аминокислотами (см. 12.1.4).

Имины являются промежуточными продуктами получения аминов из альдегидов и кетонов путем восстановительного аминирования. Этот общий способ заключается в восстановлении смеси карбонильного соединения с аммиаком (или амином). Процесс протекает по схеме присоединения-отщепления с образованием имина, который затем восстанавливается в амин.

При взаимодействии альдегидов и кетонов с производными гидразина получаются гидразоны. Эту реакцию можно использовать для выделения альдегидов и кетонов из смесей и их хроматографической идентификации.


Основания Шиффа и другие подобные соединения легко гидролизуются водными растворами минеральных кислот с образованием исходных продуктов.
 Образование бисульфитных соединений Присоединением молекулы кислого сернистокислого натрия(бисульфита) получаются так называемые бисульфитные соединения, причем водород присоединяется ккислороду карбонильной группы, а остаток SO2ONa — к углеродному атому:

В бисульфитных соединениях атом серы непосредственно связан с углеродом.
КАННИЦЦАРО РЕАКЦИЯ, окислит.-восстановит. диспропорционирование альдегидов под действием щелочис образованием первичных спиртов и карбоновых к-т, напр.:  
 Предполагаемый механизм Канниццаро реакции в гомог. среде включает стадию гидридного переноса  Для ароматич. альдегидов не исключена возможность участия в Канниццаро реакции анион-радикалов, образующихся в результате одноэлектронного переноса. Р-ция, подобная Канниццаро реакции, осуществляется при внутримол. диспропорционировании -кетоальдегидов в присут. щелочей(перегруппировка Канниццаро):  
14.Реакции присоединения – отщепления (реакции с гидроксиламином, аминами, гидразином и его производными). Реакции окисления, восстановления, полимеризации карбонильных со-единений.









 




15.Электронное строение карбоксильной группы и карбоксилат-аниона. Химические превращения карбоновых кислот. Кислотность и оснόвность органических соединений. Влияние заместителей на величину кислотности.







18.Аминоспирты: аминоэтанол (коламин), холин, ацетилхолин. Аминофенолы: дофамин, норадреналин, адреналин. Биологическая роль этих соединений.
Аминоспиртами называют соединения, содержащие в молекуле одновременно амино- и гидроксигруппы. Простейшим представителем аминоспиртов является  2-аминоэтанол (тривиальное название коламин) - структурный компонент сложных липидов – фосфатидилэтаноламинов.
С сильными кислотами 2-аминоэтанол образует устойчивые соли.

α-Аминоспирты способны образовывать окрашенные внутрикомплексные соединения с гидроксидом меди(11).

внутрикомплексное соединение меди(Н) с а-аминоспиртом
Четвертичное аммониевое основание - гидроксид (2-гидрокси- этил)триметиламмония [HOCH2CH2N+(CH3)3]OH- - имеет большое значение как витаминоподобное вещество, регулирующее жировой обмен – холин.

Замещенные фосфаты холина являются структурной основой фосфолипидов - фосфатидилхолинов - важнейшего строительного материала клеточных мембран (см. 10.4.1). Сложный эфир холина и уксусной кислоты - ацетилхолин - наиболее распространенный посредник при передаче нервного возбуждения в нервных тканях (нейромедиатор).

Аминофенолы
Важная роль в организме принадлежит аминоспиртам, содержащим в качестве структурного фрагмента остаток пирокатехина -  катехоламины. К катехоламинам принадлежат дофамин, норадреналин и адреналин, выполняющие роль нейромедиаторов. Адреналин участвует в регуляции сердечной деятельности, при физиологических стрессах он выделяется в кровь («гормон страха»).

19. Гидрокси- и аминокислоты. Реакции циклизации. Лактоны, лактамы и их гидролиз. Реакции элиминирования β-гидрокси- и β-аминокислот. Однооснόвные (молочная, β- и γ- гидроксимасляные) двухоснόвные (яблочная, винная), трёхоснόвные (лимонная) гидроксикислоты.
Гидроксикислоты (г/к)
Функц. группы Г/К : ОН и СООН (старшая)
Классификация
1)   по у/в скелету:
алифат-кие;  аромат-кие, циклические
2) по количеству СООН –групп:
моно-, ди- или трикарбоновые к-ты;
3) по количества ОН-групп: ди-, три- , тетра и т. д. гидроксикислоты.
По взаимному расположению функциональных групп различают α-, β-, γ-, δ-гидроксикислоты и т. д..Специфические свойства гидроксикислот обусловлены принадлежностью этих соединений одновременно к спиртам и карбоновым кислотам и во многом зависят от взаимного расположения
АМИНОКИСЛОТЫ, органические к-ты, содержащие одну или несколько аминогрупп
Отношение гидроксикислот к нагреванию.При нагревании ά –гидроксикислот образуются циклические сложные эфиры –лактиды.

β -Гидроксикислоты при нагревании переходят в непредельные кислоты.

γ-Гидроксиокислоты претерпевают внутримолекулярное ацилирование с образованием циклических сложных эфиров – лактонов.

циклические сложные эфиры  -лактиды: 
β-Гидрокси- и β-аминокислоты. Характерное общее свойство этих гетерофункциональных кислот заключается в способности к элиминированию молекулы воды или соответственно аммиака с образованием α,β-ненасыщенных кислот.

Реакции элиминирования протекают в мягких условиях. Это объясняется высокой протонной подвижностью α-атома водорода, обусловленной электронным влиянием двух электроноакцепторных
групп (Х и СООН). 
γ-Гидрокси- и γ-аминокислоты. Эти кислоты, как и кислоты с δ-расположением функциональных групп, при нагревании претерпевают внутримолекулярную циклизацию. Из гидроксикислот при этом образуются циклические сложные эфиры - лактоны, из аминокислот - циклические амиды - лактамы. Лактоны легко образуются уже при незначительном нагревании, а также в кислой среде.

в γ- и δ-аминокислотах.

Лактоны и лактамы, будучи соответственно сложными эфирами и амидами, гидролизуются в кислой или щелочной среде.
Лактим-лактамная таутомерия
Этот вид таутомерии характерен для азотсодержащих гетероциклов с фрагментом N=C—ОН.
Взаимопревращение таутомерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную ОН-группу, к основному центру — пиридиновому атому азота и наоборот. Обычно лактамная форма в равновесии преобладает.


К гидроксикислотам, имеющим большое биологическое значение, относятся:
Гликолиевая кислота HOCH2COOH содержится во многих растениях, например, свекле и винограде.
Молочная кислота CH3CH(OH)COOH. Соли называются лактаты. Широко распространена в природе, является продуктом молочнокислого брожения углеводов. Содержит асимметрический атом углерода и существует в виде двух энантиомеров. В природе встречаются оба энантиомера молочной кислоты. При молочнокислом брожении образуется рацемическая D,L-молочная кислота. D-молочная (мясо-молочная) кислота образуется при восстановлении пировиногралной кислоты под действием кофермента НАДН и накапливается в мышцах при интенсивной работе.
Яблочная кислота HOOCCH(OH)CH2COOH. Соли называются малаты.
Содержится в незрелых яблоках, рябине, фруктовых соках. Является ключевым соединением в цикле трикарбоновых кислот. В организме образуется путем гидратации фумаровой кислоты и далее окисляется коферментом НАД+ до щавелевоуксусной кислоты.
Лимонная кислота. Соли называются цитраты.

Содержится в плодах цитрусовых, винограде, крыжовнике. Является ключевым соединением в цикле трикарбоновых кислот.
Винная кислота (соли тартраты) HOOCCH(OH)CH(OH)COOH.
D-винную кислоту, L-винную кислоту и оптически неактивную мезовинную кислоту. D-винная кислота содержится во многих растения, например, в винограде и рябине. Бета-гидроксимасляная кислота CH3-CН(ОН)-CН2- накапливается в организме у больных сахарным диабетом
Гамма-гидроксимасляная кислота (ГОМК) НО-CH2-CН2-CН2-CООН оказывает наркотическое действие, практически нетоксична. Применяется в виде натриевой соли как снотворное средство, а также в анестезиологии в качестве наркотического средства при операциях.
20. Оксокислоты. Характерные хим. Свойства.
Оксокислотами называют соединения, содержащие в молекуле одновременно карбоксильную и альдегидную (или кетонную)групп.



21.α-аминокислоты: химические свойства (реакции этерификации, ацилирования, алкилирования, образование иминов), реакции дезаминирования, строение биполярного иона, кислотно-оснόвные свойства. Качественные реакции на аминокислоты.

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группа –СООН и аминогруппа -NH2.
Аминокислоты подразделяются на незаменимые (валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин). Незаменимые аминокислоты не синтезируются в организме человека, но необходимы для нормальной жизнедеятельности. Они должны поступать в организм с пищей. При недостатке незаменимых аминокислот задерживается рост и развитие организма. Оптимальное содержание незаменимых аминокислот в пищевом белке зависит от возраста, пола и профессии человека, а также от других причин. Белки пищи в организме человека расщепляются до аминокислот. Определенная часть аминокислот, в свою очередь, расщепляется до органических кетокислот, из которых в организме вновь синтезируются новые аминокислоты, а затем белки. Отдельно стоят так называемые две "полузаменимые" аминокислоты: цистин (цистеин) и тирозин. Отличаются они от остальных тем, что организм может использовать их вместо, соответственно, метионина и фенилаланина для производства белка. Остальные 13 аминокислот синтезируются в организме человека в реакциях трансаминирования. Эти аминокислоты – «заменимые»- аланин, аргинин, аспарагин/аспарагиновая кислота, карнитин, цистеин, цистин, глутаминовая кислота, глутамин, глицин, гидроксипролин, пролин, серин, тирозин.
α-Аминокислоты общей формулы

В водных растворах α-аминокислоты существуют в виде равновесной смеси диполярного иона, катионной и анионной форм:

