Лекции АКС и ОАУ иФВС-Ходотова Е.А

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ
Государственное образовательное учреждение высшего профессионального образования
«Поволжский государственный университет телекоммуникаций и информатики»
КОЛЛЕДЖ СВЯЗИ

УТВЕРЖДАЮ:
Зам директора по УВР
__________________Логвинов А.В.
«____»_______________2011г.

КОНСПЕКТ ЛЕКЦИЙ
по учебной дисциплине «АРХИТЕКТУРА КОМПЬЮТЕРНЫХ СИСТЕМ»
для специальностей: 230115 - «Программирование в компьютерных системах»




Курс 2, семестр 3,4


Конспект лекций рассмотрен за заседании П(Ц)К
«Информационных систем и технологий»
Протокол №____ от «____»_________2011г.
Председатель П(Ц)К_____________Шомас Е.А.

Самара 2011
Оглавление
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
Введение
Основные понятия: компьютерная система, архитектура, базовый комплект. Виды ПК

Целью изучения дисциплины «Архитектура вычислительных систем» является теоретическая и практическая подготовка студентов в области информационных технологий в такой степени, чтобы они могли выбирать необходимые технические, алгоритмические, программные и технологические решения, уметь объяснить принципы их функционирования и правильно их использовать.
Основные задачи изучения дисциплины:
формирование у студентов минимально необходимых знаний по дисциплине;
ознакомление с техническими, алгоритмическими, программными и технологическими решениями, используемыми в данной области;
выработка практических навыков аналитического и экспериментального исследования основных методов и средств, используемых в области, изучаемой в рамках данной дисциплины.
Вычислительная машина это комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей.
Вычислительная система это совокупность взаимосвязанных и взаимодействующих процессоров или вычислительных машин, периферийного оборудования и программного обеспечения, предназначенную для подготовки и решения задач пользователей.
Под архитектурой вычислительной машины обычно понимается логическое построение ВМ, то есть то, какой машина представляется программисту. Из рассмотрения выпадают вопросы физического построения вычислительных средств: состав устройств, число регистров процессора, емкость памяти, наличие специального блока для обработки вещественных чисел, тактовая частота центрального процессора и т.д. Этот круг вопросов принято определять понятием организация вычислительной машины.
Персональный компьютер универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется. Понятие базовой конфигурации может меняться. В настоящее время в базовой конфигурации рассматривают четыре устройства:
-      системный блок;
-      монитор;
-      клавиатуру;
-      мышь.
Системный блок
Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, называют внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.
По внешнему виду системные блоки различаются формой корпуса. Корпуса персональных компьютеров выпускают в горизонтальном (desktop) и вертикальном (tower) исполнении. Корпуса, имеющие вертикальное исполнение, различают по габаритам: полноразмерный (big tower), среднеразмерный (midi tower) и малоразмерный (mini tower). Среди корпусов, имеющих горизонтальное исполнение, выделяют плоские и особо плоские (slim).
Кроме формы, для корпуса важен параметр, называемый форм-фактором. От него зависят требования к размещаемым устройствам. В настоящее время в основном используются корпуса двух форм-факторов: АТ и АТХ. Форм-фактор корпуса должен быть обязательно согласован с форм-фактором главной (системной) платы компьютера, так называемой материнской платы.
Корпуса персональных компьютеров поставляются вместе с блоком питания и, таким образом, мощность блока питания также является одним из параметров корпуса. Для массовых моделей достаточной является мощность блока питания 200-250Вт.

