Обмен и функции аминокислот. Основы молекулярной генетики


Контрольные вопросы к итоговому занятию по разделу:
«Обмен и функции аминокислот. Основы молекулярной генетики»
1. Динамическое состояние белков в организме. Катепсины.
Белки тканей организма постоянно обновляются, то есть подвергается распаду, и постоянно замещаются вновь синтезированными белками. Период полуобмена белков в таких тканях как кровь, слизистая кишечника, печень составляет приблизительно 10 дней. В таких тканях, как кожа, мышцы период полуобмена белков более продолжителен,
Распад тканевых белков (катаболизм) осуществляют особые тканевые протеолитические ферменты катепсины. Выделяют несколько их видов, которые обозначают буквами А, В, Д, Н, N. Катепсины локализованы как в лизосомах, так и в цитозоле. Лизосомальные катепсины называются кислыми катепсинами, так как оптимум рН для них равен 4,5-5,5. Катепсины могут относиться как к эндопептидазам, так и к экзопептидазам. В активном центре катепсинов могут присутствовать цистеин, аспарагиновая кислота, серин. Биологическая роль катепсинов:
участвуют в обновлении тканевых белков
разрушают дефектные, денатурированные белки. Обычно эти белки вначале соединяются с особым белком убиквинтином, после чего разрушаются катепсинами
реконструктивная функция – катепсины переводят неактивные формы белков в активные белки.
при голодании, кровопотере, интоксикации катепсины обеспечивают мобилизацию белков из условных депо белков (плазма крови, мышцы, печень).
2. Пищевые белки как источник аминокислот. Переваривание белков.
Фонд свободных аминокислот организма составляет примерно 35 г. Содержание свободных аминокислот в крови в среднем 35-65 мг/дл. Большая часть входит в состав белков, масса которых во взрослом организме 15 кг. В организме в сутки распадается на аминокислоты 400 грамм белка, столько же синтезируется. Для поддержания баланса необходимо 30-50 г в сутки, при физической нагрузки 100-120 г в сутки.
95-97% белков пищи всасываются в виде АК.Пептидазы ЖКТ поэтапно расщепляют пептидные связи белковой молекулы до конечного продукта гидролиза белков- АК,При гидролизе происходит разрыв СО-NН связи.
3. Протеиназы желудочно-кишечного тракта, субстратная специфичностьпротеиназ.

Переваривание происходит под действием протеаз - пептидгидролаз. Протеазы, гидролизирующие пептидные связи внутри молекулы - эндопептидазы, концевые аминокислоты - экзопептидазы.
Специфичность действия протеаз. Трипсин преимущественно гидролизует пептидные связи, образованные карбоксильными группами аргинина и лизина. Химотрипсины наиболее активны в отношении пептидных связей, образованных карбоксильными группами ароматических аминокислот. Карбоксипептидазы А и В - цинксодержащие ферменты, отщепляют С-концевые остатки аминокислот. Причём карбоксипептидаза А отщепляет преимущественно аминокислоты, содержащие ароматические или гидрофобные радикалы, а карбоксипептидаза В - остатки аргинина и лизина. Последний этап переваривания - гидролиз небольших пептидов, происходит под действием ферментов аминопептидаз и дипептидаз, которые синтезируются клетками тонкого кишечника в активной форме.
Дипептидазы расщепляют дипептиды на аминокислоты, но не действуют на трипептиды.
В результате последовательного действия всех пищеварительных протеаз большинство пищевых белков расщепляется до свободных аминокислот.
Эндопептидазы (эндопротеиназы) — протеолитические ферменты (пепсин, трипсин, химотрипсин), расщепляющие пептидные связи внутри пептидной цепи. С наибольшей скоростью ими гидролизуются связи, образованные определёнными аминокислотами.
4. Проферменты протеиназ, механизм превращения в ферменты, биологическое значение.
Пепсиноген - белок, состоящий из одной полипептидной цепи с молекулярной массой 40 кД. Под действием НСl он превращается в активный пепсин (с оптимумом рН 1,0-2,5. В процессе активации в результате частичного протеолиза от N-конца молекулы пепсиногена отщепляются 42 аминокислотных остатка, которые содержат почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. Таким образом, в активном пепсине преобладающими оказываются отрицательно заряженные аминокислоты, которые участвуют в конформационных перестройках молекулы и формировании активного центра. 
Активация панкреатических ферментов. В поджелудочной железе синтезируются проферменты ряда протеаз: трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и В. В кишечнике они путём частичного протеолиза превращаются в активные ферменты трипсин, химотрипсин, эластазу и карбоксипептидазы А и В.
Активация трипсиногена происходит под действием фермента эпителия кишечника энтеропептидазы. Этот фермент отщепляет с N-конца молекулы трипсиногена гексапептид Вал-(Асп)4-Лиз. Изменение конформации оставшейся части полипептидной цепи приводит к формированию активного центра, и образуется активный трипсин. Последовательность Вал-(Асп)4-Лиз присуща большинству известных трипсиноге-нов разных организмов - от рыб до человека.
5. Пепсин, роль, методы количественного определения.
Пепсин - фермент активированный из пепсиногена. Образовавшиеся под действием НС1 активные молекулы пепсина быстро активируют остальные молекулы пепсиногена (аутокатализ). Пепсин в первую очередь гидролизует пептидные связи в белках, образованные ароматическими аминокислотами (фенилаланин, триптофан, тирозин) и несколько медленнее - образованные лейцином и дикарбоновыми аминокислотами. Пепсин - эндопептидаза, поэтому в результате его действия в желудке образуются более короткие пептиды, но не свободные аминокислоты.
Метод определения по Пятницкому. Пепсин способен гидролизировать белки при рН 1,5-2,5, при рН 5,0 - створаживает казеиноген молока.За единицу активности фермента принимают такое его количество, которое створаживает такое количество 5 мл молочно-ацетатной смеси рН 5,0. При 25 градусах. За 60 секунд. 100 единиц это 1 мг фермента. В норме 20-40 ед/мл пепсина.
6. Экзопептидазы, их роль в переваривании белков.
Экзопептидазы (экзопротеиназы) ферменты, гидролизующие белки, отщепляя аминокислоты от конца пептида: карбоксипептидазы — от C-конца, аминопептидазы — от N-конца, дипептидазы расщепляют дипептиды. Экзопептидазы синтезируются в клетках тонкого кишечника (аминопептидазы, дипептидазы) и в поджелудочной железе (карбоксипептидаза). Функционируют эти ферменты внутриклеточно в кишечном эпителии и, в небольшом количестве, в просвете кишечника.
Экзопептидазы отщепляют концевые амикислоты, освобождая их от бремени пептидной связи, VIVA LA RESISTANCE!!!
7. Протеиназы поджелудочной железы. Панкреатит.
В тонком кишечнике продолжаются процессы переваривания и дело протеиназ живет.Под действием ТРЕХ эндопептидаз - пепсина, трипсина, химотрипсина происходит гидролиз внутренних связей белков на более мелкие участки и свободные ак.Затем в ход вступают пептидазы, они доводят дело до конца. Это панкреатическая карбоксипептидазы, кишечная аминопептидаза и дипептидазы. Аминопептидазы с N-конца.Карбоксипептидазы с С-конца.
Затем всё всасывается через эпителий кишечника в кровь.
8. Соляная кислота, механизм секреции, роль в пищеварении.
ТЫ, да, ТЫ, потребитель, что нужно для соляной кислоты? ПРАВИЛЬНО СОЛЬ и КИСЛОТА, МУАХАХАХА.
А если точнее, ион водорода и ион хлора.
Ион водорода получается в результат диссоциации угольной кислоты, потом бикарбонат меняется на хлор из крови. Компоненты есть, теперь их надо выделить в просвет желудка.
Водород - через мембранную Н/К-АТФ-азой.Хлор через ХЛОРИДНЫЙ канал.
Роль в пищеварении - обеспечивает денатурацию белков и рабочую рН для работы пепсина.
Роль соляной кислоты: 1) денатурирование белков 2) активация проферментов 3) создание оптимума рН для пепсина 4) регулирует работу привратника 5) способствует выработке секретина 6) бектерицидные свойства.
9. Кислотность желудочного сока, виды, определение по методу Михаэлиса, клиническое значение.
Кислотность желудочного сока выражается в титрационных единицах (ТЕ) - количество 0.1 М NaOH в 1 мл, затраченное на титрование 100 мл по определённому индикатору. При определении кислотности сока различают: общую кислотность, связанную НСl и свободную НСl.
Виды кислотности:
- Общая кислотность желудочного сока - совокупность всех кислотореагирующих веществ желудочного сока, собираемый в течение 1 ч. Значение в норме 40-60 ТЕ.- Связанная соляная кислота - связанная с белками и продуктами их переваривания. 20-30 ТЕ.- Свободная соляная кислота - не связанная с компонентами желудочного сока. 20-40 ТЕ.
В норме рН 1,5-2,0.
Метод Михаэлиса.Титрируем желудочный сок по всем видам кислотности. И определяем их значение.В желудочном соке присутствуют органические кислоты и кислые фосфаты – это кислореагирующие продукты. Они вместе с общей соляной кислотой дают общую кислотность желудочного сока, которая определя-ется методом титрования 0,1н гидроксидом натрия. При титровании всех видов кислотности желудочного сока в одной пробе используется два ин-дикатора: фенолфталеин (одноцветный индикатор с зоной перехода 8,0-10,2), и парадиметиламидоазобензол (двухцветный с зоной перехода 2,9-4,0).
Диагностическое значение: Общая кислотность желудочного сока может как повышаться (гипера-цидное состояние), так и снижаться (гипоацидное), вплоть до исчезнове-ния (анацидное состояние). Гиперацидное состояние вызывается в основ-ном избытком свободной соляной кислоты, т.е. возникает гиперхлоргид-рия. Снижение HCI в желудочном соке — это гипохлоргидрия, отсутствие – ахлоргидрия. Изменение кислотности желудочного сока имеет место при язвенной болезни, гастритах, при раке, злокачественном малокровии.
10. Диагностическое значение биохимического анализа желудочного и
дуоденального соков.
Желудочный сок — сложный по  составу пищеварительный сок, вырабатываемый различными клетками слизистой оболочки желудка. Желудочный сок содержит соляную кислоту и ряд минеральных солей, а также различные ферменты, главнейшими из которых являются пепсин, расщепляющий белки, химозин (сычужный фермент), створаживающий молоко, липаза, расщепляющая жиры. Составной частью желудочного сока является также слизь, играющая важную роль в защите слизистой оболочки желудка от раздражающих веществ, попавших в него; при высокой кислотности желудочного сока слизь нейтрализует ее.Кроме соляной кислоты, ферментов, солей и слизи, в желудочном соке содержится также особое вещество - внутренний фактор Касла. Это вещество необходимо для всасывания витамина В12 в тонких кишках, что обеспечивает нормальное созревание красных кровяных телец в костном мозге. При отсутствии фактора Касла в желудочном соке, что обычно связано с заболеванием желудка, а иногда с его оперативным удалением, развивается тяжелая форма малокровия. Анализ желудочного сока является очень важным методом исследования больных с заболеваниями желудка, кишечника, печени, желчного пузыря, крови и пр
Низкая кислотность - симптом гастрита. Повышенная кислотность - изжога, диарея, симптом язвы.В соке нет пепсина и соляной кислоты ( желудочная ахилия) при атрофических гастритах, часто сопровождается пернициозной анемией, так как недостаток фактора Касла. Анацидозность ( рН меньше 6) вероятно рак, повреждение слизистой.
11.Всасывание аминокислот, поступление аминокислот в клетки тканей.
Аминокислоты, образовавшиеся при переваривании белков, быстро всасываются в кишечнике. Транспорт их осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30- 50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Всасывание L-аминокислот (но не D-изомеров) - активный процесс, требующий затраты энергии. Аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь. Перенос через щёточную кайму осуществляется целым рядом переносчиков, многие из которых действуют при участии Na+-зависимых механизмов симпорта, подобно переносу глюкозы.
В настоящее время известно по крайней мере пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:
•  нейтральных, с короткой боковой цепью (аланин, серин, треонин);
•  нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолей-цин);
•  с катионными радикалами (лизин, аргинин);
•  с анионными радикалами (глутаминовая и аспарагиновая кислоты);
•  иминокислот (пролин, оксипролин). Причём к числу Na+-зависимых относятся
переносчики аминокислот, входящих в первую и пятую группы, а также переносчик метионина. Независимые от Na+ переносчики специфичны для некоторых нейтральных аминокислот (фенилаланин, лейцин) и аминокислот с катион-ными радикалами (лизин).
12. Биохимические механизмы регуляции пищеварения, гормоны
желудочно-кишечного тракта.
Выбирайте тот тип гормонов, который вам нравится больше всего и поведайте о нем на итоговой!