Декарбоксилирование.- важный путь распада аминокислот в организме. В α-аминокислотах электроноакцепторная группа – NH3+ расположена в α-положении к группе – СОО-. Это вызывает сильную поляризацию связи между атомами углерода и способствует ее разрыву с образованием СО2, т.е. декарбоксилированию. В организме реакция катализируется декарбоксилазами, активность которых определяется пиридоксальфосфатом. В результате декарбоксилирования из α-аминокислот образуются биогенные амины:R – CH(NH2) - COOH → RCH2 - NH2 + CO2
Аналогично происходит образование гистамина из гистидина, а из триптофана – триптамина и серотонина.
Дезаминирование,
Внутримолекулярное дезаминирование
R-CH2 – CH(NH2) - COOH→ R- CH=CH-COOH + NH3
α,β – ненасыщенная кислота
Гидролитическое дезаминирование
R-CH(NH2) – COOH +H2O → R – CH(OH) – COOH + NH3
α - оксикислота
Окислительное дезаминирование
R-CH(NH2) – COOH +1/2 O2→ R –C(O) – COOH + NH3
α-кетокислота
Образование комплексов с металлами.α-Аминокислоты образуют с катионами тяжелых металлов внутрикомплексные соли. Со свежеприготовленным гидроксидом меди(II) все α-аминокислоты в мягких условиях дают хорошо кристаллизующиеся внутрикомплексные (хелатные) соли меди(II) синего цвета:

В таких солях ион меди координационными связями соединен с аминогруппами.
Качественные реакции аминокислот.
Нингидриновая реакция, цветная реакция, применяемая для качественного и количественного определения аминокислот, иминокислот и аминов. При нагревании в щелочной среде нингидрина (трикетогидринденгидрата, С9НбО4) с веществами, имеющими первичные аминогруппы (—NH2), образуется продукт, который имеет устойчивую интенсивную сине-фиолетовую окраску с максимальным поглощением около 570 нм. Т. к. поглощение при этой длине волны линейно зависит от числа свободных аминогрупп, Нингидриновая реакция послужила основой для их количественного определения методами колориметрии или спектрофотометрии. Эта реакция используется также для определения вторичных аминогрупп (>NH) в иминокислотах — пролине и оксипролине; в этом случае образуется продукт ярко-жёлтого цвета. Чувствительность — до 0,01%. Современный автоматический аминокислотный анализ проводят, сочетая ионообменное разделение аминокислот и количественное определение их с помощью нингидриновой реакции. При разделении смесей аминокислот методом бумажной хроматографии позволяет определять каждую аминокислоту в количестве не менее 2—5 мкг.

По интенсивности окраски можно судить о количестве аминокислот.
Эта реакция положительна не только со свободными аминокислотами, но и пептидами, белками и др.
Ксантопротеиновая реакция позволяет обнаружить ароматические аминокислоты (фенилаланин, тирозин, гистидин, триптофан), основана на реакции электрофильного замещения в ароматическом ядре (нитрование).

При действии концетрированной азотной кислоты, например, на тирозин образуется продукт, окрашенный в желтый цвет.
Биуретовая реакция - используется как цветная реакция на белки. В щелочной среде в присутствии солей меди(II) они дают фиолетовое окрашивание. Окраска обусловлена образованием комплексного соединения меди(II), за счет пептидной группы -СО-NH- , которая характерна для белков. Свое название эта реакция получила от производного мочевины - биурета, который образуется при нагревании мочевины с отщеплением аммиака:
Кроме белков и биурета такое же окрашивание дают и другие соединения, содержащие -эту группу: амиды, имиды карбоновых кислот, а также соединения, содержащие в молекуле группы -CS-NH- или =CH-NH-. Также реакцию дают белки, некоторые аминокислоты, пептиды, биурет и средние пептоны.
Цвет комплекса, получаемый при биуретовой реакции с различными пептидами, несколько отличается и зависит от длины пептидной цепи. Пептиды с длиной цепи от четырех аминокислотных остатков и выше образуют красный комплекс, трипептиды - фиолетовый, а дипептиды - синий.

кетонная форма полипептида

енольная форма полипептида
Образование пептидной связи.
Межмолекулярное взаимодействие -аминокислот приводит к образованию пептидов. При взаимодействии двух -аминокислот образуется дипептид.

Межмолекулярное взаимодействие трех -аминокислот приводит к образованию трипептида и т.д.

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH - пептидной связью.
22.Декарбоксилирование α-аминокислот – образование биогенных аминов и биорегуляторов (гиста-мин, триптамин).Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию - отщеплению ос-карбоксильной группы. В тканях млекопитающих декарбоксилированию может подвергаться целый ряд аминокислот или их производных: Три, Тир, Вал, Гис, Глу, Цис, Apr и др. Продуктами реакции являются СО2 и амины, которые оказывают выраженное биологическое действие на организм (биогенные амины):

Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами. Простетическая группа декарбоксилаз в клетках животных - пиридоксальфосфат.
Амины, образовавшиеся при декарбоксилировании аминокислот, часто являются биологически активными веществами. Они выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК и др.), гормонов (норадреналин, адреналин), регуляторных факторов местного действия (гистамин, карнозин, спермин и др.).
Гистамин образуется при декарбоксилировании аминокислоты гистидина. Он синтезируется в тучных клетках, накапливается в секреторных гранулах, выделяется при раздражении клеток.

Гистамин оказывает разнообразные биологические эффекты: вызывает расширение сосудов, снижает артериальное давление, увеличивает тканевую проницаемость, вызывает местный отёк, стимулирует желудочную секрецию, обладает бронхоспатическим эффектом. В высокой концентрации он является медиатором воспалительных и аллергических реакций.
Серотонин образуется при декарбоксилировании гидрокситриптофана. Он синтезируется в хромаффиннных клетках, в некоторых ядрах подкорковых структур, тромбоцитах.

Эффекты серотонина: вызывает спазм сосудов, повышение артериального давления, стимулирует перистальтику кишечника, участвует в терморегуляции, в механизмах сна, является источником для синтеза гормона мелатонина, влияет на психические реакции человека. Так, при шизофрении наблюдается нарушение обмена серотонина.
Катехоламины (дофамин, адреналин, норадреналин) синтезируются из аминокислоты тирозина.

Дофамин – возбуждающий медиатор, при его дефиците развивается болезнь Паркинсона (адинамия, ригидность, тремор). Адреналин вызывает спазм сосудов, повышают артериальное давление, стимулирует работу сердца, является гормоном.
Норадреналин в основном выполняет нейромедиаторные функции.
Полиамины (спермин, спермидин) синтезируются из орнитина и метионина, входят в состав хроматина, участвует в регуляции процессов трансляции, транскрипции, репликации.
Так как биогенные амины очень активны, они быстро инактивируются в тканях. Распад биогенных аминов осуществляется несколькими способами: окисление, метилирование, дезаминирование. Основным способом инактивации биогенных аминов является окислительное дезаминирование под действием ферментов аминооксидаз (моноаминооксидаз, полиаминооксидаз).

Аминокислоты могут ковалентно связываться друг с другом с помощьюпептидных связей. Карбоксильная группа одной аминокислоты ковалентно связывается с аминогруппой другой аминокислоты. При этом возникает R-CO-NH-R связь, называемая пептидной связью. При этом происходит отщепление молекулы воды .23.Пептиды. Строение пептидной связи. Гидролиз пептидов. Первичная структура белка и методы её установления. Вторичная и третичная структура белка.
Пептиды — семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединённых в цепь пептидными (амидными) связями —C(O)NH—.При помощи пептидных связей из аминокислот образуются белки и пептиды. Пептиды, содержащие до 10 аминокислот, называют олигопептиды.Часто в названии таких молекул указывают количество входящих в состав олигопептида аминокислот: трипептид, пентапептид, октапептид и т.д. Пептиды, содержащие более 10 аминокислот, называют «полипептиды»,а полипептиды, состоящие из более чем 50 аминокислотных остатков, обычно называют белками. Мономеры аминокислот, входящих в состав белков, называют «аминокислотные остатки».Аминокислотный остаток, имеющий свободную аминогруппу, называется N-концевым и пишется слева, а имеющий свободную C-карбоксильную группу — С-концевым и пишется справа. Пептиды пишутся и читаются с N-конца.
Связь между α-углеродным атомом и α-аминогруппой или α-карбоксильной группой способна к свободным вращениям (хотя ограничена размером и характером радикалов), что позволяет полипептидной цепи принимать различные конфигурации.
В организме человека вырабатывается множество пептидов, участвующих в регуляции различных биологических процессов и обладающих высокой физиологической активностью. Такими являются целый ряд гормонов – окситоцин (9 аминокислотных остатков), вазопрессин (9), брадикинин (9) регулирующий тонус сосудов, тиреолиберин (3), антибиотики – грамицидин, пептиды, обладающие обезболивающим действием (энкефалины(5) и эндорфины и другие опиоидные пептиды). Обезболивающий эффект этих пептидов в сотни раз превосходит анальгезирующий эффект морфина;
Основным свойством пептидов является их способность к гидролизу. При гидролизе происходит полное или частичное разрушение цепи, после чего образуются пептиды более короткого строения. Полный гидролиз происходит при длительном нагревании пептида с концентрированной соляной кислотой.
Гидролиз может быть кислотным и щелочным, а также может протекать под действием ферментов. В кислой и щелочной среде образуются соли аминокислот, а ферментативный процесс протекает селективно, т.к. можно расщепить конкретные фрагменты цепи пептида.
 