Раздел 1. Архитектура и принципы построения персонального компьютера (ПК)
Тема 1.1. Основные характеристики ПК
Производительность (быстродействие) ПК – возможность компьютера обрабатывать большие объёмы информации. Определяется быстродействием процессора, объёмом ОП и скоростью доступа к ней (например, Pentium III обрабатывает информацию со скоростью в сотни миллионов операций в секунду)
Производительность (быстродействие) процессора – количество элементарных операций выполняемых за 1 секунду.
Тактовая частота процессора (частота синхронизации) - число тактов процессора в секунду, а такт – промежуток времени (микросекунды) за который выполняется элементарная операция (например сложение). Таким образом Тактовая частота - это число вырабатываемых за секунду импульсов, синхронизирующих работу узлов компьютера. Именно ТЧ определяет быстродействие компьютера
Задается ТЧ специальной микросхемой «генератор тактовой частота», который вырабатывает периодические импульсы. На выполнение процессором каждой операции отводится определенное количество тактов. Частота в 1Мгц = 1миллиону тактов в 1 секунду.  Превышение порога тактовой частоты приводит к возникновению ошибок процессора и др. устройств. Поэтому существуют фиксированные величины тактовых частот для каждого типа процессоров, например: 2,8 ;  3,0  Ггц  и тд
Разрядность процессора – max длина (кол-во разрядов) двоичного кода, который может обрабатываться и передаваться процессором целиком.
Разрядность связана с размером специальных ячеек памяти – регистрами. Регистр в 1байт (8бит) называют восьмиразрядным, в 2байта – 16-разрядным и тд.  Высокопроизводительные компьютеры имеют 8-байтовые регистры (64разряда)
Время доступа - Быстродействие модулей ОП, это период времени, необходимый для считывание min порции информации из ячеек памяти или записи в память. Современные модули обладают скоростью доступа свыше 10нс (1нс=10-9с)
Объем памяти (ёмкость) –  max объем информации, который может храниться в ней.
Плотность записи – объем информации, записанной на единице длины дорожки (бит/мм)
Скорость обмена информации – скорость записи/считывания на носитель, которая определяется скоростью вращения и перемещения этого носителя в устройстве
Тема 1.2. Общие принципы построения современных ПК
Основной принцип построения ПК. Структура. Структурные схема ПК 1- 4 поколения. Стандартные элементы структур современных ПК
1. Основной принцип построения ЭВМ
Основным принципом построения современных ЭВМ является программное управление. В основе его лежит представление алгоритма решения любой задачи в виде программы вычислений.
Алгоритм это конечный набор предписаний, определяющий решение задачи посредством конечного количества операций.
Программа (для ЭВМ) это упорядоченная последовательность команд, подлежащая обработке (стандарт ISO 2382/1-84).
Логическую организацию ЭВМ независимо от ее элементной базы в 1945 году представил математик Джон фон Нейман. Архитектура универсальной ЭВМ фон Неймана предусматривается пять базовых компонентов:
Центральное арифметико-логическое устройство (АЛУ).
Центральное устройство управления (УУ), ответственное за функционирование всех основных устройств ЭВМ.
Запоминающее устройство (ЗУ).
Система ввода информации.
Система вывода информации
Способ, описанный Дж. фон Нейманом в 1945 г. cтал cтандартом для построения практически всех ЭВМ. Суть его заключается в следующем.
Все вычисления, предписанные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов-команд.
Каждая команда содержит указания на конкретную выполняемую операцию, место нахождения (адрес) операндов и ряд служебных признаков.
Операнды это переменные, значения которых участвуют в операциях преобразования данных.
Список (массив) всех переменных (входных данных, промежуточных значений и результатов вычислений) является еще одним неотъемлемым элементом любой программы.
Для доступа к программам, командам и операндам используются их адреса. В качестве адресов выступают номера ячеек памяти ЭВМ, предназначенных для хранения объектов.
Информация (командная и данные: числовая, текстовая, графическая и т.п.) кодируется двоичными числами 0 и 1. Каждый тип информации имеет форматы - структурные единицы информации, закодированные двоичными цифрами 0 и 1. Обычно все форматы данных, используемые в ЭВМ, кратны байту, т.е. состоят из целого числа байтов.
Последовательность битов в формате, имеющая определенный смысл, называется полем. Например, в каждой команде программы различают поле кода операций, поле адресов операндов. Применительно к числовой информации выделяют знаковые разряды, поле значащих разрядов чисел, старшие и младшие разряды.
2. Структурная схема ЭВМ первого и второго поколения.
Обобщенная структурная схема ЭВМ первых поколений представлена на рис.1.
Рис.1. Структурная схема ЭВМ первого и второго поколения
Увв - устройство ввода. В любой ЭВМ имеются устройства ввода информации (УВв), с помощью которых пользователи вводят в ЭВМ программы решаемых задач и данные к ним.
ОЗУ - оперативное запоминающее устройство. Введенная информация полностью или частично сначала запоминается в оперативном запоминающем устройстве (ОЗУ), а затем переносится во внешнее запоминающее устройство (ВЗУ).
ВЗУ предназначено для длительного хранения информации. Информация в ВЗУ преобразуется в специальный программный объект - файл. При использовании файла в вычислительном процессе его содержимое переносится в ОЗУ. Затем программная информация команда за командой считывается в устройство управления (УУ).
Устройство управления предназначается для автоматического выполнения программ путем принудительной координации всех остальных устройств ЭВМ. Цепи сигналов управления показаны на рис.1 штриховыми линиями. Вызываемые из ОЗУ команды дешифруются устройством управления: определяются код операции, которую необходимо выполнить следующей, и адреса операндов, принимающих участие в данной операции.
Все команды программы выполняются последовательно, команда за командой, в том порядке, как они записаны в памяти ЭВМ (естественный порядок следования команд). Этот порядок характерен для линейных программ, т.е. программ, не содержащих разветвлений. Для организации ветвлений используются команды, нарушающие естественный порядок следования команд. Отдельные признаки результатов r (r=0, r<0, r>0 и др.) устройство управления использует для изменения порядка выполнения команд программы.
АЛУ выполняет арифметические и логические операции над данными. Основной частью АЛУ является операционный автомат, в состав которого входят сумматоры, счетчики, регистры, логические преобразователи и др. Оно каждый раз перенастраивается на выполнение очередной операции. Результаты выполнения отдельных операций сохраняются для последующего использования на одном из регистров АЛУ или записываются в память.
Увыв - устройство вывода. Результаты, полученные после выполнения всей программы вычислений, передаются на устройства вывода (УВыв) информации. В качестве УВыв могут использоваться экран дисплея, принтер, графопостроитель и др.
Первые ЭВМ имели очень сильную централизацию управления, единые стандарты форматов команд и данных, "жесткое" построение циклов выполнения отдельных операций, что во многом объясняется ограниченными возможностями используемой в них элементной базы. Центральное УУ обслуживало не только вычислительные операции, но и операции ввода-вывода, пересылок данных между ЗУ и др. Все это позволяло в какой-то степени упростить аппаратуру ЭВМ, но сильно сдерживало рост их производительности.
3. Структурная схема ЭВМ третьего поколения.
В ЭВМ третьего поколения произошло усложнение структуры за счет разделения процессов ввода-вывода информации и ее обработки (рис.2).
Сильносвязанные устройства АЛУ и УУ получили название процессор, т.е. устройство, предназначенное для обработки данных. В схеме ЭВМ появились также дополнительные устройства, которые имели название: процессоры ввода-вывода, устройства управления обменом информацией, каналы ввода-вывода (КВВ). Последнее название получило наибольшее распространение применительно к большим ЭВМ. Здесь наметилась тенденция к децентрализации управления и параллельной работе отдельных устройств, что позволило резко повысить быстродействие ЭВМ в целом.
Среди каналов ввода-вывода выделяли мультиплексные каналы, способные обслуживать большое количество медленно работающих устройств ввода-вывода (УВВ), и селекторные каналы, обслуживающие в многоканальных режимах скоростные внешние запоминающие устройства (ВЗУ).
Рис.2.Структурная схема ЭВМ третьего поколения
4. Структурная схема ЭВМ четвертого поколения.
В персональных ЭВМ, относящихся к ЭВМ четвертого поколения, произошло дальнейшее изменение структуры (рис.3). Они унаследовали ее от мини-ЭВМ.
Рис.3.Структурная схема ПЭВМ.
Соединение всех устройств в единую машину обеспечивается с помощью общей шины, представляющей собой линии передачи данных, адресов, сигналов управления и питания. Единая система аппаратных соединений значительно упростила структуру, сделав ее еще более децентрализованной. Все передачи данных по шине осуществляются под управлением сервисных программ.
Ядро ПК образуют процессор и основная память (ОП), состоящая ОЗУ и постоянного запоминающего устройства (ПЗУ). ПЗУ предназначено для записи и постоянного хранения наиболее часто используемых программ управления.
Подключение всех внешних устройств (ВнУ), дисплея, клавиатуры, внешних ЗУ и других обеспечивается через соответствующие адаптеры или контроллеры - специальные устройства управления ВнУ. Контроллеры в ПЭВМ играют роль каналов ввода-вывода. В качестве особых устройств следует выделить таймер - устройство измерения времени и контроллер прямого доступа к памяти (КПД) - устройство, обеспечивающее доступ к ОП, минуя процессор.
5.Стандартные элементы структур современных ЭВМ.
Стандартные элементы структур современных ЭВМ : модульность построения, магистральность, иерархия управления.
Модульность построения предполагает в структуре ЭВМ достаточно автономных, функционально и конструктивно законченных устройств (процессор, модуль памяти, накопитель на жестком или гибком магнитном диске).
Модульная конструкция ЭВМ делает ее открытой системой, способной к адаптации и совершенствованию.
Децентрализация управления предполагает иерархическую организацию структуры ЭВМ. Централизованное управление осуществляет устройство управления главного, или центрального, процессора. Подключаемые к центральному процессору модули (контроллеры и КВВ) могут, в свою очередь, использовать специальные шины или магистрали для обмена управляющими сигналами, адресами и данными.
Инициализация работы модулей обеспечивается по командам центральных устройств, после чего они продолжают работу по собственным программам управления. Результаты выполнения требуемых операций представляются ими "вверх по иерархии" для правильной координации всех работ.
Иерархический принцип построения и управления характерен не только для структуры ЭВМ в целом, но и для отдельных ее подсистем. Например, по этому же принципу строится система памяти ЭВМ.
Так, с точки зрения пользователя желательно иметь в ЭВМ оперативную память большой информационной емкости и высокого быстродействия. Однако одноуровневое построение памяти не позволяет одновременно удовлетворять этим двум противоречивым требованиям. Поэтому память современных ЭВМ строится по многоуровневому, пирамидальному принципу.
В состав процессоров может входить сверхоперативное запоминающее устройство небольшой емкости, образованное несколькими десятками регистров с быстрым временем доступа (единицы нс). Здесь обычно хранятся данные, непосредственно используемые в обработке.
Следующий уровень образует кэш-память или память блокнотного типа. Она представляет собой буферное запоминающее устройство, предназначенное для хранения активных страниц объемом десятки и сотни Кбайтов. Время обращения к данным составляет 10-20 нс, при этом может использоваться ассоциативная выборка данных. Кэш-память, как более быстродействующая ЗУ, предназначается для ускорения выборки команд программы и обрабатываемых данных. Сами же программы пользователей и данные к ним размещаются в оперативном запоминающем устройстве (емкость - миллионы машинных слов, время выборки - до 100 нс).
Часть машинных программ, обеспечивающих автоматическое управление вычислениями и используемых наиболее часто, может размещаться в постоянном запоминающем устройстве (ПЗУ). На более низких уровнях иерархии находятся внешние запоминающие устройства на магнитных носителях: на жестких и гибких магнитных дисках, магнитных лентах, магнитооптических дисках и др. Их отличает более низкое быстродействие и очень большая емкость.
Организация заблаговременного обмена информационными потоками между ЗУ различных уровней при децентрализованном управлении ими позволяет рассматривать иерархию памяти как единую абстрактную кажущуюся (виртуальную) память. Согласованная работа всех уровней обеспечивается под управлением программ операционной системы. Пользователь имеет возможность работать с памятью, намного превышающей емкость ОЗУ.
Децентрализация управления и структуры ЭВМ позволила перейти к более сложным многопрограммным (мультипрограммным) режимам. При этом в ЭВМ одновременно может обрабатываться несколько программ пользователей.
В ЭВМ, имеющих один процессор, многопрограммная обработка является кажущейся. Она предполагает параллельную обработку отдельных устройств, задействованных в вычислениях по различным задачам пользователей. Например, компьютер может производить распечатку каких-либо документов и принимать сообщения, поступающие по каналам связи. Процессор при этом может производить обработку данных по третьей программе, а пользователь - вводить данные или программу для новой задачи, слушать музыку и т.п.
В ЭВМ или вычислительных системах, имеющих несколько процессоров обработки, многопрограммная работа может быть более глубокой. Автоматическое управление вычислениями предполагает усложнение структуры за счет включения в ее состав систем и блоков, разделяющих различные вычислительные процессы друг от друга, исключающие возможность возникновения взаимных помех и ошибок (системы прерываний и приоритетов, защиты памяти). Самостоятельного значения в вычислениях они не имеют, но являются необходимым элементом структуры для обеспечения этих вычислений.
6. Функции программного обеспечения
ЭВМ являются универсальными техническими средствами автоматизации вычислительных работ, т.е. они способны решать любые задачи, связанные с преобразованием информации.
ЭВМ имеет специальный комплекс программных средств регулярного применения. Эти средства обеспечивают взаимодействие пользователей с ЭВМ. Они получили название программного обеспечения (ПО) ЭВМ.
Под программным обеспечением будем понимать комплекс программных средств регулярного применения, предназначенный для подготовки и решения задач пользователей.
В общем случае процесс подготовки и решения задач на ЭВМ пользователями предусматривает выполнение следующей последовательности этапов (рис.4):
формулировка проблемы и математическая постановка задачи;
выбор метода и разработка алгоритма решения;
программирование (запись алгоритма) с использованием некоторого алгоритмического языка;
планирование и организация вычислительного процесса - порядка и последовательности использования ресурсов ЭВМ и ВС;
формирование "машинной программы", т.е. программы, которую непосредственно будет выполнять ЭВМ;
собственно решение задачи - выполнение вычислений по готовой программе.
По мере развития вычислительной техники автоматизация этих этапов идет снизу-вверх.
В ЭВМ 1-го поколения автоматизации подлежал только последний этап. Все пять предыдущих этапов пользователь должен был готовить вручную самостоятельно.
Для ЭВМ 2-го поколения характерно широкое применение алгоритмических языков (Автокоды, Алгол, Фортран и др.) и соответствующих трансляторов, позволяющих автоматически формировать программы по их описанию на алгоритмическом языке. Стали внедряться библиотеки стандартных программ, что позволило строить прораммы блоками.
ЭВМ 3-го поколения характеризуются расцветом операционных систем (ОС), отвечающих за организацию и управление вычислительным процессом. Операционная система планирует последовательность распределения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые используются для вычислений: машинное время отдельных процессоров или ЭВМ, входящих в систему; объемы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы как общего, так и специального применения и т.п. Наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсеместно в ЭВМ различных классов. Это позволило в значительной степени повысить эффективность применения ЭВМ и ВС в целом.
В ЭВМ 4-го поколения продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества).