13. Общая схема источников и путей расходования аминокислот в тканях.

14. Трансаминирование аминокислот, химизм, ферменты. Аминокислоты,
участвующие в трансаминировании.
Трансаминирование есть подразумевают реакции межмолекулярного переноса аминогруппы от аминокислоты на альфа-кетокислоту без промежуточного образования аммиака.
Реакция трансаминирования являются обратимыми и универсальными для всех жиых организмо. Эти реакции протекают при участии специфических ферментов, аминотрансферазы или трансаминазы.
Аминотрансферазы обладают субстратной специфичностью к разным аминокислотам. В тканях человека более 10 разных аминотрансфераз. Топовые ферменты.- аланиаминотрансфераза (АЛТ);- глутамат-пируватаминотрансфераза (ГПТ);- аспартатаминотрансфераза (АСТ);- по обратной реакции глутама-оксалоацетатаминотрансфераза (ГОТ).
В переносе аминогруппы активное участие принимает кофермент трансаминаз пиридоксальфосфат, производное витамина В6, который процессе реакции обратимо превращается в пиридоксаминфосфат.

Трансамиеировании могут подвергаться все аминокислоты, кроме трех: пролин, треонин, лизин
15. Специфичность трансаминаз, коферментная функция витамина В6.
Специфичность субстрата- абсолтная, в одну сторону
Специфичность трансаминаз обеспечивается белковым компонентом. Ферменты трансаминирования катализируют перенос NH2-группы не на а-кетокислоту, а сначала на кофермент — пиридоксальфосфат; образовавшееся промежуточное соединение (шиффово основание) подвергается внутримолекулярным превращениям (лабилизация ос-водородного атома, перераспределение энергии связи), приводящим к освобождению а-кетокислоты и пиридоксаминфосфата; последний на второй стадии реакции реагирует с любой другой альфа-кетокислотой, что через те же стадии образования промежуточных соединений (идущих в обратном направлении) приводит к синтезу новой аминокислоты и освобождению пиридоксальфосфата.
Витамин БЭ-ШЕСТЬ!!! Пиридоксальфосфат (АКТИВНАЯ ФОРМА) служит переносчиком аминогрупп. При этом наиболее важную роль играет его альдегидная группа, которая может обратимо присоединять различные амины с образованием шиффовых оснований. Реакции трансаминирования проходят в 2 стадии, во время которых пиридоксальфосфат претерпевает обратимые превращения между свободной альдегидной формой (ПФ) и ами-нированной формой (пиридоксаминфосфат).
16. Особая роль глутамата в реакциях трансаминирования.
Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных - глу-тамат, аланин, аспартат и соответствующие им кетокислоты - α-кетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат.
Акцептором аминогруппы любой аминокислоты, подвергающейся трансаминированию (аминокислота 1), служит α-кетоглутарат. Принимая аминогруппу, он превращается в глутамат, который способен передавать эту группу любой α-кетокислоте с образованием другой аминокислоты (аминокислота 2).

17. Биологическое значение реакций трансаминирования.
Реакции трансаминирования играют большую роль в обмене аминокислот. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование - заключительный этап синтеза заменимых аминокислот из соответствующих α-кетокислот, если они в данный момент необходимы клеткам. В результате происходит перераспределение аминного азота в тканях организма. Трансаминирование - первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. При трансаминировании общее количество аминокислот в клетке не меняется.
При трансамиеировании происходит образование новой альфакетокислоты и новой аминокислоты без промежуточного образования аммиака
18. Определение трансаминаз в сыворотке крови, принцип, диагностическое значение.
Ладно, это есть в методичке, но краткий пересказ предыдущих эпизодов.Аминотрансферазы - ферменты, катализирующие межмолекулярный перенос аминогруппы с аминокислоты на кетокислоту. Наибольшее значение имеет определение активности 2-х ферментов: аспартатаминотрансферазы (АсАТ) и аланинаминотрансферазы (АлАТ). Их много, они везде.
Всего капитально два метода:1. С использованием стандартных реактивов. В результате реакции пировиноградной кислоты получается... субстанция коричневого-фиолетового цвета.2. Унифицированный метод.- Определение активности аспартатаминотрансферазы. Основан на определении скорости образования НАД за счет окисления НАД+Н. В результате реакции уменьшается оптическая плотность растора.- Определение активности аспартатаминотрансферазы.Основан на определении скорости образования НАД за счет окисления НАД+Н. В результате реакции уменьшается оптическая плотность растора.
Диагностическое значение:Определение активности АсАТ и АлАТ широко используется для диагностики болезней печени и заболеваний сердца. Актиность АлАТ увеличивается при обострении хронического гепатита, при токсическом поражение сердца.Активность АсАТ возрастанет при гипертонических кризах, инфарктах.
19. Окислительное дезаминирование аминокислот, химизм, ферменты,
биологическое значение.
Наиболее активно происходит дезаминироание глутаминовой кислоты, процесс катализирует фермент глутаматдегидрогеназа, ну а верный ассистент - кофермент это НАД+.
Реакции идет в 2 этапа.1. Вначале происходит ферментативное дегидрирование глутамата и образование альфа-иминоглутарата.2. Неферментативное гидролитическое отщепление иминогруппы в виде аммиака, в результате чего образуется альфа-кетоглутарат.
Глутаматдегидрогеназа очень активна в митохондриях клеток практически всех органов, кроме мышц. Этот фермент- олигомер из 6 субъединиц. Играет важную роль, т.к. является регуяторным ферментом аминокислотного обмена. Ингибиторы - АТФ, ГТФ и НАДН.Активаторы - высокая концентрация АДФ.
Биологическая роль - регуляторным ферментом аминокислотного обмена.
20. Окислительное дезаминирование глутаминовой кислоты.
Глутаматдегидрогеназа.
ЭТО ЕСТЬ обратимая реакция и при повышении концентрации аммиака в клетке может протекать в обратном направлении, как восстановительное аминирование α-кетоглутарата.
Глутаматдегидрогеназа очень активна в митохондриях клеток практически всех органов, кроме мышц. Этот фермент - олигомер, состоящий из 6 субъединиц. Глутаматдегидрогеназа играет важную роль, так как является регуляторным ферментом аминокислотного обмена. Аллостерические ингибиторы глутаматдегидрогеназы (АТФ, ГТФ, NADH) вызывают диссоциацию фермента и потерю глутаматдегидрогеназной активности. Высокие концентрации АДФ активируют фермент. Таким образом, низкий энергетический уровень в клетках стимулирует разрушение аминокислот и образование α-кетоглутарата, поступающего в ЦТК как энергетический субстрат. Синтез глутаматдегидрогеназы может индуцироваться стероидными гормонами (кортизолом).
21. Непрямое дезаминирование, транс-дезаминирование, химизм, био-
логическая роль.
Большинство аминокислот не способно де-заминироваться в одну стадию, подобно Глу. Аминогруппы таких аминокислот в результате трансаминирования переносятся на α-кетоглу-тарат с образованием глутаминовой кислоты, которая затем подвергается прямому окислительному дезаминированию. Такой механизм дезаминирования аминокислот в 2 стадии получил название трансдезаминирования, или непрямого дезаминирования.