Различают 4 уровня структурной организации белков, называемых первичной, вторичной, третичной и четвертичнойструктурами. Существуют общие правила, по которым идёт формирование пространственных структур белков.
Определение первичной структуры белков сводится к выяснению порядка расположения аминокислот в полипептидной цепочке. Эту задачу решают с помощью метода секвенирования.
секвенирование позволяет определить аминокислотную последовательность в полипептидах, размер которых не превышает несколько десятков аминокислотных остатков. Определение первичной последовательности белка сводится к следующим основным этапам:1) Расщепление белка на несколько фрагментов длиной, доступной для секвенирования.2) Секвенирование каждого из полученных фрагментов.3) Сборка полной структуры белка из установленных структур его фрагментов.
Для специфического расщепления белков по определенным точкам применяются как ферментативные, так и химические методы. Из ферментов, катализирующих гидролиз белков по определенным точкам, наиболее широко используют трипсин и химотрипсин. Трипсин катализирует гидролиз пептидных связей, расположенных после остатков лизина и аргинина. Химотрипсин преимущественно расщепляет белки после остатков ароматических аминокислот - фенилаланина, тирозина и триптофана. Наряду с ферментативными методами используются и химические методы расщепления белков. Для этой цели часто применяют бромциан, расщепляющий белок по остаткам метионина:


Пептидная связь характеризуется следующими свойствами:
1. Четыре атома пептидной связи лежат в одной плоскости, т.е. для пептидной связи характерна компланарность.
2. Атомы О и Н пептидной связи имеют трансориентацию.
3. Длина С-N-связи в пептидной связи, равная 0,13 нм, имеет промежуточное значение между длиной двойной ковалентной связи (0,12нм) и одинарной ковалентной связи (0,15 нм). Следовательно, связь С-Nимеет частично характер двойной связи (л-связи), из чего следует, что вращение вокруг оси С-Nзатруднено.
Вторичная структура белка представляет собой способ укладки полипептидной цепи в упорядоченную форму за счет системы водородных связей, т.е. конформацию белковой молекулы.
Различают две формы вторичной структуры: спиральную, возникающую в пределах одной полипептидной цепи, и слоисто-складчатую – между смежными полипептидными цепями.
Между атомами водорода в пептидной группировке и карбонильным кислородом четвертой от нее аминокислоты возникают внутримолекулярные водородные связи. Эти связи появляются после формирования спирали и закрепляют ее.
Совокупность α -спиралей и β -структур является важным критерием, по которому можно судить о степени упорядоченности структуры белковой молекулы, стабильности белков при действии физико-химических факторов сред.
Третичная структура белка формируется способом складывания вторичной структуры. Например, свиваясь в клубок, спирали образуют глобулы.
Именно такую форму имеют белки, выполняющие роль биологических катализаторов и регуляторов, а также белки, имеющие транспортные функции.
Полярные гидрофильные группы в глобуле расположены на ее внешней поверхности, а неполярные гидрофобные группы обращены внутрь глобулы. Благодаря этому наружная поверхность белка гидратируется, что повышает растворимость белка и обусловливает возможность его участия в биохимических реакциях, которые в физиологических условиях протекают в водной среде.
Располагаясь рядом, спирали образуют нитевидные структуры, называемые фибриллами. Фибриллярные белки являются основным строительным материалом волос, кожи и мышечных тканей.
Третичная структура белка стабилизируется главным образом связями между боковыми группами аминокислотных остатков: дисульфидные и водородные связи, диполярные взаимодействия, силы ван-дер-ваальсова притяжения, электростатические эффекты.
24.Моносахариды и их классификация. D- и L-стереохимические ряды. Формулы Фишера и Хéуор-са. Фуранозы и пиранозы; α- и β-формы. Циклооксотаутомерия. Конформации пиранозных форм.

Проекция Хеуорса — распространенный способ изображения циклической структуры моносахаридов в простой трехмерной перспективе.
атом углерода не указывается символом, но подразумевается. Первый атом углерода- аномерный;
атомы водорода при атоме углерода также не указываются, однако подразумеваются ;утолщение линии показывает, что связи находятся ближе к наблюдателю.Проекция Фишера:Химические связи изображаются в виде горизонтальных и вертикальных линий, на перекрестьях которых находятся стереоцентры. Углеродный скелет изображают вертикально, при этом сверху находится атом углерода, с которого начинается нумерация скелета. Все горизонтальные связи направлены в сторону наблюдателя, а вертикальные — удалены от наблюдателя. Проекцию Фишера нельзя вращать на 90° или 270°, так как это приведёт к изменению конфигурации стереоцентров.
25.Строение наиболее важных пентоз (рибоза, ксилоза), гексоз (глюкоза, манноза, галактоза, фрук-тоза), аминосахаров (глюкозамин, маннозамин), дезоксисахаров (2-дезоксирибоза). Их биороль.

1. Энергетическая.
Углеводы, например глюкоза, способны окисляться как в аэробных так и анаэробных условиях. Окисление углеводов обеспечивает организм 60% всей легко используемой энергии.
2. Структурная.
Примером являются гликозаминогликаны в составе протеогликанов, допустим, хондроитинсульфат, входящий в состав соединительной ткани.
3. Защитная.
Гиалуроновая кислота и другие гликозаминогликаны являются основным компонентом трущихся поверхностей суставов, входят в состав слизистых оболочек, находятся в сосудистой стенке.
4. Кофакторная.
Например, гепарин входит в состав липопротеинлипазы плазмы крови и ферментов свёртывания крови.
5. Гидроосмотическая.
Гетерополисахариды обладают отрицательным зарядом и высокой гидрофильностью. Это позволяет им удерживать молекулы воды, ионы кальция, магния и натрия в межклеточном веществе, обеспечивая необходимую упругость тканей.
6. Пластическая.
В комплексе с белками углеводы образуют гормоны, ферменты, секреты слюнных и слизистых желёз.
Все простые углеводы (глюкоза, фруктоза) быстро всасываются в желудочно-кишечном тракте и хорошо усваиваются. Сахароза, мальтоза и лактоза могут усваиваться после расщепления их соответствующими ферментами желудочно-кишечного тракта до моносахаридов. Всех медленнее усваивается полисахарид крахмал – предварительно через несколько стадий он должен расщепиться до глюкозы. Пищевые волокна (клетчатка, пектины), частично перевариваясь, в основном транзитом проходят через ЖКТ.
26.O- и N-глюкозиды. Гидролиз глюкозидов. Фосфаты моносахаридов. Ацилирование аминосаха-ров. Окисление моносахаридов. Получение озазонов глюкозы. Восстановительные свойства аль-доз. Ксилит, сорбит. Аскорбиновая кислота.
Гликозиды – производные циклич.форм углеводов, в которых полуацетальная гидроксильная группа заменена группой ОR.
Неуглевод.комонент – агликон. Связь между аномерным центром и группой –ОR – гликозидная.
Подразделяют на пиранозиды фуранозиды.
Гликозиды глюкозы называют глюкозидами, рибозы – рибозидами и т.д.
ГЛИКОЗИДЫ
с а х а р агликон
(чаще моносахарид) (спирт, ароматич.соед., стероиды и т.д.)
Гликозид синигрин ; гидролиз:
Гликозид ванилина; гидролиз:

Фосфаты моносахарид.
Большое значение имеют эфиры фосфорной кислоты – фосфаты. Они содержатся во всех растительных и животных организмах и представляют собой метаболически активные формы моносахаридов. Наиболее важную роль играют фосфаты D-глюкозы и D-фруктозы.
Окисление глюкозы внейтральной, слабо-кислой среде:

Окисление с помощью сильного окислителя:

Окисление глюкозы в щелочной среде.
Р-ция Толленса:

Реакция Фелинга:

Получение озазона глюкозы (р-ция с фенилгидразином):


Восстановление. При восстановлении моносахаридов образуются альдиты.
Альдиты легко растворимы в воде, обладают сладким вкусом, некоторые из них (ксилит и сорбит) используются как заменители сахара для больных сахарным диабетом.
При восстановлении альдоз получается лишь один полиол.
Ксилит и сорбит – многоатомные спирты.
Заменители сахара для больных диабетом.
Аскорбиновая кислота(витамин С).

По структуре близок к моносахаридам.
Представляет собой γ-лактон кислоты.
Содержится во фруктах, особенно в цитрусовых, ягодах(шиповникэ, черная смородина), овощах, молоке.
Проявляет сильные кислотные свойства
за счет одной из гидроксильных групп ендиольного фрагмента.
При образовании солей γ-лактонное кольцо не размыкается.
Обладает сильными восстановительными свойствами. Образующаяся при ее окислении дегидроаскорбиновая кислота легко восстанавливается в аскорбиновую. Этот процесс обеспечивает ряд окислительно-восстановительных реакции в организме.

27. Олигосахариды. Дисахариды: мальтоза, лактоза, целлобиоза, сахароза. Строение, циклооксотаутомерия. Восстановительные свойства, гидролиз, биологическая роль.
Олигосахариды – углеводы, построенные из нескольких остатков моносахаридов (от 2 до 10), связанных между собой гликозидной связью.
Простейшие олигосахариды – дисахариды, состоящ. из 2х остатков моносахаридов.
Мальтоза – дисахарид, в котором остатки 2х мол-л D-глюкопиранозы связаны α(1→ 4)-глюкозидной связью.

Восстанавливющий дисарид.
Называют солодовым сахаром. Основной продукт расщепления крахмала под действием фермента β-амилазы, выделяемого слюнной железой. Содержится в солоде.
Мальтоза имеет менее сладкий вкус, чем сахароза.
Лактоза – дисахарид, в к-ом остатки D-галактопиранозы и D-глюкопиранозы связаны β(1→4)-глюкозидной связью.

Восстанавливающий дисахарид.
Содержится в молоке(4-5%). Получают из молочной сывортки после отделения творога.(отсюда и называют «молочным сахаром»)
Применяется в фармацевтической приактике при изготовлении порошков и таблеток, т.к. она менее гигроскопична, чем сахар, а также как питательные средство для грудных детей. Лактоза имеет в 4-5 раз менее сладкий вкус, чем сахароза.
Целлобиоза – дисахарид, в к-ом остатки 2-х молекул D-глюкопиранозы связаны β(1→4)-гликозидной связью.

Восстанавливающи1 дисахарид.
Образуется при неполном гидролизе
полисахарида целлюлозы.
Сахароза – дисахарид, в к-ом остатки α-D-глюкопиранозы и β-D-фруктофуранозы связаны гликозидными связями за счет полуацетальных гидроксильных групп каждого моносахарида.

Невосстанавливающий дисахарид.
Неспособна к цикло-оксо-таутомерии.
Растворы сахарозы не мутаротируют.
Отсутствуют свободные гликозидные гидроксилы; не проявляют восстановительной способности; не реагируют с реактивом Толленса и реактивом Фелинг
По химической сути олигосахариды - гликозидами
Восстанавливающие олигосахариды обладают признаками моносахаридов, так как содержат потенциальную альдегидную группу (в открытой форме) и полуацетальный гидроксил. Этим определяется их химическое поведение. Они вступают во многие реакции, свойственные моносахаридам: образуют сложные эфиры, способны окисляться и восстанавливаться под действием тех же реагентов.