Раздел 2. Функциональная и структурная организация ПК
Тема 2.1. Организация функционирования ПК
Функционально-структурная организация персонального компьютера. Элементы конструкции ПК. Достоинства ПК
Архитектура компьютера обычно определяется совокупностью её свойств, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям машины, которые может разделить на основные и дополнительные.
Основные функции определяют назначение ЭВМ: обработка и хранение информации, обмен информацией с внешними объектами. Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают эффективный режимы её работы, диалог с пользователем. Высокую надёжность и др. Названные функции ЭВМ реализуются с помощью её компонентов: аппаратных и программных средств.
Структура компьютера – это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в неё компонентов.
Персональный компьютер – это настольная или переносная ЭВМ, удовлетворяющая требованиям общедоступности и универсальности применения.
Достоинствами ПК являются: 
малая стоимость, находящаяся в пределах доступности для индивидуального покупателя
автономность эксплуатации без специальных требований к условиям окружающей среды
гибкость архитектуры, обеспечивающая её адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту
«дружественность» операционной системы и прочего программного обеспечения, обуславливающая возможность работы с ней пользователя без профессиональной специальной подготовки
высокая надёжность работы (более 5 тыс. ч наработки на отказ)
Структура персонального компьютера
Конструктивно ПК выполнены в виде центрального системного блока, к которому через разъёмы подключаются внешние устройства: дополнительные устройства памяти, клавиатура, дисплей, принтер и др
Системный блок обычно включает в себя системную плату, блок питания, накопители на дисках, разъёмы для дополнительных устройств и платы расширения с контроллерами – адаптерами внешних устройств.
На системной плате (часто её называют материнской платой), как правило, размещаются:
Микропроцессор
Математический сопроцессор
Генератор тактовых импульсов
Блоки (микросхемы) ОЗУ и ПЗУ
Адаптеры клавиатуры, НЖДМ и НГМД
Контроллер прерываний
Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съём текущего момента времени (год, месяц, часы, минуты. Секунды и доли секунд). Таймер подключается к автономному источнику питания – аккумулятору и при отключении машины от сети продолжает работать., и др.

Лабораторная работа № 1. Основные составляющие ПК. Параметры системы
Лабораторная работа № 2. Эксплуатационные требования к компьютерному рабочему месту
Тема 2.2. Центральный процессор ПК
Понятие ЦП. Основные составляющие ЦП. Характеристики ЦП
Микропроцессор (МП). Это центральный блок ПК. Предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.
            В состав микропроцессора входят:
устройство управления (УУ) – формирует и подает во все блоки машины в нужные моменты времени спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти. Используемых выполняемой операцией, и передаёт эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов
арифметико–логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический процессор)
микропроцессорная память (МПП) – служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. VGG строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывая информации, необходимую для эффективной работы быстродействующего микропроцессора. Регистры – быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие)
интерфейсная система микропроцессора – реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода – вывода (ПВВ) и системной шиной. Интерфейс (Interface) – совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода – вывода (I/O – Input / Output port) – аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство ПК.
Центральный процессор (ЦПУ, CPU, от англ. Central Processing Unit) это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.
Современные процессоры выполняются в виде микропроцессоров.
Физически микропроцессор представляет собой интегральную схему тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора.
Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.
Микропроцессор Intel Pentium 4 наиболее совершенный и мощный процессор выпуска 2001 г. с тактовой частотой до 2 Гигагерц. Он предназначен для работы приложений, требующих высокой производительности процессора, таких, как передача видео и звука по Интернет, создание видео-материалов, распознавание речи, обработка трехмерной графики, игры.

В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называются многопроцессорными.
Скорость процессора измеряется в мегагерцах (MHz). Это дает приблизительное представление о том, сколько операций он выполняет в секунду. Хотя можно с уверенностью сказать, что 200 MHz Pentium MMX работает быстрее, чем 166 MHZ Pentium MMX. Подобные сравнения возможны только внутри семьи процессоров. Сравнение скоростей в мегагерцах Pentium MMX и Pentium II или чипа от другого производителя невозможны, поскольку инструкции обрабатываются по-разному.
Главный соперник процессора Intel Pentium III - AMD Athlon, который во многом превосходит Pentium, в том числе и по скорости. В Apple Mac используются процессоры под названием G3 и G4, выпущенные компанией Motorola. Считается, что они тоже превосходят Pentium III по скорости.
Процессор аппаратно реализуется на большой интегральной схеме (БИС). Большая интегральная схема на самом деле не является "большой" по размеру и представляет собой, наоборот, маленькую плоскую полупроводниковую пластину размером примерно 20х20 мм., заключенную в плоский корпус с рядами металлических штырьков (контактов). БИС является "большой" по количеству элементов.
Использование современных высоких технологий позволяет разместить на БИС процессора огромное количество (42 миллиона в процессоре Pentium 4) функциональных элементов (переключателей), размеры которых составляют всего около 0,13 микрон (1 микрон = 10-6 метра).
Важнейшей характеристикой, определяющей быстродействие процессора, является тактовая частота, то есть количество тактов в секунду. Такт - это промежуток времени между началами подачи двух последовательных импульсов специальной микросхемой - генератором тактовой частоты, синхронизирующим работу узлов компьютера. На выполнение процессором каждой базовой операции (например, сложения) отводится определенное количество тактов.
Ясно, что чем больше тактовая частота, тем больше операций в секунду выполняет процессор. Тактовая частота измеряется в мегагерцах (МГц) и гигагерцах (ГГц). 1 МГц - миллион тактов в секунду. За 20 с небольшим лет тактовая частота процессора увеличилась почти в 500 раз, от 5 МГц (процессор 8086, 1978 год) до 2,4 ГГц (процессор Pentium 4, 2002 год) - см. таблицу. 
Тип
Год выпуска
Частота (МГц)
Шина данных
Шина адреса
Адресуемая память

8086
1978
5-10
16
20
1 Мб

80286
1982
6-12,5
16
24
16 Мб

80386
1985
16-33
32
32
4 Гб

80486
1989
25-50
32
32
4 Гб

Pentium
1993
60-166
64
32
4 Гб

Pentium II
1997
200-300
64
36
64 Гб

Pentium III
1999
450-1000
64
36
64 Гб

Pentium 4
2000
1000-2400
64
36
64 Гб

Другой характеристикой процессора, влияющей на его производительность, является разрядность процессора. Разрядность процессора определяется количеством двоичных разрядов, которые могут передаваться или обрабатываться процессором одновременно. Часто уточняют разрядность процессора и пишут 64/36, что означает, что процессор имеет 64-разрядную шину данных и 36-разрядную шину адреса.
В первом отечественном школьном компьютере "Агат" (1985 год) был установлен процессор, имевший разрядность 8/16, соответственно одновременно он обрабатывал 8 битов, а его адресное пространство составляло 64 килобайта.
Современный процессор Pentium 4 имеет разрядность 64/36, то есть одновременно процессор обрабатывает 64 бита, а адресное пространство составляет 68 719 476 736 байтов - 64 гигабайта.
Производительность процессора является его интегральной характеристикой, которая зависит от частоты процессора, его разрядности, а также особенностей архитектуры (наличие кэш-памяти и др.). Производительность процессора нельзя вычислить, она определяется в процессе тестирования, по скорости выполнения процессором определенных операций в какой-либо программной среде.

Тема 2.3. Взаимодействие элементов при работе микропроцессора
Система команд микропроцессора. Сегменты оперативной памяти. Исполнительный адрес
Работой МП управляет программа, записанная в ОП ЭВМ. Адрес очередной команды хранится в счетчике команд IP (Instruction Pointer) и в одном из сегментных регистров, чаще всего в CS. Каждый из них в реальном режиме имеет длину 16 бит, тогда как физический адрес ОП должен иметь длину 20 бит. Несогласованность длины машинного слова (16 бит) и длины физического адреса ОП (20 бит) приводит к тому, что в командах невозможно указать физический адрес ОП - его приходится формировать, собирать из разных регистров МП в процессе работы.
В реальном режиме вся ОП делится на сегменты (длина сегмента - 64 Кбайта). Адрес ОП разделяется на две части: номер сегмента в ОП (база сегмента) и номер ячейки внутри данного сегмента (смещение относительно начала сегмента). Базовый адрес сегмента образуется добавлением к номеру сегмента справа четырех нулей. Поскольку последние четыре разряда абсолютного (физического) адреса сегмента всегда нулевые, сегмент может начинаться не с любой ячейки ОП, а только с “параграфа” - начала 16-байтного блока ОП. В структуре микропроцессора имеется несколько регистров сегментов, например в i8086 - четыре:
С S - программный сегмент;
DS - сегмент данных (информационный сегмент);
SS - стековый сегмент;
ES - расширенный сегмент (дополнительный сегмент данных).
Номер ячейки внутри сегмента (смещение) называется также исполнительным адресом. В большинстве случаев в адресной части команды указывается именно исполнительный адрес - номер сегмента чаще всего подразумевается по умолчанию. Однако допускается указание и полного адреса ОП в виде префиксной структуры: “сегмент: смещение”. Если сегмент в команде не указывается, значит, работа ведется внутри текущего сегмента (характер выполняемой работы и какой из сегментных регистров определяет текущую базу сегмента, зависят от вида выполняемой команды).
Номер сегмента так же, как и смещение, имеет длину 2 байта. При вычислении физического адреса ОП сегмент и смещение суммируются, но сегмент перед суммированием сдвигается влево на 4 бита. В результате суммирования образуется физический адрес ОП длиной 20 бит.
В защищенном режиме базовые адреса сегментов хранятся в дескрипторных таблицах и имеют длину 24 или 32 бита (в зависимости от типа МП). В сегментных же регистрах хранится селектор, содержащий номер дескрипторной таблицы и дескрипторное смещение, т.е. порядковый номер дескриптора (в котором и хранится базовый адрес сегмента) в данной дескрипторной таблице (рис.).