Непрямое дезаминирование аминокислот происходит при участии 2 ферментов: амино-трансферазы (кофермент ПФ) и глутаматдегид-рогеназы (кофермент NAD+).
Значение этих реакций в обмене аминокислот очень велико, так как непрямое деза-минирование - основной способ дезаминирования большинства аминокислот. Обе стадии непрямого дезаминирования обратимы , что обеспечивает как катаболизм аминокислот, так и возможность образования практически любой аминокислоты из соответствующей α-кетокислоты.
22. Декарбоксилирование аминокислот.
Декарбоксилирование - процесс отщепления карбоксильной группы аминокислот в виде СО2. Зачем нам это надо? В результате этих процессов в животных тканях образуются биогенные амины.
Реакции декарбоксилирования необратимы катализируются ферментами декарбоксилаза. Их простетическая группа - пиридоксальфосфат. Механизм реакции напоминают РЕАКЦИЮ трансаминирования с участием пиридоксальфостфат и также осущестляется путем образования шиффова основания ПФ и аминокислоты.

23. Биогенные амины, происхождение, функции.
Что такое биогенные амины? Это амины, образовавшиевся при декарбоксилировании аминокислот! Они играют ряд физиологически ролей:
- нейромедиаторы (серотонин, дофамин, ГАМК и др.);
- гормоны (норадреналин, адреналин);
- регуляторные факторы местного действия (гистамин, карнозин, спермин и др.);

Накопление биогенных амино может сказаться паршивым образом на физиологическом статусе и вызывать нарушения функций в организме. Затим, есть ряд механизмов по их обезвреживанию, и усё сводится к окислительному дезаминированию этих аминов с образование соответствующих альдегидов и освобождению аммиака.
Ферменты, катализирующие эту реакцию называются моноамин- и диаминоксидазы.
И сноаа, две стадии:
- анаэробная стадия, характеризуется образованием альдегида, аммиака и восстановленного фермента.
- Затем фермент окисляет атомарным кислородом, образуется перекись водорода, которая распадает на воду и ксилород.
24. Образование серотонина и гистамина. Роль аминов.
Серотонин - биологическое активное вещество широкого спектра действия. Стимулирует сокращение гладкой мускулатуры, оказывает сосудосоуживающий эффект, регулирует АД, температуру тела, дыхание, обладает антидепрессантным действием.

Гистамин образуется путём декарбоксилиро-вания гистидина в тучных клетках соединительной ткани
Выполняет в организме человека следующие функции:
• стимулирует секрецию желудочного сока, слюны (т.е. играет роль пищеварительного гормона);
• повышает проницаемость капилляров, вызывает отёки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль);
• сокращает гладкую мускулатуру лёгких, вызывает удушье;
• участвует в формировании воспалительной реакции - вызывает расширение сосудов, покраснение кожи, отёчность ткани;
• вызывает аллергическую реакцию;
• выполняет роль нейромедиатора;
• является медиатором боли.

25. Образование катехоламинов и ГАМК, функции аминов.
Катехоламины прямо или косвенно повышают активность эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе повышение температуры тела, учащение сердцебиения и др. вызвано выделением в кровь большого количества катехоламинов.
Адреналин, его называют «гормоном страха» из-за того, что при испуге сердце начинает биться чаще. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад углеводов (гликогена) и жиров, вызывает сужение сосудов органов брюшной полости, кожи и слизистых оболочек; в меньшей степени сужает сосуды скелетной мускулатуры. Артериальное давление под действием адреналина повышается. Если человек испуган или взволнован, то его выносливость резко повышается.
Норадреналин называют «гормоном ярости», т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии, значительно увеличивается мышечная сила. Его секреция и выброс в кровь усиливаются при стрессе, кровотечениях, тяжелой физической работе и других ситуациях, требующих быстрой перестройки организма. Так как норадреналин оказывает сильное сосудосуживающее действие, его выброс в кровь играет ключевую роль в регуляции скорости и объема кровотока.
Дофамин вызывает повышение сердечного выброса, оказывает вазоконстрикторное действие, улучшает кровоток и пр., стимулирует распад гликогена и подавляет утилизацию глюкозы тканями. Дофамин вызывает повышение концентрации глюкозы в крови. Он участвует в регуляции образования гормона роста, в торможении секреции пролактина.

γ-Аминомасляная кислота (ГАМК) — аминокислота, важнейший тормозной нейромедиатор центральной нервной системы человека и других млекопитающих. Аминомасляная кислота является биогенным веществом. Содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге.

26. Окислительное дезаминирование и гидроксилирование биогенных
аминов.

Вообщем, учим эту последовательность, ферменты и умее повторить. Будьте молодцами
27. Трансметилирование, метионин и S-аденозилметионин.
Трансметилирование (син. переметилирование) — ферментативная реакция, в процессе которой метильные группы переносятся с одних органических веществ на другие. Является этапом биосинтеза многих биологически активных веществ, таких как например DMT, креатин, холин, адреналин.
Метионин - незаменимая аминокислота. Она необходима для синтеза белков организма, учавствует в реакциях дезаминирования, является источником атома серы для синтеза цистеина.Метильная группа метионина - мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. И данная группа - кореш атома серы, с ним связана довольно прочно, поэтому непосредственным донором одноуглеродного фрагмента служит активная форма аминокислоты.
Что такое S-аденозилметионин? Это боксерская форма метионина, который надел трусы, перчатки на руки, ему разогрели мышцы и он пошел РАБОТАТЬ. Его фермент - тренер - метионин аденозилтрансфераза, которая есть во всех видах клеток. Она присоединяет МЕТИОНИН к молекуле АДЕНОЗИНА и ДА! Вперед!
28. Синтез креатина, адреналина, фосфатидилхолина, их биологическая роль.

Креатин необходим для образования в мышцах высокоэнергетического соединения - креатинфосфата.. Участвует в энергетическом обмене в мышечных и нервных клетках.

Адреналин - вырабатывается нейроэндокринными клетками мозгового вещества надпочечников и участвует в реализации состояния, при котором организм мобилизируется для устранения угрозы. Его секреция резко повышается при стрессовых состояниях, пограничных ситуациях, ощущении опасности, при тревоге, страхе, при травмах, ожогах и шоковых состояниях.

Фосфатидилхолины (лецитины) - наиболее распространённая группа глицерофосфоли-пидов, участвующих в образовании мембран клеток и липопротеинов, в составе которых осуществляется транспорт липидов 
29. Метилирование чужеродных и лекарственных соединений.
Метилирование. В организме метилированию могут подвергаться амины, фенолы и тиолы. В результате метилирования образуются соответствующие N-, О- и S-метильные конъюгаты. При метилировании чужеродных соединений и некоторых метаболитов переносчиком метильных групп является кофермент S-аденозилметионин. С участием метильных групп этого кофермента происходит метилирование перечисленных выше соединений. Реакции метилирования происходят под влиянием ферментных систем (метилтрансфераз).
30. Роль серина и глицина в образовании одноуглеродных групп.
Глицин - заменимая аминокислота, основным источником которой служит серин.
Образование и использование одноуглеродных фрагментов.Особое значение реакций катаболизма серина и глицина заключается в том, что они сопровождаются образованием одноуглеродного метиленового фрагмента (-СН2-). Метиленовая группа в молекуле метилен- Н4-фолата может превращаться в другие одноуглеродные группы (фрагменты): метенильную (-СН=), формильную (-НС=О), метильную (-СН3) и формиминогруппу (-CH=NH
Все образующиеся производные Н4-фолата играют роль промежуточных переносчиков и служат донорами одноуглеродных фрагментов при синтезе некоторых соединений: пуриновых оснований и тимидиловой кислоты (необходимых для синтеза ДНК и РНК), регенерации метионина, синтезе различных формиминопроизводных (формиминоглицина и т.д.)
31. Тетрагидрофолиевая кислота, роль в синтезе и использовании одно-
углеродных радикалов. Метилирование гомоцистеина.
В превращениях серина и глицина главную роль играют ферменты, коферментами которых служат производные фолиевой кислоты. Этот витамин широко распространён в животных и растительных пищевых продуктах. Молекула фолиевой кислоты (фолата) состоит из 3 частей: птеринового производного, парааминобензойной и глутаминовой кислот.
Гомоцистеин может снова превращаться в метионин под действием гомоцистеинметил-транс-феразы. Донором метильной группы в этом случае служит N5-метил-Н4-фолат:

32. Недостаточность фолиевой кислоты и витамина В12. Антивитамины
фолиевой кислоты. Механизм действия сульфаниламидных препаратов.
Недостаточность фолиевой кислоты у человека возникает редко Гиповитаминоз фолиевой кислоты приводит к нарушению обмена одноуглеродных фрагментов. Такое же нарушение наблюдается и при недостаточности витамина В12, использование которого связано с обменом фолиевой кислоты
Первое проявление дефицита фолиевой кислоты - мегалобластная (макроцитарная) анемия. Она характеризуется уменьшением количества эритроцитов, снижением содержания в них гемоглобина, что вызывает увеличение размера эритроцитов.
Мегалобластная анемия возникает чаще всего в результате недостаточности фолиевой кислоты и/или витамина В12.
Фолиевая кислота является витамином для человека и животных. Однако многие патогенные бактерии способны синтезировать это соединение, используя парааминобензойную кислоту (ПАБК) - одну из составных частей фолата. ПАБК поступает в бактериальные клетки из внешней среды. Сульфаниламидные лекарственные препараты - производные сульфаниламида (белого стрептоцида), похожи по строению на парааминобензойную кислоту. Отличаются они только радикалами.
Эти препараты подавляют синтез фолиевой кислоты у бактерий, потому что:• конкурентно ингибируют бактериальные ферменты синтеза фолата, так как являются структурными аналогами парааминобен-зойной кислоты - одного из субстратов процесса;
• могут использоваться как псевдосубстраты из-за относительной субстратной специфичности ферментов, в результате чего синтезируется соединение, похожее на фолиевую кислоту, но не выполняющее её функции.
В обоих случаях в клетках бактерий нарушается обмен одноуглеродных фрагментов и, следовательно, синтез нуклеиновых кислот, что вызывает прекращение размножения бактерий.
В клетках больного сульфаниламидные лекарственные вещества не вызывают подобных изменений, поскольку человек получает с пищей готовую фолиевую кислоту.
33. Обмен фенилаланина и тирозина. Все пути превращения в норме.
Метаболизм фенилаланина
Основное количество фенилаланина расходуется по 2 путям:
• включается в белки;
• превращается в тирозин. Превращение фенилаланина в тирозин прежде
всего необходимо для удаления избытка фени-лаланина, так как высокие концентрации его токсичны для клеток. Образование тирозина не имеет большого значения, так как недостатка этой аминокислоты в клетках практически не бывает.
Обмен тирозина значительно сложнее, чем обмен фенилаланина. Кроме использования в
синтезе белков, тирозин в разных тканях выступает предшественником таких соединений, как катехоламины, тироксин, меланины, и катаболизируется до СО2 и Н2О.


34. Фенилкетонурия, биохимический дефект, проявление болезни,
диагностика, лечение.
Классическая ФКУ - наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы, которые приводят к снижению активности фермента или полной его инактивации. При этом концентрация фенилаланина повышается в крови в 2030 раз (в норме - 1,0-2,0 мг/дл), в моче - в 100-300 раз по сравнению с нормой (30 мг/дл).
Наиболее тяжёлые проявления ФКУ - нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. При отсутствии лечения больные не доживают до 30 лет
Диагностика:
Производится полуколичественным тестом или количественным определением фенилаланина в крови. При нелеченных случаях возможно выявление продуктов распада фенилаланина (фенилкетонов) в моче (не ранее 10—12 дня жизни ребёнка).
Лечение:Прогрессирующее нарушение умственного и физического развития у детей, больных ФКУ, можно предотвратить диетой с очень низким содержанием или полным исключением фе-нил-аланина. Если такое лечение начато сразу после рождения ребёнка, то повреждение мозга предотвращается. Считается, что ограничения в питании могут быть ослаблены после 10-летнего возраста (окончание процессов миелинизации мозга), однако в настоящее время многие педиатры склоняются в сторону «пожизненной диеты».
35. Алкаптонурия, альбинизм. Биохимический дефект, проявление болезней.
Алкаптонурия («чёрная моча»)
Причина заболевания - дефект диоксигеназы гомогентизиновой кислоты. Для этой болезни характерно выделение с мочой большого количества гомогентизиновой кислоты, которая, окисляясь кислородом воздуха, образует тёмные пигменты алкаптоны. Клиническими проявлениями болезни, кроме потемнения мочи на воздухе, являются пигментация соединительной ткани (охроноз) и артрит. Частота - 2-5 случаев на 1 млн новорождённых. Заболевание наследуется по аутосомно-рецессивному типу. Диагностических методов выявления гетерозиготных носителей дефектного гена к настоящему времени не найдено.
Альбинизм
Причина метаболического нарушения - врождённый дефект тирозиназы. Этот фермент катализирует превращение тирозина в ДОФА в меланоцитах. В результате дефекта тирозиназы нарушается синтез пигментов меланинов.
Клиническое проявление альбинизма (от лат. albus - белый) - отсутствие пигментации кожи и волос. У больных часто снижена острота зрения, возникает светобоязнь. Длительное пребывание таких больных под открытым солнцем приводит к раку кожи. Частота заболевания 1:20 000.
36. Нарушения синтеза дофамина при паркинсонизме.
Заболевание развивается при недостаточности дофамина в чёрной субстанции мозга. Это одно из самых распространённых неврологических заболеваний (частота 1:200 среди людей старше 60 лет). При этой патологии снижена активность тирозингидроксилазы, ДОФА-декарбоксилазы. Заболевание сопровождается тремя основными симптомами: акинезия (скованность движений), ригидность (напряжение мышц), тремор (непроизвольное дрожание). Дофамин не проникает через гематоэнцефалический барьер и как лекарственный препарат не используется. Для лечения паркинсонизма предлагаются следующие принципы:
• заместительная терапия препаратами-предшественниками дофамина (производными ДОФА) - леводопа, мадопар, наком и др.
• подавление инактивации дофамина ингибиторами МАО (депренил, ниаламид, пиразидол и др.).
37. Конечные продукты азотистого обмена: соли аммония и мочевина.
Наиболее значительные количества аммиака обезвреживаются в печени путём синтеза мочевины. В первой реакции процесса аммиак связывается с диоксидом углерода с образованием карбамоилфосфата, при этом затрачиваются 2 молекулы АТФ.
Мочевина - основной конечный продукт азотистого обмена, в составе которого из организма выделяется до 90% всего выводимого азота (рис. 9-15). Экскреция мочевины в норме составляет ~25 г/сут. При повышении количества потребляемых с пищей белков экскреция мочевины увеличивается. Мочевина синтезируется только в печени.
... Соли аммония - это сложные вещества, в состав которых входят ионы аммония NH4+, соединённые с кислотными остатками... УСЁ.
38. Основные источники и пути обезвреживания аммиака в организме.

Обезвреживание аммика может быть на месте, так где он собственно образуется, и возможны разные механизмы, такие как.- Восстановительное аминирование α-кетоглутарата
- Амидирование аминокислот (синтез амидов)
- Амидирование карбоксильных групп белков
- Синтез карбамоилфосфата
- Синтез аммонийных солей
И конечно же, главный способ ликвидации это - синтез мочевины, которы расписан ниже.
39. Роль глутамина в обезвреживании и транспорте аммиака в организме.
Глутами - тот парень, который берет на себя всю основную нагрузку, связанный с работой с аммиаком. Основной реакцией связывания аммиака, протекающей во всех тканях организма, является синтез глутамина под действием глутамин-синтетазы:

Глутамин легко транспортируется через клеточные мембраны путём облегчённой диффузии (для глутамата возможен только активный транспорт) и поступает из тканей в кровь. Основными тканями-поставщиками глутамина служат мышцы, мозг и печень. С током крови глутамин транспортируется в кишечник и почки.
В клетках кишечника под действием фермента глутаминазы происходит гидролитическое освобождение амидного азота в виде аммиака. В почках тоже самое.
40. Глутамин как донор амидной группы при синтезе ряда соединений.
Глутамин - основной донор азота в организме.Амидный азот глутамина используется для синтеза пуриновых и пиримидиновых нук-леотидов, аспарагина, аминосахаров и других соединений

41. Синтез мочевины, химизм, ферменты, энергетика, происхождение атомов азота в мочевине.
Мочевина (карбамид) - полный амид угольной кислоты - содержит 2 атома азота. Источником одного из них является аммиак, который в печени связывается с диоксидом углерода с образованием карбамоилфосфата под действием карбамоилфосфатсинтетазы I
Далее под действием орнитин-карбамоил-трансферазы карбамоильная группа карбамо-илфосфата переносится на α-аминокислоту орнитин, и образуется другая α-аминокислота - цитруллин.
В следующей реакции аргининосукцинат-синтетаза связывает цитруллин с аспартатом и образует аргининосукцинат (аргининоянтарную кислоту). Этот фермент нуждается в ионах Mg2+. В реакции затрачивается 1 моль АТФ, но используется энергия двух макроэргических связей. Аспартат - источник второго атома азота мочевины
Далее фермент аргининосукцинатлиаза (арги-ниносукциназа) расщепляет аргининосукцинат на аргинин и фумарат, при этом аминогруппа аспартата оказывается в молекуле аргинина.
Аргинин подвергается гидролизу под действием аргиназы, при этом образуются орнитин и мочевина. Кофакторами аргиназы являются ионы Са2+ или Мп2+.