Гидролиз
мальтоза α-D-глюкоза
α(или β)-D-глюкоза лактоза β-D-галактоза
α(или β)-D-глюкоза целлобиоза β-D-глюкоза
α(или β)-D-глюкоза сахароза α-D-глюкоза β-D-фрукто
28. Гомополисахариды — это полисахариды, построенные из одинаковых моносахаридов
Целлюлоза, или клетчатка (С6Н10О5)n - распространеннейший биополимер, из которого состоят стенки растительных клеток. Количество клетчатки зависит от вида растения. Целлюлоза - линейный полисахарид. Мономером является β- Д(+)глюкоза. Β-1,4 гликозидные связи не гидролизуются в организме человека. Звено, которое повторяется в цепи клетчатки, является остатком целлобиозы

Крахмал - Amylum, состоит из амилозы и амилопектина, которые относятся к гомополисахаридам группы глюканов, т.е. они построены только из остатков глюкозы. Строение крахмала. Крахмальное зерно на 15-25% состоит из амилозы и на 75-85% - из амилопектина. Различие в строении амилозы и амилопектина заключается в типе связи между глюкозильными остатка­ми. Амилоза - смесь неразветвленных полисахаридов, в которых остатки D-глюкопиранозы связаны 1—>4 связью в цепочки различной длины. При быстром нагреваниии крахмала из-за содержащейся в нем влаги происходит гидролитическое расщипление макромолекулярной цепи на более мелкие осколки и образуется смесь полисахаридов, наз-ых декстринами .
( C6H10O5)n гидролиз ( C6H10O5)m , где м < н
А милоза- полисахарид, в котором остатки D-глюкопиранозы связаны α(1-4)- гликозидными связями т е дисахаридным фрагментом амилозы является мальтоза
Амилопектин- развлетвленный полсахарид, в цепях которого остатки D- глюкопиранозы связаны α(1-4) гликозидными связями, а в точках развлетвления α (1-6) связями. Между точками развлетвления располагаются 20-25 глюкозных остатков . Гликоген — (C6H10O5)n, полисахарид, образованный остатками глюкозы, связанными α-1→4 связями (α-1→6 в местах разветвления); основной запасной углевод животных. По строения он подобен амилопектину, но имеет еще большее разветвление цепей.
Полисахариды, в структуре которых характерно наличие двух или более типов мономерных звеньев, носят название гетерополисахаридов. Важнейшие представители гетерополисахаридов в органах и тканях животных и человека – гликозаминогликаны (мукополисахариды). Они состоят из цепей сложных углеводов, содержащих аминосахара и уроновые кислоты.
29.Салициловая кислота и её производные (ацетилсалициловая кислота, фенилсалицилат). п-амино-бензойная кислота и её производные (новокаин, анестезин). Биологическая роль этих соединений.
n-Аминобензойная кислота (ПАБК) и ее производные. Эфиры ароматических аминокислот способны в той или иной степени вызывать местную анестезию. Особенно заметно это свойство у пара-производных. В медицине используют анестезин (этиловый эфир ПАБК) и новокаин (2-диэтиламиноэтиловый эфир ПАБК). Новокаин при- меняют в виде соли (гидрохлорида), что связано с необходимостью повышения его растворимости в воде.

Анестезин - одно из самых первых синтетических соединений, применяемых в качестве местноанестезирующих средств. Несмотря на более чем 100-летнее существование (синтезирован в 1890 г.; применяется с конца 90-х годов), его до сих пор относительно широко используют самостоятельно и в сочетании с другими лекарственными средствами. Недавно предложен новый аэрозольный препарат "Ампровизоль", содержащий анестезин. Анестезин является активным поверхностным местноанестезирующим средством. В связи с трудной растворимостью в воде препарат не применяют парентерально и для обезболивания при хирургических операциях. Однако его широко используют в виде мазей, присыпок и других лекарственных форм при крапивнице, заболеваниях кожи, сопровождающихся зудом, а также для обезболивания раневой и язвенной поверхности. Применяют 5 - 10 % мази или присыпки и готовые лекарственные препараты ("Меновазин", "Ампровизоль" и др.). Новокаин(прокаина гидрохлорид) - сложный эфир диэтиламиноэтанола и парааминобензойной кислоты. В медицинской практике используют в виде гидрохлорида. Обладает достаточно выраженной анестезирующей активностью, но уступает в этом отношении другим препаратам. Продолжительность инфильтрационной анестезии составляет 30 мин-1 ч. Большим преимуществом новокаина является низкая токсичность. Это относится и к его метаболитам. Через слизистые оболочки новокаин проходит плохо, поэтому для поверхностной анестезии он применяется редко (иногда для этих целей его используют в оториноларингологии в высоких концентрациях - 10% растворы). Новокаин в отличие от кокаина не суживает сосуды. Их тонус не меняется или несколько снижается, поэтому нередко в растворы новокаина добавляют адреномиметики (например, адреналин). Суживая сосуды и замедляя всасывание новокаина, адреномиметики усиливают и пролонгируют его анестезирующее действие, а также снижают его токсичность.При резорбтивном действии новокаин оказывает преимущественно угнетающее влияние на нервную систему. Обладает умеренной анальгетической активностью. В больших дозах может вызвать судороги.Влияние новокаина на сердечно-сосудистую систему проявляется гипотензивным эффектом (результат угнетающего воздействия препарата на ЦНС и симпатические ганглии), а также кратковременным противоаритмическим действием (увеличиваются эффективный рефрактерный период и время проведения по проводящей системе сердца, снижаются возбудимость и автоматизм).В организме новокаин довольно быстро гидролизуется эстеразами плазмы и тканей. Его основными метаболитами являются диэтиламиноэтанол и парааминобензойная кислота. Следует учитывать, что последняя является конкурентным антагонистом антибактериальных средств из группы сульфаниламидов. Продукты превращения новокаина выделяются почками.
Салициловая кислота и ее производные.Салициловая кислота относится к группе фенолокислот. Как соединение с орто- расположением функциональных групп она декарбоксилируется при нагревании с образованием фенола.
Салициловая кислота умеренно растворима в воде, дает интенсивное окрашивание с хлоридом железа(Ш), на чем основано качественное обнаружение фенольной гидроксильной группы. Салициловая кислота проявляет антиревматическое, жаропонижающее и антигрибковое действие, но как сильная кислота (рKа 3,0) вызывает раздражение желудочно-кишечного тракта и поэтому применяется только наружно. Внутрь применяют ее производные - соли или эфиры. Салициловая кислота способна образовывать производные по каждой функциональной группе. Практическое значение имеют салицилат натрия, сложные эфиры по карбоксильной группе - метилсалицилат, фенилсалицилат (салол), а также по гидроксильной группе - ацетилсалициловая кислота (аспирин).
Перечисленные производные (кроме салола) оказывают анальгетическое, жаропонижающее и противовоспалительное действие. Метилсалицилат из-за раздражающего действия используется наружно в составе мазей. Салол применяется как дезинфицирующее средство при кишечных заболеваниях и примечателен тем, что в кислой среде желудка не гидролизуется, а распадается только в кишечнике. В связи с этим салол используют также в качестве материала для защитных оболочек некоторых лекарственных средств, нестабильных в кислой среде желудка. Салициловая кислота впервые была получена путем окисления салицилового альдегида, содержащегося в растении таволге (род Spireae). Отсюда и ее первоначальное название - спировая кислота, с которым связано название аспирин (начальная буква «а» обозначает ацетил). Ацетилсалициловая кислота в природе не найдена.
30. Гетероциклы с одним гетероатомом. Пиррол, индол, пиридин, холин. Понятие о строении тетрапиррольных соединений (порфин, гем). Производные пиридина (никотинамид, пиридоксаль). Производные 8-оксихинолина: антибактериальные средства комплексообразующего действия.
Важнейшим представителем пятичленных гетероциклов с одним гетероатомом является пиррол. К пирольным соединениям относят конденсированную систему индола и полностью насыщенный аналог пиррола – пирролидин, которые входят в состав сложных по структуре молекул хлорофиллов , гемма крови и алкалоидов, например никотина и тропана. Так в основе структуры гемма и хлорофиллов лежит тетрапиррольная система порфина.
Пиррол.(C4H5N) Пиррол относится к ароматическим соединениям. Атомы углерода и азота в нем находятся в состоянии sp2-гибридизации. На негирибидизованной р-орбитали атома азота находится неподеленная пара электронов. Она участвует в сопряжении с р-электронами четырех атомов углерода с образованием единого шестиэлектроннного облака. Три sp2-гибридные орбитали образуют три σ-связи – две с атомами углерода , одну с атомами водорода. Атом азота в таком состоянии получил название пиррольного.

Индол. (С8Н7N)Индол ацидофобен и практически лишен основных свойств. Индол является структурным фрагментом белковой аминокислоты триптофана и продуктов его метаболических превращений- триптамина(С10Н12N2) и серотонина(N2ОС10Н12) , относящихся к биогенным аминам. Немало синтетических производных индола приеняется в медицине, например индопан.

Пиридин.(C5H5N)Представитель ароматических гетероциклов проявляет свойства араматических соединений. Гомологи пиридина легко окисляются в соответствующие пиридинкарбоновые кислоты. Важное значение имеет окисление изомерных метилпиридинов. Основность пиридина выше, чем ароматических аминов, но ниже чем алифатических. Это связано с тем, что неподеленная пара электронов атома азота занимает sp2-гибридную орбиталь. Пиридин может вступать в реакции с нуклеофильными реагентами. Структура полностью насыщенного пиридина – пиперидина лежит в основе анальгетика промедола. Важнейшим производным пиридина являются некоторые витамины группы В, вступающие в роли структурных элементоы коферментов.