Рис. Формирование физического адреса ОП в защищенном режиме
Физический адрес очередной команды через внутреннюю магистраль МП и интерфейс памяти поступает на шину адреса системной магистрали. Одновременно из устройства управления (УУ) исполнительного блока на шину управления выдается команда (управляющий сигнал) в ОП, предписывающая выбрать число, находящееся по адресу, указанному в системной магистрали. Выбранное число, являющееся очередной командой, поступает из ОП через шину данных системной магистрали, интерфейс памяти, внутреннюю магистраль МП на регистр команд (INST).
Из команды в регистре команд выделяется код операции, который поступает в УУ исполнительного блока для выработки управляющих сигналов, настраивающих микропроцессор на выполнение требуемой операции.
В зависимости от используемого в команде режима адресации организуется выборка необходимых исходных данных.
К управляющим регистрам МП относится и регистр флагов, каждый разряд которого имеет строго определенное назначение. Обычно разряды регистра флагов устанавливаются аппаратно при выполнении очередной операции в зависимости от получаемого в АЛУ результата. При этом фиксируются такие свойства получаемого результата, как нулевой результат, отрицательное число, переполнение разрядной сетки АЛУ и т.д. Но некоторые разряды регистра флагов могут устанавливаться по специальным командам. Некоторые разряды имеют чисто служебное назначение (например, хранят разряд, «выпавший» из АЛУ во время сдвига) или являются резервными (т.е. не используются).
Все флаги младшего байта регистра устанавливаются арифметическими или логическими операциями МП. Все флаги старших байтов, за исключением флага переполнения, устанавливаются программным путем. Для этого в МП имеются команды установки флагов (STC, STD, STI), сброса (CLC, CLD, СП), инвертирования (CMC).
Генератор тактовых импульсов 
Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.
Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины.
Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определённое количество тактов.
Системная шина
Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.
Системная шина включает в себя: 
кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда
кодовую шину адреса (КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода – вывода внешнего устройства
кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины
шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания
Системная шина обеспечивает три направления передачи информации
1)      Между микропроцессором и основной памятью
2)      Между микропроцессором и портами ввода – вывода внешних устройств
3)      Между основной памятью и портами ввода – вывода внешних устройств (в режиме прямого доступа к памяти)
Все блоки, а точнее их порты ввода – вывода, через соответствующие унифицированные разъёмы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще через дополнительную микросхему – котроллер шины, формирующей основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII – кодов.
Дополнительные схемы. К системной шине и МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математических сопроцессор. Контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.
Математический процессор широко используется для ускоренного выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления некоторых трансцендентных, в том числе тригонометрических, функций. Математический сопроцессор имеет свою систему команд и работает параллельно (совмещение во времени) с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз. Последние модели МП, начиная с МП 80486DX, включают сопроцессор в свою структуру.
Контроллер прямого доступа к памяти и освобождает МП от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие ПК. Без этого контроллера обмен данными между ВЗУ и ОЗУ осуществляется через регистр МП, а при его наличии данные непосредственно передаются между ВЗУ и ОЗУ, минуя МП.
Сопроцессор ввода-вывода за счёт параллельной работы с МП значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (дисплей, принтер, НЖМД, НГМД и др.); освобождает МП от обработки процедур ввода-вывода, в том числе реализует и режим прямого доступа к памяти.
Важнейшую роль играет в ПК контроллер прерываний.
Прерывание – временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной) программы.           
Прерывания возникают при работе компьютера постоянно. Достаточно сказать, что все процедуры ввода-вывода информации выполняются по прерываниям, например, прерывания от таймера возникают и обслуживаются контроллером прерываний 18 раз в секунду (естественно пользователь их не замечает).
Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдаёт сигнал прерывания в МП. МП, получив этот сигнал, приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешние устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым.
Тема 2.4.Формы представления информации в ПК
Представление чисел в ПК: целые числа без знака, со знаком. Представление текстовой информации в ПК
Тема 2.4.1. Системы счисления
Разновидности систем счисления. Перевод чисел из одной системы счисления в другую
Тема 2.4.2. Логические элементы, цифровые устройства
Арифметические операции в позиционных системах счисления : сложение, вычитание, умножение и деление
Лабораторная работа № 3. Системы счисления: перевод чисел
Лабораторная работа № 4. Арифметические операции над двоичными числами
Лабораторная работа № 5. Логические основы работы ПК
Тема 2.5. Память ПК
Память. Виды памяти. Единицы измерения
Память (запоминающее устройство, ЗУ) является устройством хранения информации для дальнейшего использования. Вся память ПК может быть разделена на оперативную (ОЗУ) и внешнюю (ВЗУ).
Основными характеристиками ЗУ являются:
емкость памяти, измеряемая в байтах;
методы доступа к данным;
быстродействие (время обращения к устройству);
надежность работы, характеризуемая зависимостью от окружающей среды и колебаний напряжения питания;
стоимость единицы памяти.
Основная память (ОП)
Она предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств: постоянное запоминающие устройство (ПЗУ) и оперативное запоминающие устройство (ОЗУ).
ПЗУ служит для хранения неизменяемой (постоянной) программой и справочной информации, позволяет оперативно только считывать хранящуюся в нём информацию (изменить информацию в ПЗУ нельзя).
ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ, данных), непосредственно участвующей в информационно – вычислительном процессе, выполняемом на ПК в текущий период времени. Главными достоинствами оперативной памяти являются её высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве недостатка ОЗУ следует отметить невозможность сохранения информации в ней после выключения питания машины (энергозависимость).
Память компьютера построена из двоичных запоминающих элементов битов, объединенных в группы по 8 битов, которые называются байтами. (Единицы измерения памяти совпадают с единицами измерения информации). Все байты пронумерованы. Номер байта называется его адресом.
Байты могут объединяться в ячейки, которые называются также словами. Для каждого компьютера характерна определенная длина слова два, четыре или восемь байтов. Это не исключает использования ячеек памяти другой длины (например, полуслово, двойное слово). Как правило, в одном машинном слове может быть представлено либо одно целое число, либо одна команда. Однако, допускаются переменные форматы представления информации. Разбиение памяти на слова для четырехбайтовых компьютеров представлено в таблице:
 