Всю эту красотень можно выразить формулой попроще.
СО2 + NH3 + Аспартат + 3 АТФ + 2 Н2О → Мочевина + Фумарат + 2 (АДФ + Н3РО4) + АМФ + Н4Р2О7
Энергетика ... загружаю... снятие грифа секретности...
В результате орнитинового цила расходуются четыре макроэргические связи трех молекул АТФ на каждый оборот цикла. Однако, все неплохо компенсируется:- при включении фумарата в ЦТК на стадии дегидрирования малата образуется НАДН, который обеспечивает синтез трех молекул АТФ.- при окислительном дезаминировании глутамата в разных органах также образуется НАДН, и образуется еще три молекулы АТФ.
Биологическая роль, две основные цели:- превращение азота аминокислот в мочевину, которая экскретируется и предотвращает накопление токсичных продуктов, главным образом аммиака.- синтез аргинина и пополнение его фонда в организме.
Основной источник аммиака - аминокислоты. Большая часть образовавшегося аммиака обезвреживается в орнитиновом цикле в печени и выделяется в виде мочевины. Основной реакцией обезвреживания аммиака в тканях является синтез глутамина, который затем используется в анаболических процессах и для обезвреживания веществ в печени.
42. Связь орнитинового цикла с циклом трикарбоновых кислот.

Фумарат, образующийся в результате расщепления аргининосукцината, превращается в малат, который затем переносится в митохондрии, включается в ЦТК и дегидрируется с образованием оксалоацетата. Эта реакция сопровождается выделением 3 молекул АТФ, которые и компенсируют затраты энергии на синтез одной молекулы мочевины.
43. Нарушение синтеза и выведения мочевины. Гипераммониемия, про-
исхождение.

Нарушение реакций обезвреживания аммиака может вызвать повышение содержания аммиака в крови - гипераммониемию, что оказывает токсическое действие на организм. Причинами гипераммониемии могут выступать как генетический дефект ферментов орнитинового цикла в печени, так и вторичное поражение печени в результате цирроза, гепатита и других заболеваний. Известны пять наследственных заболеваний, обусловленных дефектом пяти ферментов орнитинового цикла
Нарушение орнитинового цикла наблюдается при гепатитах различной этиологии и некоторых других вирусных заболеваниях. Например, установлено, что вирусы гриппа и других острых респираторных вирусных инфекций снижают активность карбамоилфосфатсинтетазы I. При циррозе и других заболеваниях печени также часто наблюдают гипераммониемию.
Снижение активности какого-либо фермента синтеза мочевины приводит к накоплению в крови субстрата данного фермента и его предшественников.
Все симптомы гипераммониемии - проявление действия аммиака на ЦНС.
Для диагностики различных типов гиперам-мониемии производят определение содержания аммиака в крови, метаболитов орнитинового цикла в крови и моче, активности фермента в биоптатах печени.
Основной диагностический признак - повышение концентрации аммиака в крови. Содержание аммиака в крови может достигать 6000 мкмоль/л (в норме - 60 мкмоль/л).
Уремия (uraemia; греческий uron моча + haima кровь; синонимы мочекровие) — синдром аутоинтоксикации, развивающийся при выраженной почечной недостаточности в результате задержки в организме азотистых метаболитов и других токсических веществ, расстройства водно-солевого, кислотно-щелочного и осмотического гомеостаза, сопровождающийся вторичными обменными и гормональными нарушениями, общей дистрофией тканей и дисфункцией всех органов и систем. (Источник: Леди Википедия.)
44. Определение мочевины в сыворотке крови, принцип метода,
диагностическое значение.
Принцип метода основан на определении количества аммиака, высвобождаемющегося при разложении мочевины сыворотки или цельной крови под действием уреазы, колориметрическим методом с использование метода Несслера.
Диагностическое значение имеет повышение концентрации мочевины, которое встречается при хронических поражениях почек, усиленном распаде белков в тканях, непроходимости кишечника, закупорке мочевыводящих путей. Снижение уровня мочевины встречается при голодании, безбелковой диете, ферментных дефектах мочевинообразования.
45. Образование и выведение солей аммония. Глутаминаза почек.

46. Распад нуклеиновых кислот, нуклеазы пищеварительного тракта и
тканей.

Схема говорит о многом. Съели курочку, её надо разобрать. ДНП и РНП чрез пищевод попадает в желудок, там, под действием агрессивных агентов - соляной кислоты и пепсинов расщепляются до полинуклеотидов. Дальше в ход вступают эндонуклеазы, образуются олигонуклеотиды и экзонуклеазы, ура, получили мононуклеотиды.Продукт мигрирует тонкий кишечник, нуклеотидазы синтезируют нуклеозиды.Парам-пам-пам, в тканях нуклеозидазы образуют строй материалы - азотистые основания и пентозы (а их могут пустить пентозофосфатный путь) Усё.
47. Распад пуриновых нуклеотидов.

48. Биосинтез пуриновых нуклеотидов, происхождение атомов «С» и «N» в пуриновом кольце.


49. Инозиновая кислота как предшественник пуриновых мононуклеотидов.
Образование пуриновых нуклеотидов (адениловой и гуаниловой кислот, АМФ и ГМФ) осуществляется из инозиновой кислоты (ИМФ). Причем в синтезе обоих мононуклеотидов участвуют по два фермента, отличных по своему механизму действия. Образование ГМФ из ИМФ катализируют ИМФ-дегидрогеназа и ГМФ-синтетаза, а образование АМФ из того же предшественника катализируется последовательным действием аденилосукцинатсинтетазы и аденилосукцинатлиазы.

50. Распад пиримидиновых нуклеотидов.

51. Биосинтез пиримидиновых нуклеотидов.

52. Регуляция биосинтеза пуриновых и пиримидиновых мононуклеотидов.
Регуляция синтеза пиримидиновых нуклеотидов
Регуляторным ферментом в синтезе пири-мидиновых нуклеотидов является полифункциональный КАД-фермент. УМФ и УТФ ал-лостерически ингибируют, а ФРДФ активирует его карбамоилсинтетазную активность, тогда как активность аспартаттранскарбамоилазного домена ингибирует ЦТФ, но активирует АТФ
Этот способ регуляции позволяет предотвратить избыточный синтез не только УМФ, но и всех других пиримидиновых нуклеотидов и обеспечить сбалансированное образование всех четырёх основных пуриновых и пиримидиновых нуклеотидов, необходимых для синтеза РНК.
Регуляция синтеза пуиновых нуклеотидов
Основным показателем, от которого зависит синтез пуриновых нуклеотидов, служит концентрация ФРДФ, которая, в свою очередь, зависит от скорости его синтеза, утилизации и разрушения. Количество ФРДФ определяется доступностью рибозо-5-фосфата и активностью ФРДФ синтетазы - фермента, чувствительного к концентрации фосфата и пуриновых нуклеотидов.
Внутриклеточная концентрация ФРДФ строго регулируется и обычно низкая. ФРДФ синтета-за - аллостерический фермент. Он активируется неорганическим фосфатом (Pi) и ингибируется пуриновыми нуклеозидмоно-, ди- и трифосфатами, которые по эффективности ингибирования распределяются в следующем порядке: НМФ > НДФ > НТФ. ФРДФ служит не только субстратом, но и аллостерическим активатором второй реакции синтеза пури-нонуклеотидов de novo, которую катализирует амидофосфорибозилтрансфераза.
Пуриновые нуклеотиды, особенно АМФ и ГМФ по механизму отрицательной обратной связи ингибируют амидофосфорибозилтрансфе-разу, которая катализирует первую специфическую реакцию синтеза пуриновых нуклеотидов de novo.
53. Биосинтез дезоксирибонуклеотидов.
Синтез дезоксирибонуклеотидов идёт с заметной скоростью только в тех клетках, которые вступают в S-фазу клеточного цикла и готовятся к синтезу ДНК и делению. В покоящихся клетках дезоксинуклеотиды практически отсутствуют. Все дезоксинуклеотиды, кроме тимидиловых, образуются из рибонуклеотидов путём прямого восстановления ОН-группы у второго углеродного атома рибозы в составе рибонуклеозидди-фосфатов до дезоксирибозы.
Реакцию восстановления НДФ в дезокси-про-изводные катализирует рибонуклеотидредуктаз-ный комплекс, в состав которого входят: собственно рибонуклеотидредуктаза (РНР), белок тиоредоксин и фермент тиоредоксинредуктаза, обеспечивающий регенерацию восстановленной формы тиоредоксина  Рибонуклеотидредуктаза - олигомерный белок, состоящий из двух В1- и двух В2-субъеди-ниц, и содержит негеминовое железо в качестве кофактора.
Непосредственным донором водорода в реакции восстановления рибозы служит низкомолекулярный белок тиоредоксин. В рабочую часть этого белка входят 2 SH-группы, которые, отдавая водород, окисляются с образованием дисульфидного мостика. Второй фермент комплекса - тиоредоксинредуктаза - катализирует гидрирование окисленного тиоредоксина с использованием NADPH.