Плоский макроцикл порфина представляет собой сопряженную ароматическую систему из 26 π-электронов. Замещенные порфины называют порфиринами, один из которых – протопорфин . Порфирины в природе находятся в виде комплексов с ионами металлов. Производные порфиринов, содержащие ион железа3 , называют генами. Примером может быть протогем – простетическая группа гемоглобина.
Целый ряд производных 8-оксихинолина обладает антибактериальной, противопаразитарной и противогpибковой активностью. Препараты этого ряда применяют в качестве химиотерапевтических и антисептических веществ. Солью (сульфатом) незамещенного 8-оксихинолина является давно известный препарат хинозол.
жеобразованных тромбов под действием пептизаторов.
31. Гетероциклы с несколькими гетероатомами. Пиразол, имидазол, пиразин, пиримидин, тиазол, пурин. Барбитуровая кислота и её производные. Гидроксипурины (ксантин, мочевая кислота, витамин В1).
Пятичленные гетероциклы с двумя гетероатомами , один из которых азот, имеют общее название азолы. Важнейшими представителями являются пиразол, имидазол, пиразин, пиримидин, тиазол, пурин.
Пиразол.( C3H4N2O) Производные пиразола в природе не обнаружены. Наиболе известным производным пиразола является пиразолон. На основе пиразолона созданы анальгетические средства – анальгин, бутадион и др.

Имидазол.(С3Н4N2)Этот гетероцикл является структурным фрагментом белковой аминокислоты гистидина и продукта ее дикарбоксилирования – биогенного амина гистамина. Имидазол, конденсированный с бензольным кольцом – бензимидазол – входит в состав ряда природных веществ, в частности витамина В12, а также вазодилатируещего средства дибазола.

Пиразин.(C4H4N2) Шестичленное гетероциклическое органическое соединение с двумя атомами азота. Ароматичен. Хорошо растворим в воде, этаноле, этоксиэтане. Вступает в реакции нуклеофильного и электрофильного замещения. При аминировании амидом натрия в жидком аммиаке превращается в 2-аминопиразин. При окислении смесью уксусный ангидрид — перекись водорода, дает N-оксиды по одному или обоим азотам.

Пирамидин.(C4N2H4) Гетероциклическое соединение, имеющее плоскую молекулу, простейший представитель 1,3-диазинов. Производные пиримидина широко распространены в живой природе, где участвуют во многих важных биологических процессах. В частности, такие производные как цитозин, тимин, урацил входят в состав нуклеотидов, являющихся структурными единицами нуклеиновых кислот, пиримидиновое ядро входит в состав некоторых витаминов группы B, в частности B1, коферментов и антибиотиков. Пиримидиновая структура — как ароматическая, так и гидрированная, входит в состав многих биологически активных веществ и лекарственных препаратов — например, барбитуратов — производных 1,3,5-тригидроксипиридина, обладающих снотворным, противосудорожным и наркотическим действием.

Тиазол. (C3H3SN) В цикле тиазола содержатся два разных гетероатома. Структура тазола встречается в составе важных биологически активных веществ-тиамина и ряде сульфаниламидных препаратов, например, противомикробного средства фталозола. Цикл полностью гидрированного тиазола – тиазолидин – является структурным фрагментом пенициллиновых антибиотиков.

Пурин.(C5N4H4) Простейший представитель имидазо[4,5-d]пиримидинов. Бесцветные кристаллы, хорошо растворимые в воде, горячем этаноле и бензоле, плохо растворимые в диэтиловом эфире, ацетоне и хлороформе. Производные пурина играют важную роль в химии природных соединений (пуриновые основания ДНК и РНК; кофермент NAD; алкалоиды, кофеин, теофиллин итеобромин; токсины, сакситоксин и родственные соединения; мочевая кислота) и, благодаря этому, в фармацевтике.

К производным пирамидина относится барбитуровая кислота, которая может существовать в нескольких таутомерных формах. В кристаллическом состоянии барбитуровая кислота имеет строение триоксопроизводного, которое преобладает и в растворе. Барбтуровая кислота легко образует соли при действии щелочей. Её высокая кислотность, обусловлена эффективной днлокализацией отрицательного заряда в барбитурат-ионе с участием двух атомов кислорода.
Гипоксантин, ксантин и мочевая кислота образуются в организме при метаболизме нуклеиновых кислот. У гидроксипуринов возможна как лактим-лактамная таутомерия, так и таутомерия азолов, связанная с миграцией атома водорода от атома N-7 к N-2. Мочевая кислота конечный продукт метаболизма пуриновых соединений к организме. Мочевая кислота двухосновна , плохо растворима в воде, но легко растворяется в щелочах. Соли мочевой кислоты называются уратами. Ксантин по химическому поведению во многом аналогичен мочевой кислоте.
32.Алкалоиды - это азотсодержащие гетероциклические основания, обладающие сильной и специфической биологической активностью. Хорошо растворяются в воде. Содержание алкалоидов в растениях, как правило, невелико - от следов до нескольких процентов (на сухой вес растения). В цветковых растениях чаще всего представлено одновременно несколько групп алкалоидов, различающихся не только по химической структуре, но и по биологическим эффектам.
Алкалоиды: метилированные ксантины (кофеин, теофиллин, теобромин
содержатся в зернах кофе и чае, шелухе какао-бобов, в орехах кола. Кофеин, теобромин и теофиллин широко применяются в медицине. Кофеин используется преимущественно как психостимулятор, теобромин и теофиллин — как сердечно-сосудистые средства.

В отличие от других алкалоидов у метилированных ксантинов основные свойства выражены очень слабо, их соли с минеральными кислотами гидролизованы. За счет пиррольного атома азота теофиллин и теоброминобладают кислотными свойствами, они способны образовывать нерастворимые соли с ионами некоторых металлов, что используется для их идентификации и количественного определения в фармацевтическом анализе.
Так, водонерастворимый теофиллин, предварительно превращенный в растворимую натриевую соль, осаждается ионами кобальта(II) в виде солисветло-розового цвета.

Теобромин при такой же обработке дает соль серовато-голубогоцвета; анион этой соли представлен ниже в виде резонансных структур, соответствующих лактамной и лактимной формам теобромина. Кофеин, не обладающий кислотными центрами, подобной соли не образует.
На использовании кислотных свойств пуриновых алкалоидов основано получение водорастворимых препаратов. Примером может служить эуфиллин — соль теофиллина с этилендиамином.
Следует отметить, что все три метилированных ксантина устойчивы к щелочам только при обычной температуре, а при нагревании подвергаются частичному (теобромин) или полному разрушению с раскрытием пиримидинового кольца.
Пуриновые алкалоиды извлекают из отходов переработки чая (содержание кофеина до 5%) или из низкосортного кофе (содержание кофеина до 1,5%). Однако большую часть пуриновых алкалоидов получают синтетически из доступной и дешевой мочевой кислоты (см. 29.3.2).
Алкилированиексантина диметилсульфатом при pH 8—9 приводит преимущественно к образованию кофеина, при рН 4—7 — теобромина.

Атомы азота в молекуле ксантина подвергаются алкилированию в последовательности N-3,N-7,N-1, поэтому теофиллин прямым алкилированием ксантина синтезировать не удается, его получают другими методами.
Алкалоиды: никотин, анабазин
В эту группу входят алкалоиды относительно простого строения, довольно давно выделенные в чистом виде.

Никотин основной алкалоид табака и махорки, представляет собой жидкость с характерным табачным запахом.
Из двух атомов азота в молекуле никотина большей основностьюобладает атом азота насыщенного пирролидинового кольца, что объясняется их разной гибридизацией.

Анабазин— алкалоид ежовника безлистного, из которого его выделяют в промышленности. В небольшом количестве содержится в табаке. Анабазин представляет собой бесцветную жидкость. Анабазин по фармакологическому действию похож на никотин. Используется как средство, облегчающее отвыкание от курения табака, применялся еще как инсектицид, но в настоящее время снят с производства из-за высокой токсичности.
При окислении никотина и анабазина образуется никотиновая кислота:
Хинин— алкалоид, выделенный из коры хинного дерева (Cinchona oficinalis) — представляет собой бесцветные кристаллы очень горького вкуса.

Содержащиеся в его молекуле два атома азота различаются по основности, поэтому хинин образует два ряда солей: первым протонируется более основный атом азота хинуклидиновой системы.
Сульфат хинина в водном растворе дает синюю флуоресценцию. Флуоресценция настолько интенсивна, что заметна даже в очень разбавленных растворах хинина, например в прохладительных напитках, в которые небольшие количества хинина добавляются для горечи.
Хинин используется в медицине в качестве противомалярийного средства, однако к настоящему времени из-за многих негативных побочных эффектов применение его ограничено.
Общей реакцией на хинин является так называемая талейохинная проба. Она заключается в окислении хинина бромной водой до образования бесцветного раствора орто-хинона. Последующее действие раствором аммиака приводит к образованию дииминопроизводных орто-хиноидной структуры, окрашенных визумрудно-зеленый цвет.
Морфин— важнейший из опиумных алкалоидов. Морфин, кодеин и тебаин относятся к морфинановым алкалоидам. Морфин обладает сильным анальгезирующим действием, благодаря чему долгое время использовался в медицине в качестве обезболивающего средства. Морфин, его производные и синтетические аналоги, относящиеся к классу наркотических анальгетиков, называются опиатами.
Крайне негативным побочным действием морфина является возникновение в результате даже непродолжительного применения болезненного привыкания (наркозависимости). Некоторые синтетические производные морфина обладают более сильным наркотическим действием, чем сам морфин. Диацетат морфина — героин — наиболее распространенный наркотик. Вещество Бентли (синтетический аналог морфина) примерно в 10 000 раз активнее морфина.
33. ЛАКТИМ-ЛАКТАМНАЯ ТАУТОМЕРИЯ
Взаимопревращение таутомерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную ОН-группу, к основному центру — пиридиновому атому азота и наоборот. Обычно лактамная форма в равновесии преобладает.

Нуклеи́новая кислота (от ла. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранени, передаче и реализации наследственной информации.
Цепи НК содержат большое количество фосфатных остатков, обладающих высокой кислотностью и ионизированных в водной среде. Поэтому молекулы НК несут на себе большой отрицательный заряд, и выделяемые препараты НК представляют собой их натриевые соли.
омплементарное соединение оснований -  комплементарность последовательностей оснований в противоположных цепях ДНК: основания нуклеиновых кислот всегда взаимодействуют одинаково:
- в ДНК адениновое основание всегда взаимодействует с тимином , а цитозиновое основание всегда взаимодействует с гуанином ;
- в молекуле РНК пару с аденином образует урацил, основание заменяющее тимин.
Между пуриновыми и пиримидиновыми основаниями, находящимися лактамной форме (за исключением аденина, у которого нет лактим-лактамной таутомерии) возникают водородные связи. Водородные связи возможны как между водородом и кислородом, так и между водородом и пиридиновым азотом.