Байт 0
Байт 1
Байт 2
Байт 3
Байт 4
Байт 5
Байт 6
Байт 7

ПОЛУСЛОВО
ПОЛУСЛОВО
ПОЛУСЛОВО
ПОЛУСЛОВО

СЛОВО
СЛОВО

ДВОЙНОЕ СЛОВО

 Широко используются и более крупные производные единицы объема памяти: Килобайт, Мегабайт, Гигабайт, а также, в последнее время, Терабайт и Петабайт.
Современные компьютеры имеют много разнообразных запоминающих устройств, которые сильно отличаются между собой по назначению, временным характеристикам, объёму хранимой информации и стоимости хранения одинакового объёма информации.  Различают два основных вида памяти внутреннюю и внешнюю.
В состав внутренней памяти входят оперативная память, кэш-память и специальная память.
Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:
  Для повышения быстродействия применяются различные архитектурно-логические решения, известно множество различных типов памяти, отличающихся друг от друга своими основными характеристиками.
   1. Динамическая память (DRАМ) используется обычно в качестве оперативной памяти общего назначения, а также как память для видеоадаптера. Из применяемых в современных и перспективных ПК типов динамической памяти наиболее известны DRАМ и FРМ ОКАМ, ЕDО DRАМ и ВЕDО DRАМ, ЕDRАМ и СDRАМ, Synchronous DRАМ, DDR SDRАМ и SLDRАМ, видеопамять МDRАМ, VRАМ, WRАМ и SGRАМ, RDRАМ и некоторые другие.
   2. Статическая память (SRАМ) обычно применяется в качестве кэш-памяти второго уровня для кэширования основного объема ОЗУ.
    Статическая память выполняется обычно на основе ТТЛ-, КМОП- или БиКМОП-микросхеми по способу доступа к данным может быть как асинхронной, так и синхронной.Асинхронным назы¬вается доступ к данным, который можно осуществлять в произвольный момент времени. Асинхронная SRАМ применялась на материнских платах для третьего пятого поколений процессоров. Время доступа к ячейкам такой памяти составляло от 15 (33 МГц) до 8 нс (66 МГц).
    Синхронная память обеспечивает доступ к данным не в произвольные моменты времени, а синхронно с тактовыми импульсами. В промежутках между ними память может готовить для доступа следующую порцию данных. В большинстве материнских плат пятого поколения используется разновидность синхронной памяти пакетно-конвейерная SRАМ, для которой типичное время одиночной операции чтения/записи составляет 3 такта, а групповая операция занимает 3-1-1-1 такта при первом обращении и 1-1-1-1 при последующих обращениях, что обеспечивает ускорение доступа более чем на 25 %.
    3. Системы видеопамяти
   VRAM (Video RAM видеоОЗУ) так называемая двухпортовая DRАМ. Этот тип памяти обеспечивает доступ к данным со стороны сразу двух устройств, т. е. есть возможность одновременно пи¬сать данные в какую-либо ячейку памяти и одновременно с этим читать данные из какой-нибудь соседней ячейки.
Тема 2.5.1. Оперативная память. Назначение, типы, характеристики
Random Access Memory.  Основные характеристики. 3 основных типа систем памяти
Оперативная память является одним из важнейших элементов компьютера. Именно из нее процессор берет программы и исходные данные для обработки, в нее он записывает полученные результаты. Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память. Однако содержащиеся в ней данные сохраняются только пока компьютер включен. При выключении компьютера содержимое оперативной памяти стирается.
Часто для оперативной памяти используют обозначение RAM (Random Access Memory, то есть память с произвольным доступом).
Трудно недооценить все значение и всю важность этих небольших по своим размерам плат. Сегодняшние программы становятся все требовательнее не только к количеству, но и к быстродействию ОЗУ. Однако до недавнего времени эта область компьютерной индустрии практически не развивалась (по сравнению с другими направлениями). Взять хотя бы видео, аудиоподсистемы, производительность процессоров и. т. д. Усовершенствования были, но они не соответствовали темпам развития других компонентов и касались лишь таких параметров, как время выборки, был добавлен кэш непосредственно на модуль памяти, конвейерное исполнение запроса, изменен управляющий сигнал вывода данных, но технология производства оставалась прежней, исчерпавшей свой ресурс. Память становилась узким местом компьютера, а, как известно, быстродействие всей системы определяется быстродействием самого медленного ее элемента. И вот несколько лет назад волна технологического бума докатилась и до оперативной памяти. Стали появляться новые типы RAM микросхем и модулей. Встречаются такие понятия, как FPM RAM, EDO RAM, DRAM, VRAM, WRAM, SGRAM, MDRAM, SDRAM, SDRAM II (DDR SDRAM), ESDRAM, SLDRAM, RDRAM, Concurrent RDRAM, Direct Rambus.
Большинство из этих технологий используются лишь на графических платах, и в производстве системной памяти компьютера используются лишь некоторые из них.
Тема 2.5.2. Основная и дополнительная память. КЭШ память
Использование основной памяти. Спецификация дополнительной памяти. Функционирование Кэш. Кэш центрального процессора
Кэш (англ. cache, от фр. cacher  прятать; произносится [kж
·]  кэш)  промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из оперативной (ОЗУ) и быстрее внешней (жёсткий диск или твердотельный накопитель) памяти, за счёт чего уменьшается среднее время доступа и увеличивается общая производительность компьютерной системы. Прямой доступ к данным, хранящимся в кэше, программным путем невозможен.
История
Впервые слово «кэш» в компьютерном контексте было использовано в 1967 году во время подготовки статьи для публикации в журнале «IBM Systems Journal». Статья касалась усовершенствования памяти в разрабатываемой модели 85 из серии IBM System/360. Редактор журнала Лайл Джонсон попросил придумать более описательный термин, нежели «высокоскоростной буфер», но из-за отсутствия идей сам предложил слово «кэш». Статья была опубликована в начале 1968 года, авторы были премированы IBM, их работа получила распространение и впоследствии была улучшена, а слово «кэш» вскоре стало использоваться в компьютерной литературе как общепринятый термин.
Функционирование
Диаграмма кэша памяти ЦПУ
Кэш  это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее «основная память»). Кэширование применяется ЦПУ, жёсткими дисками, браузерами, веб-серверами, службами DNS и WINS.
Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор, определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.
Когда клиент кэша (ЦПУ, веб-браузер, операционная система) обращается к данным, прежде всего исследуется кэш. Если в кэше найдена запись с идентификатором, совпадающим с идентификатором затребованного элемента данных, то используются элементы данных в кэше. Такой случай называется попаданием кэша. Если в кэше не найдена запись, содержащая затребованный элемент данных, то он читается из основной памяти в кэш, и становится доступным для последующих обращений. Такой случай называется промахом кэша. Процент обращений к кэшу, когда в нём найден результат, называется уровнем попаданий или коэффициентом попаданий в кэш.
Например, веб-браузер проверяет локальный кэш на диске на наличие локальной копии веб-страницы, соответствующей запрошенному URL. В этом примере URL  это идентификатор, а содержимое веб-страницы  это элементы данных.
Если кэш ограничен в объёме, то при промахе может быть принято решение отбросить некоторую запись для освобождения пространства. Для выбора отбрасываемой записи используются разные алгоритмы вытеснения.
При модификации элементов данных в кэше выполняется их обновление в основной памяти. Задержка во времени между модификацией данных в кэше и обновлением основной памяти управляется так называемой политикой записи.
В кэше с немедленной записью каждое изменение вызывает синхронное обновление данных в основной памяти.
В кэше с отложенной записью (или обратной записью) обновление происходит в случае вытеснения элемента данных, периодически или по запросу клиента. Для отслеживания модифицированных элементов данных записи кэша хранят признак модификации (изменённый или «грязный»). Промах в кэше с отложенной записью может потребовать два обращения к основной памяти: первое для записи заменяемых данных из кэша, второе для чтения необходимого элемента данных.
В случае, если данные в основной памяти могут быть изменены независимо от кэша, то запись кэша может стать неактуальной. Протоколы взаимодействия между кэшами, которые сохраняют согласованность данных, называют протоколами когерентности кэша.
Кэш центрального процессора
Ряд моделей центральных процессоров (ЦП) обладают собственным кэшем, для того чтобы минимизировать доступ к оперативной памяти (ОЗУ), которая медленнее, чем регистры. Кэш-память может давать значительный выигрыш в производительности, в случае когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно ненамного меньше частоты ЦП.
В процессорах с поддержкой виртуальной адресации часто вводят небольшой быстродействующий буфер трансляций адресов (TLB). Его скорость важна, т.к. он опрашивается на каждом обращении в память.
Уровни кэша
Кэш центрального процессора разделён на несколько уровней. В универсальном процессоре в настоящее время число уровней может достигать 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости доступа и передаче данных, чем кэш-память уровня N.
Кэширование внешних накопителей
Многие периферийные устройства хранения данных используют кэш для ускорения работы, в частности, жёсткие диски используют кэш-память от 1 до 64 Мбайт (модели с поддержкой NCQ/TCQ используют её для хранения и обработки запросов), устройства чтения CD/DVD/BD-дисков также кэшируют прочитанную информацию для ускорения повторного обращения. Операционная система также использует часть оперативной памяти в качестве кэша дисковых операций (например, для внешних устройств, не обладающих собственной кэш-памятью, в том числе жёстких дисков, flash-памяти и гибких дисков).
Применение кэширования внешних накопителей обусловлено следующими факторами:
скорость доступа процессора к оперативной памяти во много раз больше, чем к памяти внешних накопителей;
некоторые блоки памяти внешних накопителей используются несколькими процессами одновременно и имеет смысл прочитать блок один раз, затем хранить одну копию блока в оперативной памяти для всех процессов;
доступ к некоторым блокам оперативной памяти происходит гораздо чаще, чем к другим, поэтому использование кэширования для таких блоков в целом увеличивает производительность системы;
для некоторых блоков памяти внешних накопителей не требуется непосредственной записи после модификации, и использование кэша для таких блоков оптимизирует использование ввода-вывода.
Кэширование, выполняемое операционной системой
Кэш оперативной памяти состоит из следующих элементов:
набор страниц оперативной памяти, разделённых на буферы, равные по длине блоку данных соответствующего устройства внешней памяти;
набор заголовков буферов, описывающих состояние соответствующего буфера;
хеш-таблицы, содержащей соответствие номера блока заголовку;
списки свободных буферов.
Кэширование интернет-страниц
В процессе передачи информации по сети может использоваться кэширование интернет-страниц  процесс сохранения часто запрашиваемых документов на (промежуточных) прокси-серверах или машине пользователя, с целью предотвращения их постоянной загрузки с сервера-источника и уменьшения трафика. Таким образом, информация перемещается ближе к пользователю. Управление кэшированием осуществляется при помощи HTTP-заголовков.
Как вариант, кэширование веб-страниц может осуществляться с помощью CMS конкретного сайта для снижения нагрузки на сервер при большой посещаемости. Кэширование может производиться как в память, так и в файловый кэш (кэш на файлах).
Кэширование результатов работы
Многие программы записывают куда-либо промежуточные или вспомогательные результаты работы, чтобы не вычислять их каждый раз, когда они понадобятся. Это ускоряет работу, но требует дополнительной памяти (оперативной или дисковой). Примером такого кэширования является индексирование баз данных.
Тема 2.6. Внешние запоминающие устройства
Классификация запоминающих устройств. Цифровые запоминающие устройства. Наиболее распространённые
В состав внешней памяти компьютера входят:
накопители на жёстких магнитных дисках;
накопители на гибких магнитных дисках;
накопители на компакт-дисках;
накопители на магнитной ленте (стримеры);
накопители на магнитно-оптических дисках;
Внешние запоминающие устройства
Запоминающее устройство  носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.
Классификация запоминающих устройств
По устойчивости записи и возможности перезаписи ЗУ делятся на:
Постоянные ЗУ (ПЗУ), содержание которых не может быть изменено конечным пользователем (например, BIOS). ПЗУ в рабочем режиме допускает только считывание информации.
Записываемые ЗУ (ППЗУ), в которые конечный пользователь может записать информацию только один раз (например, CD-R).
Многократно перезаписываемые ЗУ (ПППЗУ) (например, CD-RW).
Оперативные ЗУ (ОЗУ) обеспечивают режим записи, хранения и считывания информации в процессе её обработки. Быстрые, но дорогие ОЗУ (SRAM) строят на триггерах, более медленные, но дешёвые разновидности ОЗУ  динамические ЗУ (DRAM) строят на конденсаторах. В обоих видах ЗУ информация исчезает после отключения от источника питания (например, тока).
По типу доступа ЗУ делятся на:
Устройства с последовательным доступом (например, магнитные ленты).
Устройства с произвольным доступом (RAM) (например, оперативная память).
Устройства с прямым доступом (например, жесткие магнитные диски).
Устройства с ассоциативным доступом (специальные устройства, для повышения производительности БД)
По геометрическому исполнению:
дисковые (магнитные диски, оптические, магнитооптические);
ленточные (магнитные ленты, перфоленты);
барабанные (магнитные барабаны);
карточные (магнитные карты, перфокарты, флэш-карты, и др.)
печатные платы (карты DRAM, картриджи).
По физическому принципу:
перфорационные (с отверстиями или вырезами)
перфокарта
перфолента
с магнитной записью
ферритовые сердечники
магнитные диски
Жёсткий магнитный диск
Гибкий магнитный диск
магнитные ленты
магнитные карты
оптические
CD
DVD
HD-DVD
Blu-ray Disc
магнитооптические
CD-MO
использующие накопление электростатического заряда в диэлектриках (конденсаторные ЗУ, запоминающие электроннолучевые трубки);
использующие эффекты в полупроводниках (EEPROM, флэш-память) звуковые и ультразвуковые (линии задержки);
использующие сверхпроводимость (криогенные элементы);
другие.
По форме записанной информации выделяют аналоговые и цифровые запоминающие устройства.
Цифровые запоминающие устройства  устройства, предназначенные для записи, хранения и считывания информации, представленной в цифровом коде.
К основным параметрам ЗУ относятся информационная ёмкость (бит), потребляемая мощность, время хранения информации, быстродействие.
Самое большое распространение запоминающие устройства приобрели в компьютерах (компьютерная память). Кроме того, они применяются в устройствах автоматики и телемеханики, в приборах для проведения экспериментов, в бытовых устройствах (телефонах, фотоаппаратах, холодильниках, стиральных машинах и т. д.), в пластиковых карточках, замках.
Наиболее распространённые в настоящее время ЗУ
Магнитные ЗУ в пластиковых картах
Флэш-память: USB-накопители, карты памяти в телефонах и фотоаппаратах, SSD
Оптические диски: CD, DVD, Blu-Ray и др.
Жёсткие диски (НЖМД)
Микросхемы SDRAM (DDR и XDR)
Переносные накопители данных
Некоторые типы запоминающих устройств оформлены как компактные, носимые человеком устройства, приспособленные для переноса информации. В частности:
Флэш-память
Переносной жёсткий диск:
Mobile Rack
Контейнеры для жёстких дисков
ZIV
Внешняя память
Она относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда – либо потребоваться для решения задач. В частности, во внешней памяти храниться все программное обеспечение компьютера. Внешняя память содержит разнообразные виды запоминающих устройств. Но наиболее распространенными, имеющимся практически на любом компьютере. Являются накопители на жёстких (НЖМД) и гибких (НГМД) магнитных дисках.
Назначение этих накопителей – хранение больших объёмов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство. Различаются НЖМД и НГМД лишь конструктивно, объёмами хранимой информации и временем поиска, записи и считывания информации.
В качестве устройств внешней памяти используются также запоминающие устройства на кассетной магнитной ленте (стримеры), накопители на оптических дисках (CD-ROM).
Стоимость компактных дисков (CD) при массовом тиражировании невысокая, а учитывая их большую емкость (650 Мбайт, а новых типов – 1 Гбайт и выше), высокие надёжность и долговечность. Стоимость хранения информации на CD для пользователя оказывается несравнимо меньшей, нежели на магнитных дисках. Это уже привело к тому, что большинство программных средств самого разного назначения поставляется на CD. На компакт-дисках за рубежом организуются обширные базы данных, целые библиотеки; на CD представлены словари, справочники, энциклопедии; обучающие и развивающие программы по общеобразовательным и специальным предметам.
CD широко используются, например, при изучении иностранных языков. Правил дорожного движения, бухгалтерского учёта, законодательства вообще и налогового законодательства в частности. И все это сопровождается текста и рисунками, речевой информацией и мультипликацией, музыкой и видео. В чисто бытовом аспекте CD можно использовать для хранения аудио и видеозаписей, т.е. использовать вместо плейерных аудиокассет и видеокассет. Следует упомянуть, конечно, но и о большом количестве программ компьютерных игр, хранимых на CD.
И таким образом, CD-ROM открывает доступ к огромным объемами разнообразными и по функциональному назначению, и по среде воспроизведения информации, записанной на компакт-дисках.