54. Применение ингибиторов синтеза дезоксирибонуклеотидов для лечения злокачественных опухолей.
В терапии инфекционных и онкологических болезней, научных исследованиях в области медицины и биологии часто используют синтетические аналоги пуринов и пиримидинов. Введение в организм животного или человека аналога, имеющего изменения в структуре гетероциклического кольца или углеводной компоненты, угнетает активность ферментов, участвующих в метаболизме нуклеотидов, скорость синтеза РНК или ДНК из-за нарушения комплементарных взаимодействий азотистых оснований и роста полинуклеотидных цепей. Аналоги пуринов, пиримидинов и их нуклео-зиды нашли применение в качестве антибактериальных, противовирусных и химиотерапевти-ческих средств.
Синтезировано очень много аналогов дНТФ, которые включаются ДНК полимеразами в ДНК и ингибируют репликацию. К числу мощных противоопухолевых препаратов принадлежит 5-фторурацил (5-FU) - аналог урацила.
Цитозинарабинозид (или цитарабин) представляет собой соединение, в котором остаток рибозы замещён на стериоизомер - арабинозу. Оно используется в химиотерапии рака, в частности, при острой миелоцитарной лейкемии.
В организме препарат может превращаться в дНТФ, ингибировать ДНК полимеразы и снижать скорость репликации.
Аналоги фолиевой кислоты. В обмене нуклеотидов производные Н4-фолата как доноры одно-углеродных групп участвуют в формировании пуринового гетероциклического кольца и в ключевой реакции синтеза дТМФ из дУМФ, катализируемой тимидилатсинтазой.
В последнем случае N5, N10-метилен-Н4-фолат служит донором метильной группы и в ходе реакции превращается в Н2-фолат. Для активного синтеза тимидиловых нуклеотидов Н2-фолат должен повторно использоваться, проходя стадию восстановления в Н4-фолат.
55. Нарушения обмена нуклеотидов: оротацидурия, ксантинурия.
ОРОТАЦИДУРИЯ
Это единственное нарушение синтеза пирими-динов de novo. Оно вызвано снижением активности УМФ-синтазы, которая катализирует образование и декарбоксилирование ОМФ. Поскольку в эмбриогенезе от образования пиримидинов de novo зависит обеспечение синтеза ДНК субстратами, то жизнь плода невозможна при полном отсутствии активности этого фермента. Действительно, у всех пациентов с оротацидурией отмечают заметную, хотя и очень низкую активность УМФ-синтазы. Установлено, что содержание оротовой кислоты в моче пациентов (1 г/сут и более) значительно превосходит количество оротата, которое ежедневно синтезируется в норме (около 600 мг/сут). Снижение синтеза пирими-диновых нуклеотидов, наблюдающееся при этой патологии, нарушает регуляцию КАД-фермента по механизму ретроингибирования, из-за чего возникает гиперпродукция оротата.
Клинически наиболее характерное следствие оротацидурии - мегалобластная анемия, вызванная неспособностью организма обеспечить нормальную скорость деления клеток эритро-цитарного ряда. Её диагностируют у детей на том основании, что она не поддаётся лечению препаратами фолиевой кислоты
Недостаточность синтеза пиримидиновых нуклеотидов сказывается на интеллектуальном развитии, двигательной способности и сопровождается нарушениями работы сердца и ЖКТ. Нарушается формирование иммунной системы, и наблюдается повышенная чувствительность к различным инфекциям.
Ксантинурия(xanthinuria; ксантин +греч. uron моча) -- наследственная болезнь, обусловленная недостаточностью фермента ксантиноксидазы и характеризующаяся нарушением пуринового обмена; проявляется рецидивирующей гематурией и болями в поясничной области, повышением содержания ксантина в плазме крови и моче.
Симптомы Ксантинурии:
Ксантин является непосредственным предшественником мочевой кислоты. Он образуется из некоторых пуринов, в то время как гипоксантин относится к промежуточным продуктам. Окисление гппоксантипа в ксантин, а последнего в мочевую кислоту опосредуется ксантиноксидазой, выявленной в печени и слизистой оболочке кишечника.
Ксантинурия встречается редко.Уровень мочевой кислоты в сыворотке больных (1 - 8 мг/л) обычными методами не выявляется. Низкий уровень гипоксантина отмечается как в крови, так и в моче. При потреблении продуктов, не содержащих пуринов, мочевая кислота прекращает экстретироваться. Ксантин даже менее растворим в моче, чем мочевая кислота; соответственно у некоторых больных с ксантинурией образуются мочевые камни, состоящие из чистого ксантина.
56. Подагра, причины возникновения. Применение аллопуринола для
лечения подагры.
Слишком просто не бывает, и бывают нарушения ходе их существования.Гиперурикемия - увеличение концентрации мочевой кислоты в крови. И вследствие может развиться подагра - заболевание, при котором кристаллы мочевой кислоты и уратов откадываются в суставных хрящах, синовиальной оболочке, подкожной клетчатке, с образование подагрических узлов, или тофусов.
Сопровождается повторением приступов острого воспаления суставов -острого подагрического артрита.
Но это еще не всё! Лейкоциты устраивают НОМ-НОМ-НОМ кристаллам урата. Те, в свою очередь, способны разрушать мембраны лизосом. Лизосомальные ферменты, подобно динозаврам "Мира Юрского Периода", выбираются в цитозоль и начинают РАЗРУШЕНИЕ КЛЕТКИ, а продукты клеточного катаболизма вызывает воспаление.
ФРДФ синтетаза - фермент-стахановец, который смутно понимает, что все должно быть в меру. И поэтому он синтезирует мочевую кислоту в ОГРОМНЫХ количествах, не смотря на потребности клетки. И возникает подагра.
Гипоксантин-гуганинфосфорибозилтрансфераза, фермент-инвалид, а вот это звено не справляется со своей работы и происходит накопление мочевой кислоты в клетке, что также вызывает подагру.
Основным препаратом, используемым для лечения гиперурикемии, является аллопуринол - структурный аналог гипоксантина.
Аллопуринол оказывает двоякое действие на обмен пуриновых нуклеотидов:
• ингибирует ксантиноксидазу и останавливает катаболизм пуринов на стадии образования гипоксантина, растворимость которого почти в 10 раз выше, чем мочевой кислоты. Действие препарата на фермент объясняется тем, что сначала он, подобно гипоксантину, окисляется в гидроксипуринол, но при этом
• остаётся прочно связанным с активным центром фермента, вызывая его инактивацию; с другой стороны, будучи псевдосубстратом, аллопуринол может превращаться в нуклеотид по «запасному» пути и ингибировать ФРДФ синтетазу и амидофосфорибозил-трансферазу, вызывая торможение синтеза пуринов de novo. При лечении аллопуринолом детей с синдромом Лёша-Нихена удаётся предотвратить развитие патологических изменений в суставах и почках, вызванных гиперпродукцией мочевой кислоты, но препарат не излечивает аномалии в поведении, неврологические и психические расстройства.
(?) 57. Строение нуклеиновых кислот, связи, формирующие первичную
структуру нуклеиновых кислот. Видовая специфичность первичной
структуры нуклеиновых кислот.
Каждый нуклеотид содержит 3 химически различных компонента: гетероциклическое азотистое основание, моносахарид (пентозу) и остаток фосфорной кислоты. В зависимости от числа имеющихся в молекуле остатков фосфорной кислоты различают нуклеозидмонофосфаты (НМФ), нуклеозиддифосфаты (НДФ), нуклеозидтрифосфаты (НТФ) .
В состав нуклеиновых кислот входят азотистые основания двух типов: пуриновые - аденин (А), гуанин(G) и пиримидиновые - цитозин (С), тимин (Т) и урацил (U).
Первичная структура ДНК - порядок чередования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинуклеотидной цепи. Каждая фосфатная группа в полинуклеотид-ной цепи, за исключением фосфорного остатка на 5'-конце молекулы, участвует в образовании двух эфирных связей с участием 3'- и 5'-угле-родных атомов двух соседних дезоксирибоз, поэтому связь между мономерами обозначают 3', 5'-фосфодиэфирной.
Концевые нуклеотиды ДНК различают по структуре: на 5'-конце находится фосфатная группа, а на 3'-конце цепи - свободная ОН-группа. Эти концы называют 5'- и 3'-концами. 
Н. к. обладаютвидовой специфичностью, т. е. у каждого вида характеризуются определённым нуклеотидным составом.
58. Биосинтез (репликация) ДНК, Общая характеристика процесса,
биологическое значение. Этапы репликации.
Живые организмы в течение S-фазы клеточного цикла, которая предшествует делению клетки, удваивают содержание ДНК таким образом, что каждая дочерняя клетка после деления получает набор хромосом, идентичный родительской клетке. Процесс удвоения хромосом называют репликацией (редупликацией).
Хромосома содержит одну непрерывную двух-цепочечную молекулу ДНК. При репликации каждая цепь родительской двухцепочечной ДНК служит матрицей для синтеза новой комплементарной цепи. Вновь образованная двойная спираль имеет одну исходную (родительскую) и одну вновь синтезированную (дочернюю)
цепь. Такой механизм удвоения ДНК получил название «полуконсервативная репликация». Первичная структура дочерней цепи определяется первичной структурой родительской цепи, потому что в основе её образования лежит принцип комплементарности оснований (G = C и A = T).
Ферменты и белки, участвующие в репликации, должны работать быстро и точно. Эти условия выполняются с помощью особого муль-тиферментного комплекса.
Репликацию можно разделить на 4 этапа: образование репликативной вилки (инициация), синтез новых цепей (элонгация), исключение праймеров, завершение синтеза двух дочерних цепей ДНК (терминация).
59. ДНК–репликативный комплекс: субстраты, источники энергии,
ферменты, белки. Механизм репликации.
Репликация ДНК осуществляется ДНК-зависимыми ДНК-полимеразами. Субстратами и источниками энергии для синтеза продукта служат 4 макроэргических соединения - дезоксирибонуклеозидтрифосфаты: дАТФ, дГТФ, дЦТФ и дТТФ, для активации которых необходимы ионы магния. Нейтрализуя отрицательный заряд нуклеотидов, они повышают их реакционную способность. Ферменты проявляют каталитическую активность только в присутствии предварительно раскрученной матричной двухцепочечной ДНК. Синтез цепей ДНК происходит в направлении 5'-3' растущей цепи, т.е. очередной нуклеотид присоединяется к свободному З'-ОН-концу предшествующего нуклеотидного остатка. Синтезируемая цепь всегда антипараллельна матричной цепи. В ходе репликации образуются 2 дочерние цепи, представляющие собой копии матричных цепей.
В синтезе эукариотических ДНК принимают участие 5 ДНК-полимераз (α, β, γ, δ, ε). ДНК-полимеразы различают по числу субъединиц, молекулярной массе, ассоциации с разными вспомогательными белками, ускоряющими процесс биосинтеза ДНК, и функциональному назначению. ДНК-полимеразы α (альфа), β (бета), δ (дельта), ε (эпсилон) участвуют в синтезе ДНК в ядре клеток, ДНК-полимераза γ (гамма) - в репликации митохондриальной ДНК. ДНК-полимеразы β, δ, ε не могут инициировать образование дочерних цепей, так как не имеют сродства к одиночной нити ДНК.
Инициирует репликацию ДНК-полимераза α, которая комплементарна определённому сайту одноце-почечной ДНК. Присоединяясь к нему, ДНК-полимераза α синтезирует небольшой фрагмент РНК - праймер, состоящий из 8-10 рибо-нуклеотидов. ДНК-полимераза α состоит из четырёх субъединиц. Каждая из субъединиц фермента выполняет определённую функцию: «узнавание» сайта репликации, синтез прайме-ра (8-10 рибонуклеотидов), синтез фрагмента цепи ДНК, около 50 дезоксирибонуклеотидов. Таким образом, ДНК-полимераза α синтезирует олигонуклеотид, содержащий примерно 60 нуклеотидньгх остатков; первые 8-10 представлены рибонуклеотидами (праймер), а остальные - дезоксирибонуклеотидами.