34.Нуклеозиды и их гидролиз. Строение и гидролиз мононуклеотидов. Первичная структура нуклеиновых кислот. Фосфодиэфирная связь. ДНК и РНК: состав и гидролиз. Вторичная структура РНК и ДНК
В химии нуклеиновых кислот такие как N-гликозиды называют нуклеозидами.
В зависимости от природы углеводного остатка различают рибонуклеозиды и дезоксирибонуклеозиды.
Рибонуклеозиды Дезоксирибонуклеозиды

Тимидин(dt)
Являясь N-гликозидами,нуклеозиды устойчивы к гидролизу в слабощелочной среде,но расщепляются в кислой.Пуриновые нуклеозиды гидролизуются легко,пиримидиновые труднее.

ФУНКЦИИ МОНОНУКЛЕОТИДОВ.
1. Структурная.
Из мононуклеотидов построены нуклеиновые кислоты, некоторые коферменты и простетические группы ферментов.
2. Энергетическая.
Мононуклеотиды удерживают макроэргические связи - являются аккумуляторами энергии. АТФ - это универсальный аккумулятор энергии, энергия УТФ используется для синтеза гликогена, ЦТФ - для синтеза липидов, ГТФ - для движения рибосом в ходе трансляции (биосинтез белка) и передачи гормонального сигнала (G-белок).
Синтез АТФ из АДФ происходит двумя способами: окислительное и субстратное фосфорилирование, синтез любых других нуклеотидтрифосфатов (НТФ) из дифосфатных форм - через АТФ путем переноса фосфата:
НМФ + АТФ НДФ + АДФ
Фермент: нуклеотидмонофосфокиназа
НДФ + АТФ НТФ + АДФ
Фермент: нуклеотиддифосфокиназа
Эти переходы протекают очень легко.
3. Регуляторная.
Мононуклеотиды - аллостерические эффекторы многих ключевых ферментов, цАМФ и цГМФ являются посредниками в передаче гормонального сигнала при действии многих гормонов на клетку (аденилатциклазная система), они активируют протеинкиназы.
Азотистое основание аденин является более универсальным, чем остальные: у него такое взаимное расположение аминогруппы с фосфатом, что возможен синтез АТФ из АДФ и неферментативным путем

Гидролиз:
    Мононуклеотид при гидролизе расщепляется на гетероциклическое основание(пуриновое или пиримидиновое), рибозу (или дезоксирибозу) и фосфорную кислоту.
Первичная структура нуклеиновых кислот.
Фосфодиэфирная связь: Фосфодиэфирная связь — высокоэнергетическая совокупность ковалентных связей, образуемая атомомфосфора в фосфатной группе и двумя молекулами посредством двух эфирных связей. Фосфодиэфирныесвязи играют ключевую роль во всех биологических системах, образуя остов нуклеиновых кислот ДНК и РНК.

ДНК и РНК: состав и гидролиз
Существует два типа нуклеиновых кислот: ДНК и РНК.
РНК (рибонуклеиновая кислота), так же как ДНК, представляет собой полимер мономерами которого служат нуклеотиды. Азотистые основания те же самые, что входят в состав ДНК (аденин, гуанин, цетозин); четвертое - урацил - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат вместо дизоксирибозы другую пентозу - рибозу.
ДНК (дезоксирибонуклеиновая кислота) - биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин ( А ) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу - дезоксирибозу, по имени которой получила название и сама ДНК,  а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи.
Исследуя нуклеотидный состав ДНК различного происхождения, Чаргафф обнаружил следующие закономерности.
1. Все ДНК независимо от их происхождения содержат одинаковое число пуриновых и пиримидиновых оснований. Следовательно, в любой ДНК на каждый пуриновый нуклеотид приходится один пиримидиновый.
2. Любая ДНК всегда содержит в равных количествах попарно аденин и тимин, гуанин и цитозин, что обычно обозначают как  А =Т и G=C. Из этих закономерностей вытекает третья.
3. Количество оснований, содержащих аминогруппы в положении 4 пиримидинового ядра и 6 пуринового (цитозин и аденин), равно количеству оснований, содержащих оксо-группу в тех же положениях (гуанин и тимин), т. е. A+C=G+T. Эти закономерности получили название правил Чаргаффа. Наряду с этим было установлено, что для каждого типа ДНК суммарное содержание гуанина и цитозина не равно суммарному содержанию аденина и тимина, т. е. что (G+C)/(A+T), как правило, отличается от единицы (может быть как больше, так и меньше ее). По этому признаку различают два основных типа ДНК:  А-Т-тип  с преимущественным содержанием аденина и тимина и G-C-тип с преимущественным содержанием гуанина и цитозина.
Величину отношения содержания суммы гуанина и цитозина к сумме содержания аденина и тимина, характеризующую нуклеотидный состав данного вида ДНК, принято называть коэффициентом специфичности. Каждая ДНК имеет характерный коэффициент специфичности, который может изменяться в пределах от 0,3 до 2,8. При подсчете коэффициента специфичности учитывается содержание минорных оснований,  а  также замены основных оснований их производными. Например, при подсчете коэффициента специфичности для ЭДНК зародышей пшеницы, в которой содержится 6% 5-метилцитозина, последний входит в сумму содержания гуанина (22,7%) и цитозина (16,8%). Смысл правил Чаргаффа для ДНК стал понятным после установления ее пространственной структуры.
Гидролиз РНК (мягкая щелочная среда):
РНК щелочн.гидролиз Рибонуклеотиды щелочн.гидролиз Рибонуклеозиды +Н3РО4
кислотный гидролиз
гетероциклические основания + рибоза
ДНК подвергается ферментативному гидролизу под действием нуклеаз.
Вторичная структура РНК и ДНК: Вторичная структура ДНК. В 1953 г. Дж. Уотсоном и Ф. Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидньхе цепи в ней антипараллельны,т.е. если одна из них ориентирована в направлении 3'→5', то вторая - в направлении 5'→3'. Поэтому на каждом из концов
молекулы ДНК расположены 5'-конец одной цепи и 3'-конец другой цепи.
Все основания цепей ДНК расположены внутри двойной спирали, а пентозофосфатный остов - снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счёт водородных связей между комплементарными пуриновыми и пиримидиновыми азотистыми основаниями А и Т (две связи) и между G и С (три связи) (рис. 4-7). При таком сочетании каждая