Лабораторная работа № 6. Организация работы с памятью
Тема 2.7. Устройства ввода информации
Разновидности устройств ввода: Устройства ввода графической информации, звука, текстовой информации, указательные (координатные) устройства, игровые устройства
Внешние устройства (ВУ)
Это важнейшая составная часть любого вычислительного комплекса. Достаточно сказать, что по стоимости ВУ иногда составляют 50 – 80 % всего ПК. От состава и характеристик ВУ во многом зависит возможность и эффективность применения ПК в системах управлении в народном хозяйстве в целом.
ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями. Объектами управления и другими ЭВМ. ВУ весьма разнообразны и могут быть классифицированы по ряду признаков. Так, по назначению можно выделить следующие виды ВУ
Внешние запоминающие устройства (ВЗУ) или внешняя память ПК
Диалоговые средства пользователя
Устройства ввода информации
Устройства вывода информации
Средства связи и телекоммуникации
Диалоговые средства пользователя включают в свой состав видеомониторы (дисплеи), реже пультовые пишущие машинки (принтеры с клавиатурой) и устройства речевого ввода – вывода информации.
Устройства ввода - это устройства, которые переводят информацию с языка человека на машинный язык.
Клавиатура – клавишное устройство для ввода числовой и текстовой информации;
Стандартная клавиатура содержит:
1) набор алфавитно-цифровых клавиш;
2) дополнительно управляющие и функциональные клавиши;
3) клавиши управления курсором;
4) малую цифровую клавиатуру
Координатные устройства ввода - манипуляторы для управления работой курсора (Мышь, Трекбол, Тачпад, Джойстик)
У мыши и трекбола вращение металлического шара, покрытого резиной, передается двум пластмассовым валам, положение которых рассчитывается инфракрасными оптопарами и затем преобразуется в электрический сигнал, управляющий движением указателя мыши на экране. Тачпад  -манипулятор для портативных компьютеров, встроен в ПК, перемещение курсора осуществляется путем прикосновения к тачпаду пальцев. Джойстик – манипулятор для управления электронными играми.
Сканеры (читающие автоматы) – для автоматического считывания с бумажных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей, в устройстве кодирования сканера в текстовом режиме считанные символы после сравнения с эталонными контурами специальными программами преобразуются в коды ASCII, а в графическом режиме считанные графики и чертежи преобразуются в последовательности двухмерных координат. 
Цифровые камеры  – формируют любые изображения сразу в компьютерном формате;
Микрофон – ввод звуковой информации. Звуковая карта преобразует  звук из аналоговой формы в цифровую.
Сенсорные устройства ввода :
Сенсорный экран -  чувствительный экран.  Общение с компьютером осуществляется путем прикосновения пальцем к определенному месту экрана.  Им оборудуют места операторов и диспетчеров, используют в информационно-справочных системах
Световое перо – светочувствительный элемент. Если перемещать перо по экрану, то можно им рисовать. Обычно применяют в карманных компьютерах, системах проектирования и дизайна
Графические планшеты (диджитайзеры) – для ручного ввода графической информации, изображений путём перемещения по планшету специального указателя (пера), при перемещении пера автоматически выполняются считывание координат его местоположения и ввод этих координат в ПК. 
Манипуляторы (устройства указания) – для ввода графической информации на экран дисплея путём управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК. 
Устройства связи и телекоммуникации  используются для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифровые и аналогово-цифровые преобразователи и т.п.) и для подключения ПК к каналам связи, к другим ЭВМ и вычислительным сетям (сетевые интерфейсные платы, «стыки», мультикоплексоры передачи данных, модемы).
В частности, сетевой адаптер является внешним интерфейсом ПК и служит для подключения его к каналу связи для обмена информацией с другими ЭВМ, для работы в составе вычислительной сети. В глобальных сетях функции сетевого адаптера выполняет модулятор-демодулятор.
Многие из названных выше устройств относятся к условно выделенной группе – средствам мультимедиа.
Средства мультимедиа – это комплекс аппаратных и программных средств, позволяющих человеку общаться с компьютером, используя самые разные, естественные для себя среды: звук, видео, графику, тексты, анимацию и пр.
К средствам мультимедиа относятся к устройствам речевого ввода и вывода информации; широко распространённые уже сейчас сканеры (поскольку они позволяют автоматически вводить в компьютер печатные тексты и рисунки); высококачественные видео и звуковые платы, платы видео захвата, снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в ПК; высокачественные акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими выдеоэкранами. Но, пожалуй, ещё с большими основанием к средствам мультимедиа относят внешние запоминающие устройства большой ёмкости на оптических дисках, часто используемые для записи звуковой и видеоинформации.

Тема 2.8. Устройства вывода информации
Устройства вывода периферийные устройства, преобразующие результаты обработки цифровых машинных кодов в форму, удобную для восприятия человеком или пригодную для воздействия на исполнительные органы объекта управления.
Устройства вывода  - это устройства, которые переводят информацию с машинного языка в формы, доступные для человеческого восприятия.
К устройствам вывода относятся:
Принтеры – печатающие устройства для регистрации информации на бумажной носитель
Существуют:
Лазерный принтер – печать формируется за счет эффектов ксерографии
Струйный принтер – печать формируется за счет микро капель специальных чернил.
Матричный принтер – формирует знаки несколькими иголками, расположенными в головке принтера. Бумага втягивается с помощью вала, а между бумагой и головкой принтера располагается красящая лента.
Плоттер (графопостроитель) – устройство, которое чертит графики, рисунки и диаграммы под управлением компьютера. Изображение получается с помощью пера. Используется для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем.
Графопостроители (плоттеры) – для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель; плоттеры бывают векторные с вычерчиванием изображения с помощью пера и растровые: термографические, электрические, струйные и лазерные. По конструкции плоттеры подразделяются на планшетные и барабанные. Основные характеристики всех плоттеров примерно одинаковые: скорость вычерчивания – 100 – 1000 мм/с, у лучших моделей возможны цветовое изображение и передача полутонов; наибольшая разрешающая способность и чёткость изображения у лазерных плоттеров, но они самые дорогие.
Видеомонитор (дисплей) – устройство для отображения вводимой и выводимой из ПК информации. Устройства речевого вывода – это различные синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединённые к компьютеру.
Устройства речевого ввода – вывода относятся к быстроразвивающимся средствам мультимедиа. Устройства речевого ввода – это различные микрофонные акустические системы, «звуковые мыши», например, со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и закодировать. 
Монитор (дисплей) - универсальное устройство визуального отображения всех видов информации
Различают алфавитно-цифровые и графические мониторы, а также  монохромные мониторы и мониторы цветного изображения - активно-матричные и пассивно-матричные жкм.
 Разрешающая способность выражается количеством элементов изображения по горизонтали и вертикали. Элементами графического изображения считаются точки – пиксели (picture element). Элементами текстового режима также являются символы. Современные видеоадаптеры (SuperVGA) обеспечивают высокие разрешения и отображают 16536 цветов при max разрешении.
Существуют:
1) мониторы на базе электронно-лучевой трубки (CRT).
2) жидкокристаллические мониторы (LCD) на базе жидких кристаллов. Жидкие кристаллы – особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под воздействием электрического напряжения.
Акустические колонки и наушники – устройство для вывода звуковой информации