60. Синтез ДНК и фазы клеточного деления. Роль циклинов и
циклинзависимых протеинкиназ в продвижении клетки по клеточному
циклу.

И СНОВА БИОЛОГИЯ!!! ВОССЛАВЬ ЕЁ!!!
Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно — одна незаметно переходит в другую.
Циклин-зависимые киназы — группа белков, регулируемых циклином и циклиноподобными молекулами. Большинство Циклин зависимых киназ участвуют в смене фаз клеточного цикла; также они регулируют транскрипцию и процессингмРНК.
Циклин-зависимые киназы являются серин\треониновыми киназами, и фосфорилируют соответствующиеостатки белков. Известно несколько CDK, каждая из которых активируется одним или более циклинами ииными подобными молекулами после достижения их критической концентрации, притом по большей частиCDK гомологичны, отличаясь в первую очередь конфигурацией сайта связывания циклинов. В ответ науменьшение внутриклеточной концентрации конкретного циклина происходит обратимая инактивациясоответствующей CDK. Если CDK активируются группой циклинов, каждый из них как бы передаваяпротеинкиназы друг другу, поддерживает CDK в активированном состоянии длительное время. Такие волны активации CDK возникают на протяжении G1- и S- фаз клеточного цикла.
61. Повреждение и репарация ДНК. ДНК-репарирующий комплекс, механизм процесса и условия репарации.
Процесс, позволяющий живым организмам восстанавливать повреждения, возникающие в ДНК, называют репарацией. Все репарационные механизмы основаны на том, что ДНК - двухцепочечная молекула, т.е. в клетке есть 2 копии генетической информации. Если нуклеотидная последовательность одной из двух цепей оказывается повреждённой (изменённой), информацию можно восстановить, так как вторая (комплементарная) цепь сохранена.
Процесс репарации происходит в несколько этапов. На первом этапе выявляется нарушение комплементарности цепей ДНК. В ходе второго этапа некомплементарный нуклеотид или только основание устраняется, на третьем и четвёртом этапах идёт восстановление целостности цепи по принципу комплементарности. Однако в зависимости от типа повреждения количество этапов и ферментов, участвующих в его устранении, может быть разным.
Очень редко происходят повреждения, затрагивающие обе цепи ДНК, т.е. нарушения структуры нуклеотидов комплементарной пары. Такие повреждения в половых клетках не репарируются, так как для осуществления сложной репарации с участием гомологичной рекомбинации требуется наличие диплоидного набора хромосом.
62. Биосинтез РНК. Особенности процесса транскрипции, этапы. РНК-
полимеразы, их роль.

Транскрипция - первая стадия реализации генетической информации в клетке. В ходе процесса образуются молекулы мРНК, служащие матрицей для синтеза белков, а также транспортные, рибосомальные и другие виды молекул РНК, выполняющие структурные, адапторные и каталитические функции.
Транскрипция у эукариотов происходит в ядре. В основе механизма транскрипции лежит тот же структурный принцип комплементарного спаривания оснований в молекуле РНК (G=C, A=U и Т=А). ДНК служит только матрицей и в ходе транскрипции не изменяется. Рибонук-леозидтрифосфаты (ЦТФ, ГТФ, АТФ, УТФ) - субстраты и источники энергии, необходимые для протекания полимеразной реакции, образования З',5'-фосфодиэфирной связи между рибонуклеозидмонофосфатами.
Синтез молекул РНК начинается в определённых последовательностях (сайтах) ДНК, которые называют промоторы, и завершается в терминирующих участках (сайты терминации). Участок ДНК, ограниченный промотором и сайтом терминации, представляет собой единицу транскрипции - транскриптон. У эукариотов в состав транскриптона, как правило, входит один ген ,у прокариотов несколько. В каждом транскриптоне присутствует неинформативная зона; она содержит специфические последовательности нуклеотидов, с которыми взаимодействуют регуляторные транскрипционные факторы.
Транскрипционые факторы - белки , взаимодействующие с определёнными регуляторны-ми сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транс-криптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).
Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.
В процессе транскрипции различают З стадии: инициацию, элонгацию и терминацию.
Биосинтез РНК осуществляется ДНК-зависимыми РНК-полимеразами. В ядрах эукари-отов обнаружены З специализированные РНК-полимеразы: РНК-полимераза I, синтезирующая пре-рРНК; РНК-полимераза II, ответственная за синтез пре-мРНК; РНК-полимераза III, синтезирующая пре-тРНК. РНК-полимеразы - оли-гомерные ферменты, состоящие из нескольких субъединиц - 2α, β, β', σ. Субъединица σ (сигма) выполняет регуляторную функцию, это один из факторов инициации транскрипции. РНК-полимеразы I, II, III, узнающие разные промоторы, содержат разные по строению субъединицы σ.
63. Понятие о мозаичной структуре генов, первичном транскрипте; механизм созревания РНК (посттранскрипционный процессинг).
Эукариотические гены, в отличие от бактериальных, имеют прерывистое мозаичное строение. Кодирующие последовательности (экзоны) перемежаются с некодирующими (интронами). Экзон [от англ. ex(pressi)on - выражение, выразительность] - участок гена, несущий информацию о первичной структуре белка. В гене экзоны разделены некодирующими участками - интронами. Интрон (от лат. inter - между) - участок гена, не несущий информацию о первичной структуре белка и расположенный между кодирующими участками - экзонами. В результате структурные гены эукариот имеют более длинную нуклеотидную последовательность, чем соответствующая зрелая иРНК, последовательность нуклеотидов в которой соответствует экзонам. В процессе транскрипции информация о гене списывается с ДНК на промежуточную иРНК, состоящую из экзонов и интронов. Затем специфические ферменты - рестриктазы - разрезают эту про-иРНК по границам экзон-интрон, после чего экзонные участки ферментативно соединяются вместе, образуя зрелую иРНК (так называемый сплайсинг). Количество интронов может варьировать в разных генах от нуля до многих десятков, а длина - от нескольких пар оснований до нескольких тысяч.
64. Биосинтез белков. Понятие о коллинеарности кода. Этапы процесса.
Коллинеарность - свойство, обусловливающее соответствие между последовательностью кодонов нуклеиновых кислот и аминокислот полипептидных цепей. Иными словами, коллинеарность - свойство, благодаря которому в белке воспроизводится та же последовательность аминокислот, в какой соответствующие кодоны располагаются в гене. Это означает, что положение каждой аминокислоты в полипептидной цепи зависит от особого участка гена. Генетический код считается коллинеарным, если кодоны нуклеиновых кислот и соответствующие им аминокислоты в белке расположены в одинаковом линейном порядке.
Инициация начинается с присоединения к мРНК в области «кэпа» малой субъединицы рибосомы 40S, факторов инициации (IF), инициирующей Мет-тРНКМет и ГТФ. Когда в результате движения этого комплекса по мРНК антикодон Мет-тРНКМет свяжется с инициирующим кодоном АUG, комплекс останавливается. Происходит присоединение 60S-субъединицы рибосомы, сопровождающееся гидролизом ГТФ и отделением факторов инициации. Формируется 80S-рибосома с двумя активными центрами: Р (пептидильным) центром, в котором находится Мет-тРНКМет, и А(аминоацильным) центром, в область которого поступает первый смысловой кодон
мРНК.
Этап элонгации включает три последовательные стадии:- Связывание аа-тРНКаа в А-центре.- Образование пептидной Пептидил-тРНК связи.- Транслокация - перемещение рибосомы по мРНК.
Терминация трансляции происходит после включения в А-центр одного из стоп кодонов: UAG, UGA, UAA
65. Биосинтез белков. Основные компоненты белоксинтезирующей системы. Биосинтез и созревание м-РНК.