Рис. 4-7. Пурин-пиримидиновые пары оснований в ДНК.
пара содержит по три кольца, поэтому общий размер этих пар оснований одинаков по всей длине молекулы. Водородные связи при других сочетаниях оснований в паре возможны, но они значительно слабее. Последовательность нуклеотидов одной цепи полностью комплементарна последовательности нуклеотидов второй цепи. Поэтому, согласно правилу Чаргаффа (Эрвин Чаргафф в 1951 г. установил закономерности в соотношении пуриновых и пиримидиновых оснований в молекуле ДНК), число пуриновых оснований (А + G) равно числу пиримидиновых оснований (Т + С).
Комплементарые основания уложены в стопку в сердцевине спирали. Между основаниями двухцепочечной молекулы в стопке возникают гидрофобные взаимодействия, стабилизирующие двойную спираль.
Такая структура исключает контакт азотистых остатков с водой, но стопка оснований не может быть абсолютно вертикальной. Пары оснований
слегка смещены относительно друг друга. В образованной структуре различают две бороздки - большую, шириной 2,2 нм, и малую, шириной 1,2 нм. Азотистые основания в области большой и малой бороздок взаимодействуют со специфическими белками, участвующими в организации структуры хроматина.
35Строение АТФ, АДФ, АМФ
АТФ состоит из азотистого основания аденина, углевода рибозы и (в отличие от нуклеотидов ДНК и РНК) трех остатков фосфорной кислоты
Ферменты, принимающие непосредственное участие в отнятии водорода от субстратов, в настоящее время называются дегидрогеназами
Небелковая часть этих ферментов представляет собой динуклеотид: никотинамид-адениндинуклеотид (НАД+) или никотинамидадениндинуклеотидфосфат (НАДФ+).
НАД+ и НАДФ+ входят в состав каталитического центра НАДГ. Они являются коферментами, так как связаны с белковой частью слабыми типами связей - могут легко диссоциировать. Они присоединяются к белковой части только в момент протекания реакции. Реакция, которую катализируют НАДГ - это реакция окисления субстрата.
Известно около 150 НАДГ, которые различаются по строению белковой части (апофермента).
Апоферменты большей части НАДГ способны присоединять или только НАД, или только НАДФ, и лишь немногие способны соединяться и с тем, и с другим коферментами. НАДГ, участвующие в митохондриальном окислении, находятся в матриксе митохондрий, в отличие от большинства других участников дыхательной цепи, которые встроены во внутреннюю мембрану. НАДГ можно встретить и в цитоплазме клеток. Мембрана митохондрий непроницаема для НАД(Ф), поэтому митохондриальный и цитоплазматический НАД(Ф) никогда не смешиваются. В митохондриях содержится очень много НАД и почти нет НАДФ, а в цитоплазме - наоборот - очень много НАДФ и почти нет НАД.
Из матрикса митохондриальный НАДН2 отдает два атома водорода на «комплекс I», встроенный во внутреннюю мембрану митохондрий.
КОМПЛЕКС I
В составе комплекса находится 26 полипептидных цепей общей массой 800 кДа. Комплекс содержит следующие небелковые компоненты: Флавинмононуклеотид (ФМН), 5 центров FeS (железо-серные центры): FeS1a, FeS1b FeS2, FeS3, FeS4.
В транспорте водорода по дыхательной цепи в этом комплексе принимает участие ФМН.
Одновременно с протонами транспортируются и электроны. Наибольшие перепады редокс-потенциала наблюдаются между железо-серными белками, расположенными в следующем порядке:
ФМНFeS1aFeS1bFeS3FeS4FeS2
Комплекс I – интегральный белковый комплекс. Используя энергию, выделяющуюся при переносе электронов по дыхательной цепи, он транспортирует 4 протона из матрикса в межмембранное пространство – комплекс I работает как протонный генератор. Точный механизм этого транспорта до сих пор неизвестен.
Далее комплекс I восстанавливает промежуточный переносчик KoQ (убихинон).
Это жирорастворимое низкомолекулярное вещество, содержащее длинную изопреновую цепь, не имеет белковой части. КоQ принимает водород от комплекса I. Образовавшийся КоQH2 отдает водород на комплекс III.
КОМПЛЕКС III.
В своем составе содержит цитохромы – сложные белки, содержащие небелковый компонент - простетическую группу, сходню по строению с небелковой частью гемоглобина – гемом.
1) Цитохромы b, имеющие в своем составе два типа простетических групп тетрапиррольной структуры - «гем». Известно два гема цитохромов: be, обладающий низким окислительно-восстановительным потенциалом и bh с высоким окислительно-восстановительным потенциалом. Строение простетической группы цитохромов группы b, похожей на гем белка гемоглобина, представлено на рисунке. Его необходимо выучить.
2)FeSIII – железо-серный кластер.
3) Цитохром С1. Имеет в своем составе особый гем типа «с».
Друг от друга цитохромы могут отличаться:
1) Строением белковой части;
2) Значением окислительно-восстановительного потенциала;
3) Строением радикалов, расположенных по периферии гема;
4) Присоединением гема к белковой части – в некоторых случаях гем присоединен к ней ковалентной связью за счет радикалов цистеина, что характерно для цитохромов c1 и c.
От двух атомов водорода, которые переносятся на комплекс III от KoQ, дальше по цепи транспортируются только электроны, два протона (H+)комплекс III выбрасывает в межмембранное пространство вместе с еще одной парой протонов, которые подхватываются комплексом из матрикса. Таким образом, комплекс III в сумме выбрасывает в межмембранное пространство 4 протона. Поэтому комплекс III, как и комплекс I, является протонным генератором, и целью его работы также является создание +.
КОМПЛЕКС IV.
Комплекс IV называется цитохромоксидазой. Он способен захватывать из матрикса 4 протона. Два из них он отправляет в межмембранное пространство, а остальные передает на образование воды.
36. Омыляемые липиды (жиры). Понятие о фосфолипидах. Их биороль.
Липиды – обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Содержатся во всех живых клетках.
Жиры – в-ва животного, растительного (см. и микробного происхождения, состоящие в осн. (до 98%) из триглицеридов (ацилглицеринов) полных эфиров глицерина и жирных к-т. Содержат также ди- и моноглицериды (1-3%), фосфолипиды, гликолипиды и диольные липиды (0,5-3%), своб. жирные к-ты, стерины и их эфиры (0,05 1,7%), красящие в-ва (каротин, ксантофилл), витамины A, D, Е и К, полифенолы и их эфиры. Хим., физ. и биол. св-ва жиров определяются входящими в его состав триглицеридами и, в первую очередь, длиной цепи, степенью ненасыщенности жирных к-т и их расположением в триглицериде. В состав жиров входят в осн. неразветвленные жирные к-ты, содержащие четное число атомов С (от 4 до 26) как насыщенные, так моно- и полиненасыщенные; в осн. это миристиновая, пальмитиновая, стеариновая, 9-гексадеценовая, олеиновая, линолевая и линоленовая к-ты.
Омыляемые липиды – это липиды, которые легко гидролизуются в воде под действием щелочей или ферментов. Включают три группы веществ: сложные эфиры, фосфолипиды и гликолипиды. В группу сложных эфиров входят нейтральные жиры (глицерин+три жирные кислоты), воски (жирный спирт+жирная кислота) и эфиры стеринов (стерин+жирная кислота). Основу строения омыляемых липидов составляют спирты — высшие одноатомные, трехатомный спирт глицерин или двухатомный аминоспирт сфингозин. Спирты ацилированы высшими карбоновыми кислотами. В случаях глицерина и сфингозина один из спиртовых гидроксилов может быть этерифицирован замешенной фосфорной кислотой.
Омыляемые липиды называют простыми, если продукты их гидролиза спирты и карбоновые кислоты, или сложными, если при гидролизе образуются и другие вещества (например, фосфорная кислота, углеводы и т. д.).
Липиды принято называть омыляемыми когда при их щелочном гидролизе образуются мыла (соли высших карбоновых кислот). Однако имеются липиды, которые не гидролизуются с освобождением жирных кислот. К таким липидам относятся стероиды. Стероиды - широко распространенные в природе соединения. Они часто обнаруживаются в ассоциации с жирами. Их можно отделить от жира путем омыления (они попадают в неомыляемую фракцию).

Фосфолипиды — общее название липидов, содержащих остаток фосфорной кислоты. Они есть во всех живых клетках. Содержатся в нервной ткани, участвуют в доставке жиров, жирных кислот и холестерина.
Фосфолипиды — амфифильные вещества. Они состоят из полярной «головки», в состав которой входит глицерин или другой многоатомный спирт, отрицательно заряженный остаток фосфорной кислоты и часто несущая положительный заряд группа атомов, и двух неполярных «хвостов» из остатков жирных кислот. Главная особенность фосфолипидов состоит в том, что «головка» у них гидрофильна, а «хвосты» гидрофобны. Это позволяет при нахождении в толще водной среды образовывать бислой — двойной слой фосфолипидных молекул, где гидрофильные головы с обеих сторон соприкасаются с водой, а гидрофобные хвосты упрятаны внутрь бислоя и тем самым защищены от контакта с водой.
Химическая структура полярной «головки» определяет суммарный электрический заряд и ионное состояние фосфолипида. «Хвосты» контактируют с липидным окружением, а «головки» — с водным, так как неполярные жирные хвосты не могут соприкасаться с водой.
Фосфолипиды являются важной частью клеточных мембран. Они обеспечивают текучие и пластические свойства мембран клеток и клеточных органоидов, в то время как холестерин обеспечивает жёсткость и стабильность мембран. Как фосфолипиды, так и холестерин часто входят в состав липопротеидов клеточных мембран, но имеются в мембранах и в свободном, не связанном с белками состоянии. Соотношение холестерин/фосфолипиды в основном и определяет текучесть, либо жёсткость клеточной мембраны.
Фосфолипиды участвуют в транспорте жиров, жирных кислот и холестерина. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Будучи более гидрофильными, чем холестерин, благодаря наличию в молекуле остатков фосфорной кислоты, фосфолипиды являются своеобразными «растворителями» для холестерина и других высоко гидрофобных соединений. Соотношение холестерин/фосфолипиды в составе липопротеидов плазмы крови наряду с молекулярным весом липопротеидов (ЛПВП, ЛПНП или ЛПОНП) предопределяет степень растворимости холестерина и его атерогенные свойства. Соотношение холестерин/фосфолипиды в составе желчи предопределяет степень литогенности желчи - степень склонности к выпадению холестериновых желчных камней.
Фосфолипиды замедляют синтез коллагена и повышают активность коллагеназы (фермента, разрушающего коллаген). Поскольку коллаген определяет замещение эпителиальной ткани соединительной, фосфолипиды оказывают противорубцовый (антифибротический) эффект.
37. Неомыляемые липиды. Понятие о терпенах (мирцен, гераниол, цитраль, лимонен, ментол, пинены, камфора). Сопряжённые полиены (витамин А). Их биороль.
К неомыляемым относят липиды, которые не являются производными жирных кислот и не способны к гидролизу. Под этим названием имеют в виду огромное число разных по химическому строению и биологическим функциям природных соединений, которые объединяет сходство в строении углеродного скелета. Углеродный остов их молекул простроен из пятиуглеродных изопентановых фрагментов, соединенных по типу “голова к хвосту”.
Многие из неомыляемых липидов являются:
· низкомолекулярными регуляторами (тромбоксаны, лейкотриены,
· простагландины, простациклин),
· витаминами (все жирорастворимые витамины D, E, F, K, A),
· гормонами (стероидные половые гормоны, глюкокортикоиды и
· минералокортикоиды),
· растительными гормонами (гиббереллины, абсцизовая кислота, этилен),
· пигментами (каротин, ликопин),
· пахнущими веществами (гераниол, гераниаль, ментол, мирцен)
· феромонами (цитраль, грандизол).
По строению скелета и ненасыщенности их можно рассматривать как олигомеры диенового углеводорода изопрена. Отсюда происходит другое их название – изопреноиды. Сходство в строении объясняется общими путями биосинтеза изопреноидов. Они образуются в живых организмах ферментативным путем из уксусной кислоты. Известны две основные группы изопреноидов: терпены и стероиды.
Терпены – большая группа природных органических соединений растительного и животного происхождения.
Терпены были выделены из скипидара (терпентинного масла, откуда и пошло название) А. Валахом и У.Г. Перкиным в 1887–1889 гг.
Состав терпенов соответствует формуле (С5Н8)n, где n = 2,3,4 и т.д. В зависимости от количества изопреновых цепей, которые входят в состав терпенов, они подлежат следующей классификации: монотерпены, сесквитерпены, дитерпены, тритерпены и др.
Терпены не растворимы в воде, но хорошо растворимы в неполярных растворителях и жирах. Они достаточно реакционные соединения – легко окисляются, гидрогенизируются, гидратируются, могут присоединять галогены, сер, кислород, образуя многочисленные производные – спирты, альдегиды, кетоны, оксиды, пероксиды.
Терпены и их производные входят в состав эфирных масел, которые придают характерный запах плодам, цветкам и листьям растений.
Сесквитерпеновый спирт фарнезол имеет запах ландыша, монотерпены – гераниол, линалоол – соответственно герани и розы. Большое количество терпенов содержится в хвойных породах деревьев. Их широко применяют в парфюмерной промышленности (терпениол, гераниол), в фармакологии (камфора, стерины, гормоны). Дитерпеновые спирты фитол и ретинол входят в состав биологически активных соединений – хлорофилла, витамина А, филохинонов.
Монотерпен ментол применяется в пищевой промышленности. Тритерпены сквален и ланостерин являются предшественниками холестерина и некоторых гормонов. Важное значение также имеют производные дитерпенов (смоляные кислоты), а также политерпены (С5Н8)n – натуральный каучук и гуттаперча.
Мирцен (C10H16) - ациклический природный монотерпен.
Представлен в основном в виде β-изомера (7-метил-3-метилен- 1,6-октадиен, формула I). α-Мирцен (2-метил-6-метилен-1,7-октадиен, формула II) редок и мало изучен.
Приятно пахнущая маслянистая жидкость. Растворим в этаноле, нерастворим в воде. Легко окисляется на воздухе, вступает в реакции диенового синтеза. Содержится в эфирных маслах (особенно в масле хмеля - до 50%) и в скипидаре. Особенно много мирцена содержится в укропе, кориандре, багульнике.
Мирцен используется в синтезе душистых веществ.
Гераниол (C10H18O)— спирт, представитель терпеноидов, родственный мирцену.
Состоит из двух форм:
α-форма: α-(транс-3,7-диметил-2,7-октадиен-1-ол)
β-форма: β-(транс-3,7-диметил-2,6-октадиен-1-ол)
Бесцветная или светло-жёлтая жидкость с запахом розы. Растворяется в этаноле и пропиленгликоле, плохо растворяется в воде.
Химические свойства гераниола обусловлены наличием двойной связи и первичной спиртовой группы и не отличаются от свойств аналогичных соединений (алкенов и первичных спиртов).
Гераниол содержится в гераниевом, цитронелловом, розовом, пальмарозовом, лемонграссовом и некоторых других эфирных маслах. В виде сложных эфиров присутствует в эфирном масле из плодов дикой моркови.
Гераниол относится к душистым маслам, применяется для составления парфюмерных композиций, ароматизации мыла и моющих средств. Используется также в синтезе других душистых веществ (цитраля, сложных эфиров).
Цитраль (3,7-диметил-2,6-октадиеналь) (C₁₀H₁₆O )— монотерпеновый ациклический альдегид. Бесцветная или светло-жёлтая вязкая жидкость с сильным запахом лимона. Цитраль существует в основном в виде двух изомеров — гераниаля и нераля. Изоцитраль встречается в малых количествах.