Лабораторная работа № 7. Подключение внешних устройств к компьютеру
Лабораторная работа № 8. Работа с принтером. Настройка
Лабораторная работа № 9. Выполнение процесса сканирования. Настройка
Раздел 3. Архитектура вычислительных сетей и сетей
Тема 3.1. Понятие компьютерная сеть. Принципы построения
Основные понятия и определения, относящиеся к компьютерной сети. Преимущества работы в сети. Концепция построения компьютерной сети. Совместное использовании ресурсов сети
Компьютерная сеть(Computer Network) - это совокупность компьютеров, соединенных линиями связи, обеспечивающая пользователям сети потенциальную возможность совместного использования ресурсов всех компьютеров и работающих под управлением специального программного обеспечения.
Под линией связи обычно понимают совокупность технических устройств, и физической среды, обеспечивающих передачу сигналов от передатчика к приемнику. В реальной жизни примерами линий связи могут служить участки кабеля и усилители, обеспечивающие передачу сигналов между коммутаторами телефонной сети. На основе линий связи строятся каналы связи.
Каналом связи обычно называют систему технических устройств и линий связи, обеспечивающую передачу информации между абонентами. Соотношение между понятиями "канал" и "линия" описывается следующим образом: канал связи может включать в себя несколько разнородных линий связи, а одна линия связи может использоваться несколькими каналами
Линии и каналы связи
Главной целью объединения компьютеров в сеть является предоставление пользователям возможности доступа к различным информационным ресурсам (например, документам, программам, базам данных и т.д.), распределенным по этим компьютерам и их совместного использования.
Важной характеристикой любой компьютерной сети является широта территории, которую она охватывает. Широта охвата определятся взаимной удаленностью компьютеров, составляющих сеть и, следовательно, влияет на технологические решения, выбираемые при построении сети. Классически выделяют два типа сетей: локальные сети и глобальные сети.
Локальные сети
К локальным сетям (Local Area Network, LAN) обычно относят сети, компьютеры которых сосредоточены на относительно небольших территориях (как правило, в радиусе до 1-2 км). Классическим примером локальных сетей является сеть одного предприятия, расположенного в одном или нескольких стоящих рядом зданиях. Небольшой размер локальных сетей позволяет использовать для их построения достаточно дорогие и высококачественные технологии, что обеспечивает высокую скорость обмена информацией между компьютерами.
Компьютеры, входящие в сеть, могут совместно использовать:
данные;
принтеры;
факсимильные аппараты;
модемы;
другие устройства.
Данный список постоянно пополняется, так как возникают новые способы совместного использования ресурсов.
Самые первые типы локальных сетей не могли соответствовать потребностям крупных предприятий, офисы которых обычно расположены в различных местах. Но как только преимущества компьютерных сетей стали неоспоримы и сетевые программные продукты начали заполнять рынок, перед корпорациями - для сохранения конкурентоспособности - встала задача расширения сетей. Так на основе локальных сетей возникли более крупные системы.
Сегодня, когда географические рамки сетей раздвигаются, чтобы соединить пользователей из разных городов и государств, ЛВС превращаются в глобальную вычислительную сеть [ГВС (WAN)], а количество компьютеров в сети уже может варьироваться от десятка до нескольких тысяч.
Локальная сеть
Глобальные сети
Глобальные сети (Wide Area Network, WAN) – это сети, предназначенные для объединения отдельных компьютеров и локальных сетей, расположенных на значительном удалении (сотни и тысячи километров) друг от друга. Поскольку организация специализированных высококачественных каналов связи большой протяженности является достаточно дорогой, то в глобальных сетях нередко используются уже существующие и изначально не предназначенные для построения компьютерных сетей линии (например, телефонные или телеграфные). В связи с этим скорость передачи данных в таких сетях существенно ниже, чем в локальных.
Глобальная сеть
Городские сети
Не так давно к двум указанным типам сетей добавился еще один – так называемые городские сети (Metropolitan Area Network, MAN). Такие сети предназначены для обеспечения взаимодействия компьютеров и/или локальных сетей, рассредоточенных на территории крупного города (как правило, в радиусе до 100 км), а также для подключения локальных сетей к глобальным. Для построения таких сетей используются достаточно качественные цифровые линии связи, позволяющие осуществлять взаимодействие на относительно высоких по сравнению с глобальными сетями скоростях.
 
Городская сеть
 Интернет
Независимо от того, какую территорию покрывает сеть, какие технологические решения лежат в основе ее организации, существуют общие принципы сетевого взаимодействия, которым должно подчиняться функционирование сети. Именно выработка таких общих принципов способствовала в свое время появлению Интернет (Internet) как объединенной сети (иногда даже используется термин "гиперсеть"), собравшей в своем составе локальные, городские и глобальные сети всей планеты.
 
Тема 3.2. Аппаратное и программное обеспечение компьютерных сетей
Модем. Протоколы. Терминал абонента. Хост-машина. Создание домашней сети. Программное обеспечение сети и основные сервисы
Для создания домашней сети вам необходимо приобрести специальную аппаратуру, в том случае, если у вас её нет. Для этого необходим:
файловый сервер;
сетевая интерфейсная плата;
сетевая карта Ethernet;
местный соединитель;
выключатель;
маршрутизатор и/или мост (устройство сопряжения ЛВС).
Взаимодействие объектов сети (серверов и клиентов) осуществляется по каналам связи, для кото-рых используются разные физические среды. Среды, в которых происходит связь компьютеров сети, оп-ределяют средства соединения компьютеров.
Широко применяются соединения компьютеров по электрическим кабелям, с помощью радиоволн, по оптоволоконным кабелям и т.д. Все это каналы связи. Их основные характеристики:
скорость передачи данных (пропускная способность), измеряется числом бит информации, передан-ных по сети за одну секунду. (Пропускная способность - максимально возможный объем передаваемой информации за одну секунду по каналам связи.)
надежность (способность передавать информацию без искажений и потерь);
стоимость;
резервы развития.
Характеристика каналов связи. Аппаратно-программное обеспечение сетей.
Тип связи
Скорость, МГбит/с
Помехоустойчивость
Наращиваемость

Электрические кабели: витая пара коаксиальный кабель
10 - 100 10
Низкая Высокая
Простое Проблематичное

Телефонная линия
1-2
Низкая
Без проблем

Оптоволоконный кабель
10 - 200
Абсолютная
Без проблем

Из таблицы видно, что наилучший вид связи - оптоволоконный кабель, но его стоимость очень высока. Использование электрических кабелей обходится гораздо дороже, чем обычных телефонных линий, по-этому они используются на небольших расстояниях, например в локальных сетях.
Сетевые адаптеры
Для передачи информации по каналам связи необходимо преобразовывать компьютерные сигналы в сигналы физических сред. Например, при передаче информации по оптоволоконному кабелю данные пре-образуются в оптические сигналы, для чего используют специальные технические устройства - сетевые адаптеры.
Сетевые адаптеры (сетевые карты)- технические устройства, выполняющие функции со-пряжения компьютеров с каналами связи.
Для каждого вида канала нужен свой тип сетевого адаптера. Адаптер вставляют в свободное гнездо материнской платы компьютера и соединяют кабелем с сетевым адаптером другого компьютера. На сете-вых картах выставляют адреса компьютеров в сети, без которых невозможна передача. Когда информация циркулирует по сети, любой сетевой адаптер выбирает из неё лишь ту, которая предназначена именно для него в соответствии с адресом компьютера.
Существует много сетевых системных оболочек. Они определяют определить адреса компьютеров, заказать нужное число пользователей в сети, назначить для разных пользователей различные права доступа к информации. Тогда пользователям становится доступной лишь часть информации сервера. Эта мера необходима для сохранности информации.
Модем
Для связи удаленных друг от друга компьютеров широко используются телефонные линии и моде-мы. Телефонная сеть передает звуки человеческого голоса в виде аналоговых сигналов. Цифровые сигналы из компьютера модем преобразует (моделирует) в сигналы, которые могут проходить по телефонной сети, принимаются другим модемом, который преобразует (демодулирует) аналоговые сигналы в цифро-вые сигналы компьютера. Модем - устройство, преобразующее цифровые сигналы в аналоговые сигналы (модуляция) и аналоговые сигналы в цифровые (демодуляция).
Модем подключает компьютер к телефонной линии. На другом конце телефонной линии должен быть тоже подключен модем, присоединенный к другому компьютеру. Тогда компьютер приемник сможет принимать сигналы прямо из сети, т.е. модем используется вместо сетевого адаптера. Если компьютер является клиентом сети, то кроме номера телефона у него должен быть адрес компьютера, к которому он обращается как к серверу. Эти установки модема делаются с помощью программ, обеспечивающих связь. Модемы бывают внешние (в виде блока) и внутренние (в виде платы, которая устанавливается в гнездо материнской платы). Различаются они максимальной скоростью передачи данных. Наиболее распространены сейчас модемы со скоростями 28 800, 33 600, 56 000 бод (бит в секунду), но есть и более быстрые. Если модем использовать для длительной работы в сети, то нужно занять для этого телефонный канал. Связь по телефонным каналам ненадежна, и скорость передачи по ней не так высока как по кабелям. Поэтому в локальных сетях для соединений принято применять кабели.
Хост-машина (узловой компьютер) это высокопроизводительный компьютер с большим объемом памяти на жестком диске. Обычно узловой компьютер постоянно находится во включенном состоянии, занимаясь приемом- передачей информации по сети.
Линии связи. Для информационных связей в компьютерных сетях часто используются телефонные линии связи. Это удобно и дешево, поскольку система телефонной связи уже давно организована, налажена и охватывает весь мир.
Для связи узловых компьютеров между собой могут использоваться специально выделенные телефонные линии. В этом случае связь действует постоянно и не требуется набирать телефонный номер. Могут также использоваться и коммутируемые линии, в таком случае каждый раз для организации связи нужно «дозваниваться» по соответствующему номеру. Связь между абонентом и хост-машиной чаще всего осуществляется по коммутируемой телефонной линии. В другое время эта же линия используется для обычных телефонных разговоров.
Самую высококачественную связь обеспечивают оптико-волоконные линии цифровой связи. Для связи между удаленными узлами сети используются также беспроводная спутниковая связь, радиорелейные линии.