Транскрипцией называется синтез РНК на ДНК-матрице. В результате образуются первичные траскрипты мРНК, тРНК, рРНК, комплементарные матричной цепи ДНК, имеющей направление от 3'-, к 5'-концу. Субстратами и источниками энергии для синтеза РНК являются рибонуклеозидтрифосфаты ( НТФ: АТФ, ГТФ, ЦТФ, УТФ).
Катализируют синтез РНК ферменты РНК-полимеразы. В ядре клеток эукариотов обнаружены три фермента:
•  РНК-полимераза I, синтезирующая пре-рРНК;
•  РНК-полимераза II, ответственная за синтез пре-мРНК;
•  РНК-полимераза III, синтезирующая пре-тРНК.
Синтез начинается с того момента, когда РНК-полимераза II присоединяется к матрице в специальном участке - протомотре. Промотор содержит ТАТА-последоательность, которую узнают белком ТАТА-фактором. Матрицей для синтеза служит одна из цепей ДНК.
Элонгация - наращивание молекулы РНК происходит путем присоединения очередного рибонуклеотида, комплементарного тому дезоксирибонуклеотиду ДНК, который находится в активном центре РНК-полимеразы
Терминация. участок ДНК содержит определенный участок - сайт терминации, где заканчивается ген, представляющий из себя последовательность нуклеотидов.И фермент отделяется ДНК-цепь.
Модификации пре-мРНК начинаются на стадии элонгации. Когда длина первичного транскрипта достигает примерно 30 нуклеотидов, происходит «кэпирование» 5'-конца.
Первичный транскрипт или пре-мРНК комплементарен гену, содержит как экзоны - последовательности, кодирующие определенные участки молекулы белка, так и интроны - некодирующие последовательности. В процессе образования молекул «зрелой» мРНК интроны вырезаются из первичного транскрипта, концы экзонов соединяются друг с другом - эту реакцию называют сплайсингом РНК 
Процесс вырезания интронов протекает при участии малых ядерных рибонуклеопротеинов (мяРНП), которые образуют комплексы - сплайсосомы. После завершения сплайсинга «зрелая»
мРНК становится примерно в четыре раза короче первичного транскрипта. Сплайсинг происходит в ядре, в цитоплазму переносится уже «зрелая» мРНК
66. Понятие о биологическом коде, свойства биологического кода.
Универсальность биологического кода и процессов биосинтеза белка.
Биологический код - это способ записи информации об аминокислотной последовательности белков с помощью последовательности нуклеотидов в ДНК или РНК. Его характеризуют следующие свойства: триплетность и наличие терминирующих кодонов, специфичность, вырожденность, универсальность, однонаправленность, колинеарность
Триплетность и наличие
терминирующих кодонов Кодовое число равно 3. Три нуклеотидных остатка (триплет) кодируют одну аминокислоту. Терминирующие триплеты - UАА, UАG, UGА не кодируют аминокислот, а являются сигналами к прекращению синтеза белка
Специфичность Каждый триплет кодирует только одну аминокислоту
Вырожденность Одну аминокислоту могут кодировать несколько триплетов (от 2 до 6)
Универсальность Почти у всех видов организмов биологический код одинаков
Однонаправленность Информация, записанная в зрелой мРНК в виде линейной последовательности кодонов (триплетов), считывается в направлении от 5'- к 3'-концу
Колинеарность Последовательность кодонов в зрелой мРНК соответствует последовательности аминокислот в синтезированном белке
67. Транспортная РНК как адаптор аминокислот. Биосинтез аминоацил-т-РНК.
Второй тип РНК называют транспортной (адапторной сокращенно— т-РНК). Она выполняет функцию переносчика активированных аминокислотк месту синтеза белка. Каждая молекула такой РНК является адаптером только какой-нибудь одной аминокислоты, т. е. находит место аминокислоты на и-РНК- Поэтому в клетке имеется не менее 20 разновидностей РНК, специализированных для 20 аминокислот. 

68. Субстратная специфичность АРС-аз, их роль. Изоакцепторные т-РНК.
Реакция аминоацилирования осуществляется ферментами аминоацил-тРНК-синтетазами, способными узнавать три различных субстрата: АТФ, аминокислоту и тРНК. В активном центре молекулы фермента осуществляются активация аминокислоты и присоединение ее к концевому остатку рибозы тРНК. Для каждой аминокислоты в клетке имеется аминоацил-тРНК-синтетаза (АРСаза), способная отличать свою аминокислоту от остальных, часто очень похожих по структуре/
Аминоацил-тРНК-синтетазы осуществляют присоединение аминокислоты к молекуле транспортной РНК, что является ключевым моментом в реализации генетической информации.
Изоакцепторные тРНК. - Группа тРНК, связывающих одну и ту же аминокислоту, но имеющих разные антикодоны; разные Изоакцепторные тРНК узнаются одной и той же аминоацил-тРНК-синтетазой; Изоакцепторные тРНК отсутствуют у метионина и триптофана, а наибольшее их число (по 6) распознают кодоны аденина, лейцина и серина;Изоакцепторные тРНК могут иметь одинаковые антикодоны, но различную первичную структуру.
69. Строение рибосом. Последовательность событий на рибосоме при сборке полипептидной цепи, функционирование полирибосом.

 События на рибосоме включают этапы: инициации, элонгации и терминации.
Инициация начинается с присоединения к мРНК в области «кэпа» малой субъединицы рибосомы 40S, факторов инициации (IF), инициирующей Мет-тРНКМет и ГТФ. Когда в результате движения этого комплекса по мРНК антикодон Мет-тРНКМет свяжется с инициирующим кодоном АUG, комплекс останавливается. Происходит присоединение 60S-субъединицы рибосомы, сопровождающееся гидролизом ГТФ и отделением факторов инициации. Формируется 80S-рибосома с двумя активными центрами: Р (пептидильным) центром, в котором находится Мет-тРНКМет, и А(аминоацильным) центром, в область которого поступает первый смысловой кодон
мРНК.
Этап элонгации включает три последовательные стадии:- Связывание аа-тРНКаа в А-центре.- Образование пептидной Пептидил-тРНК связи.- Транслокация - перемещение рибосомы по мРНК.
Терминация трансляции происходит после включения в А-центр одного из стоп кодонов: UAG, UGA, UAA
Одновременно несколько рибосом могут участвовать в трансляции одной мРНК. Каждая рибосома занимает участок, равный примерно 80 нуклеотидам мРНК. Таким образом, рибосомы располагаются на мРНК с интервалами около 100 нуклеотидов, образуя комплекс, называемый полисомой.
70. Посттрансляционный процессинг белков.
Функционально активные белки образуются в результате посттрансляционных модификаций полипептидных цепей, синтезированных на рибосомах. Они включают:
•  частичный протеолиз;
•  фолдинг, или формирование пространственной структуры, в котором принимают участие белки-шапероны, обеспечивающие образование функционально активной конформации полипептидной цепи;
•  модификации аминокислот: карбоксилирование, фосфорилирование, йодирование, гидроксилирование, ацилирование и гликозилирование;
•  образование дисульфидных связей между остатками цистеина, участвующими в формировании трехмерной структуры белка;
•  присоединение простетических групп;
•  образование олигомерных структур, которое также осуществляется при участии шаперонов.
71. Адаптивная регуляция экспрессии генов у прокариотов и эукариотов.
Адаптивная регуляция активности генов у прокариотов получила объяснение в теории оперона. Согласно этой теории на молекуле ДНК прокариотов присутствуют определенные участки - опероны. В состав этих участков ДНК входятструктурные гены, содержащие информацию о группе функционально взаимосвязанных белков, которые участвуют в одном и том же метаболическом пути, промотор и оператор. Участки промотора и оператора частично перекрываются. Транскрипцию структурных генов контролирует оператор, присоединение к которому белка-репрессора не позволяет РНК-полимеразе связаться с промотором и начать транскрипцию. Белок-репрессор синтезируется в клетке с постоянной скоростью, его строение кодирует мРНК, транскрибируемая с гена-регулятора, расположенного на некотором расстоянии от оперона, работу которого контролирует его белковый продукт.
Адаптивная регуляция активности генов у эукариотов обеспечивает изменения скорости транскрипции отдельных генов в ответ на меняющиеся условия внутренней и внешней среды. В клетках многоклеточных организмов часть генов кодирует белки «домашнего хозяйства», которые синтезируются с постоянной скоростью и обеспечивают жизнеспособность клеток. Это - гены ферментов, участвующие в биологическом окислении, синтезе АТФ, образовании компонентов мембран и т.д.
Регуляция у высших организмов отличается от регуляции транскрипции у прокариотов многообразием сигналов, которые контролируют не только начало процесса на молекуле ДНК, но и частоту, с которой он происходит.
72. Теория оперона. Строение и функционирование лактозного оперона.
Теория оперона. Пам-пам-пааам. Что такое оперон - отрезок ДНК, содержащий структурные гены определенных белко и регуляторные участки. Как он выглядит? Участок с геном-регулятором, промотором, оператором, струтурными генами. В красивой картинке это вот так:

Функционирование, когда субстрата нет - ген никому не нужен, не активен и соответствующий фермент в МАЛЫХ количествах. Но если добавить, о мой фонендоскоп, количество этого белка резко увеличивается, и бактерия начинается питаться, образуюя из лактозры - галактозу и глюкозу. О да.
73. Роль энхансеров, селенсеров, амплификации в регуляции биосинтеза
белка у эукариотов.

74. Распад клеточных белков. Время полужизни разных белков.
Клеточные белки не вечны. Помним, что такое лабильность? Да, белки любят йогу во время своего сущестовать, со временем они теряют свою функциональность. Их надо утилизировать... да упокоятся с миром. Отчего зависит продолжительность их существования? От активности, конечно. Белковые гормоны существуют несколько минут, когда выполняют свою задачи и утилизируются, коллагеновые белки существуют несколько месяцев, а может и лет. Время полужизни- время полураспада. А время полураспада это... физика.


Приложенные файлы

  • docx 5886145
    Размер файла: 7 MB Загрузок: 0

Добавить комментарий