Лимоне́н (С10H16 )— 1-метил-4-изопропенилциклогексен-1, углеводород группы терпенов.
Существует в виде двух оптически активных форм. Содержится во многих эфирных маслах и в скипидаре.
D-лимонен (слева) обладает цитрусовым запахом и используется в качестве отдушки в парфюмерии и в производстве ароматизаторов. L-лимонен (справа) имеет ярко выраженный запах хвои, также используется в качестве отдушки.
Ментол— органическое вещество, важный вторичный метаболит растений семейства яснотковые, получают синтетически или выделяют из мятного эфирного масла. Прозрачное кристаллическое вещество, при комнатной температуре легко плавится. Существует 8 изомеров с довольно близкими свойствами. Обладает слабыми местноанестизирующими свойствами, стимулирует холодовые рецепторы кожи и слизистых, слабый антисептик. Широко используется в пищевкусовой промышленности и в медицине. В частности, является основной составляющей рефлекторного сосудорасширяющего средства валидол.
Пинены — бициклические терпены (монотерпены). Известны 3 изомера, отличающихся положением двойной связи. Название пиненов происходит от слова Pine — сосна (лат.) — это важный компонент смолы хвойных деревьев, скипидара; эфирные масла многих растений содержат пинены. Пинены хорошо распознаются насекомыми и являются важным регулятором их химической коммуникации. Важный компонент для синтеза камфоры и многих других веществ .Изомеры:


Ка́мфора (C10H16О)— терпеноид, кетон терпенового ряда. Бесцветные легколетучие кристаллы с характерным запахом; плохо растворима в воде, хорошо — в малополярных органических растворителях, в том числе в спиртах; существует в виде двух оптически активных форм ((d)− и (l)− формы. Камфора распространена в природе, входит в состав многих эфирных масел. Особенно много её в масле камфорного лавра, базилика, полыней, розмарина. Эфирное масло камфорного лавра в XIX веке служило основным источником (d)− камфоры, натуральной (японской) камфоры.
Камфора распространена в природе, входит в состав многих эфирных масел. Особенно много её в масле камфорного лавра, базилика, полыней, розмарина. Эфирное масло камфорного лавра в XIX веке служило основным источником (d)− камфоры, натуральной (японской) камфоры.
ПОЛИЕНЫ, орг. соед., содержащие в молекуле не менее трех изолированных или сопряженных связей C=C. Двойные связи в молекуле полиенов могут иметь цис- или транс-конфигурации либо их сочетание.
Полиены широко распространены в природе. Так, к полиенам относят HK, витамины А и D2, терпены, напр. оцимен, ликопин наличие к-рого определяет окраску красных помидоров.
Св-ва полиенов зависят от числа двойных связей в молекуле. Алифатические полиены (вплоть до С10)-бесцв. в-ва, высокомол. сопряженные полиены обладают интенсивной желтой или коричневой окраской, образуют ассоциаты (даже в разб. р-рах), для них характерно наличие парамагн. центров.
Полиены обладают св-вами ненасыщенных углеводородов. В несопряженных полиенах двойные связи независимы друг от друга и имеют одинаковую реакц. способность; в сопряженных полиенах реакц. способность двойных связей возрастает с увеличением их числа. Сопряженные полиены обладают высокой термостойкостью, выдерживают нагревание в инертной атмосфере до 400—5000C, на воздухе до 3000C; незамещенные полиены легко окисляются O2 воздуха, с введением заместителей устойчивость к действию кислорода повышается; присутствие электроноакцепторных заместителей затрудняет процессы галогенирования, гидрирования, окисления. Полиены с цис-конфигурацией двойных связей присоединяют малеиновый ангидрид. Низкомолекулярные полиены способны к полимеризации.
К полиенам относят промышленно важные полимеры - бутадиеновые, бутадиен-нитрилъные и нек-рые др. каучуки. Нек-рые полиены используют в качестве высокоомных полупроводниковых материалов.
ВИТАМИН А, группа природных соед. – производных бета-ионона (ф-ла I). Кристаллич. в-ва (см. табл.). Не раств. в воде, хорошо раств. в орг. р-рителях. Разлагаются при взаимод. с О2. Склонны к цис-транс-изомеризации, особенно по связям 11 и 13. Важнейшие представители: ретинол (витамин А1, витамин А1-спирт, эксерофтол), ретиналь (ретинен, ретинальдегид, витамин A1-альдегид) и ретиноевая к-та (витамин А2). У всех соед., кроме 11-цис-ретиналя, присутствующего в сетчатке глаз, все двойные связи имеют транс-конфигурацию.
Соед. группы витамина А обладают разл. биол. активностью. Так, ретинол необходим для роста, дифференциации и сохранения функцций эпителиальных и костных тканей, а также для размножения (стимулирует образование спермы). Ретиналь играет важную роль в механизме зрения, образуя с белком опсином зрительный пигмент родопсин. Ретиноевая к-та в 10 раз активнее ретинола в клеточной дифференциации, но менее активна в процессах размножения. При недостатке витамина А в организме нарушается темновая адаптация, снижается сопротивляемость инфекц. заболеваниям и др.
Витамин А содержится исключительно в тканях животных. Особенно богат им жир печени морских животных и рыб (20-30 мг в 100 мл). Его провитамины синтезируются растениями; больше всего провитаминов содержится в моркови, сладком перце, зеленом луке и салате (1-10 мг в 100 г). Выделяют витамин А из прир. источников или синтезируют из бета-ионона. Применяют его (в т.ч. в виде ацетата и пальмитата) для лечения инфекц. заболеваний, поражений кожи и слизистых оболочек, болезней органов пищеварения, глаз и др. Суточная потребность взрослого человека 3300 ME (I ME соответствует активности 0,3 мкг ретинола или 0,344 мкг ретинолацетата), причем не менее 1/3 от всего кол-ва должно поступать в организм в виде бета-каротина.
21. Стероиды.
Стероиды — вещества животного или, реже, растительного происхождения, обладающие высокой биологической активностью.
Стероиды широко распространены в природе и выполняют в организме разнообразные функции. К настоящему времени известны около 20 тысяч стероидов. Более ста из них применяются в медицине.
В группу стероидов входят:
стерины (в частности, холестерин),
желчные кислоты,
стероидные гормоны,
кардиотонические гликозиды (карденолиды и буфадиенолиды).
 В организме человека важное место среди стероидовзанимают стерины (стеролы), т.е. стероидные спирты. Главным представителем стеринов являетсяхолестерин (холестерол).
Группа холестана (С27) – группа стероидных спиртов (стеринов). К этой группе относятся холестерин и эргостерин (стероид дрожжей), продукты их восстановления, и др.
Холестерин встречается только в организме животных. Он служит предшественником стероидных гормонов, желчных кислот, витамина Д3; является обязательным компонентом клеточных мембран, влияет на проницаемость мембран и активность мембранных ферментов.
 
2. Группа холана (С24). Это группа желчных кислот, необходимых для эмульгирования и переваривания жиров.
 
 

Основными желчными кислотами
являются: холевая, дезоксихолевая,
хенодезоксихолевая и литохолевая кислоты.
 Группа эстрана (С18). Женские половые гормоны – эстрогены (эстрадиол, эстрон)
Например, эстрадиол, или 1,3,5(10)-эстратриен-3,17b  -диол, контролирует менструальный цикл у женщин
 
  Эстрадиол
 
 
  стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. По количеству углеродных атомов стероиды отличаются друг от друга:
С21- гормоны коры надпочечников и прогестерон;
С19- мужские половые гормоны - андрогены и тестостерон;
С18- женские половые гормоны - эстрогены.
Общим для всех стероидов является наличие стеранового ядра, которое представлено на рисунке.
Эстрадиол — важнейший представитель эстрогенов. Подобно прогестерону он синтезируется в яичниках, а в период беременности также в плаценте. Эстрадиол регулирует менструальный цикл. Он стимулирует пролиферацию клеток слизистой матки, а также отвечает за развитие вторичных женских половых признаков (развитие молочных желез, характер жировых отложений и тому подобное).Тестостерон — наиболее важный представитель андрогенов (мужские половые гормоны). Он синтезируется клетками Лейдига в семенниках и контролирует развитие и функцию половых желез. Этот гормон отвечает также за развитие вторичных мужских половых признаков (развитие мускулатуры, волосяной покров и тому подобное).


Приложенные файлы

  • docx 1306303
    Размер файла: 9 MB Загрузок: 0

Добавить комментарий