Тема 3.3. Протоколы передачи данных
Сетевой протокол. Общие сведения о протоколах. Разновидности сетевых протоколов
Протоколы
Чтобы информацию, переданную одним компьютером, понял другой компьютер, необходимо было разработать единые правила передачи данных, называемые протоколами. Протокол передачи устанавливает соглашение между взаимодействующими компьютерами. Чтобы процесс коммуникации состоялся, надо снабдить компьютеры адресами. Они определяются сетевыми адаптерами, номерами телефонов и программами связи. Правила образования адресов компьютеров в сети должны быть абсолютно одинаковыми, несмотря на то, что компьютеры в сети могут быть разнородными и использовать различные операционные системы.
Передача данных одним сплошным потоком может привести к их потере или искажению. Поэтому данные разделяются на блоки (пакеты) информации строго определенной длины, каждый такой пакет сопровождается служебным уведомлением, включая опознавательные знаки его начала и конца. Протоколы передачи распознают начало пакета и его конец, управляют потоками данных, распределяют их, выстраивают их в очереди. На другом конце приемник информации должен работать по тем же правилам, т.е. протоколам. Только тогда компьютеры поймут, что передают друг другу. Каждый пакет имеет номер, чтобы было можно заново запросить утерянную или ошибочно переданную информацию. Существует несколько протоколов передачи данных, коррекции и исправления ошибок. В сети Интернет действует международный протокол ТСР/IР, принятый в 70-е годы. Сеть устроена так, что при гибели любого узла сохраняется функционирование всех остальных компьютеров. Пакеты данных переме-щаются по сети и при возникновении аварии одного из компьютеров автоматически направляются по другому маршруту. На месте назначения пакеты соединятся в единое целое.
Протокол работы сети это стандарт, определяющий формы представления и способы
пересылки сообщений, процедуры их интерпретации, правила совместной работы
различного оборудования.
Протокол передачи данных   набор соглашений интерфейса логического уровня, которые определяют обмен данными между различными программами. Эти соглашения задают единообразный способ передачи сообщений и обработки ошибок при взаимодействии программного обеспечения разнесённой в пространстве аппаратуры, соединённой тем или иным интерфейсом.
Стандартизированный протокол передачи данных также позволяет разрабатывать интерфейсы (уже на физическом уровне), не привязанные к конкретной аппаратной платформе и производителю (например, USB, Bluetooth).
В различных сетях существуют различные процедуры обмена данными между рабочими станциями. Эти процедуры называют протоколами передачи данных.
Международный институт инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers - IEEE) разработал стандарты для протоколов передачи данных в локальных сетях. Это стандарты IEEE802 . Для нас представляют практический интерес стандарты IEEE802.3 , IEEE802.4 и IEEE802.5 , которые описывают методы доступа к сетевым каналам данных.
Наибольшее распространение получили конкретные реализации методов доступа: Ethernet , ArcNet и Token Ring. Эти реализации основаны соответственно на стандартах IEEE802 .3, IEEE802.4 и IEEE802.5 . Для простоты мы будем использовать названия реализаций методов доступа, а не названия самих стандартов, хотя между стандартами и конкретными реализациями имеются некоторые различия.
Протоколы передачи данных IPX/SPX и NETBIOS
На самом низком уровне, который только может использовать программа, работающая в сети, в операционной системе Novell NetWare используются протоколы передачи данных, называемые IPX/SPX и NETBIOS .
Протокол IPX (Internetwork Packet Exchange - протокол межсетевой передачи пакетов) является базовым в Novell NetWare. Он определяет формат передаваемых по сети пакетов и интерфейс с сетевым программным обеспечением (соответствует транспортному уровню OSI). На уровне протокола IPX рабочие станции могут обмениваться блоками данных, причем такой обмен выполняется без подтверждения.
Протокол SPX (Sequenced Packet Exchange - протокол последовательного обмена пакетами) предполагает, что перед началом обмена данными рабочие станции устанавливают между собой связь. На уровне протокола SPX гарантируется доставка передаваемых по сети пакетов. При необходимости выполняются повторные передачи пакетов. Протокол SPX в Novell NetWare выполнен на основе протокола IPX и является протоколом более высокого уровня (соответствует сетевому уровню OSI).
Протокол NETBIOS (Network Basic Input/Output System - сетевая базовая система ввода/вывода) разработан фирмой IBM и предназначен для передачи данных между рабочими станциями. Этот протокол является протоколом более высокого уровня по сравнению с IPX и SPX (выполняет функции сетевого уровня, транспортного уровня и сеансового уровня OSI). Для обеспечения совместимости в составе операционной системы Novell NetWare поставляется резидентная программа netbios.exe, эмулирующая протокол NETBIOS с использованием протоколов IPX/SPX . Обычно вам не требуется запускать эмулятор NETBIOS, за исключением тех случаев, когда это необходимо для работы прикладных сетевых программ.
Детальное знакомство с перечисленными выше протоколами необходимо для создания программ, ориентированных на работу в сети. В 7 томе "Библиотеки системного программиста" мы рассказали об использовании протоколов IPX/SPX и NETBIOS для создания собственных сетевых программ.
Протокол NETBEUI
Сетевая операционная система Microsoft Windows for Workgroups версии 3.11 в качестве базового протокола передачи данных использует протокол передачи данных NETBEUI , хотя способна работать и с протоколами TCP/IP , IPX/SPX и другими.
Протокол NETBEUI - это расширенный интерфейс пользователя NETBIOS (NETBIOS Extended User Interface), разработанный фирмой IBM.
Его реализация в Microsoft Windows for Workgroups подходит только для небольших сетей, содержащих не более 100-200 рабочих станций. Причина этого загключается в том, что протокол NETBEUI способен работать только в одном сегменте сети (т. е. пакеты данных не могут проходить через мосты).
Для того чтобы объединить пользователей Microsoft Windows for Workgroups, расположенных в разных, разделенных мостами, сегментах сети, например, Novell NetWare, дополнительно требуется использование протокола IPX/SPX (точное название нужного протокола - IPX/SPX Compatible Transport with NetBIOS).
Другая возможность объединения сетей (в том числе удаленных) - использование протокола TCP/IP .

Лабораторная работа № 10. Работа с компьютерной сетью
Тема 3.4. Протоколы. Сервисы в Internet
Протоколы семейства TCP/IP. Коммутируемый доступ. Система для работы с гипертекстом. Средства поиска информации. Электронный переводчик
Протокол TCP/IP
Протокол TCP/IP на самом деле подразумевает два протокола: протокол TCP и протокол IP.
Протокол IP (Internet Protocol ) был создан в конце 70-х годов и предназначен для объединения сетей, прежде всего удаленных. Его основная задача - адресация и передача пакетов данных.
Протокол TCP (Transmission Control Protocol ) создан как надстройка над IP . В настоящее время этот протокол считается наиболее функционально полным и поддерживается практически любой современной операционной системой, в частности, Microsoft Windows NT.
Реализация протокола TCP/IP для операционной системы Microsoft Windows for Workgroups называется Windows Sockets .
Windows Sockets - это спецификация, обеспечивающая стандартный программный интерфейс для операционных систем Windows и UNIX. С ее помощью можно создавать гетерогенные сети на основе операционной системы Windows.
В нашей книге мы не будем рассматривать применение протокола TCP/IP , так как он используется в основном для объединения удаленных сетей и компьютеров. Такие сети должны быть предметом отдельного обсуждения.
Сетево
·й протоко
·л  набор правил, позволяющий осуществлять соединение и обмен данными между двумя и более включёнными в сеть устройствами.
Разные протоколы, зачастую, описывают лишь разные стороны одного типа связи; взятые вместе, они образуют стек протоколов. Названия «протокол» и «стек протоколов» также указывают на программное обеспечение, которым реализуется протокол.
Новые протоколы для Интернета определяются IETF, а прочие протоколы  IEEE или ISO. ITU-T занимается телекоммуникационными протоколами и форматами.
Наиболее распространённой системой классификации сетевых протоколов является так называемая модель OSI, в соответствии с которой протоколы делятся на 7 уровней по своему назначению  от физического (формирование и распознавание электрических или других сигналов) до прикладного (интерфейс программирования приложений для передачи информации приложениями).
Общие сведения
Сетевые протоколы предписывают правила работы компьютерам, которые подключены к сети. Они строятся по многоуровневому принципу. Протокол некоторого уровня определяет одно из технических правил связи. В настоящее время для сетевых протоколов используется модель OSI (Open System Interconnection  взаимодействие открытых систем, ВОС).
Модель OSI  это 7-уровневая логическая модель работы сети. Модель OSI реализуется группой протоколов и правил связи, организованных в несколько уровней:
на физическом уровне определяются физические (механические, электрические, оптические) характеристики линий связи;
на канальном уровне определяются правила использования физического уровня узлами сети;
сетевой уровень отвечает за адресацию и доставку сообщений;
транспортный уровень контролирует очередность прохождения компонентов сообщения;
задача сеансового уровня  координация связи между двумя прикладными программами, работающими на разных рабочих станциях;
уровень представления служит для преобразования данных из внутреннего формата компьютера в формат передачи;
прикладной уровень является пограничным между прикладной программой и другими уровнями  обеспечивает удобный интерфейс связи сетевых программ пользователя.
Наиболее известные протоколы, используемые в сети Интернет:
HTTP (Hyper Text Transfer Protocol)  это протокол передачи гипертекста. Протокол HTTP используется при пересылке Web-страниц с одного компьютера на другой.
FTP (File Transfer Protocol)  это протокол передачи файлов со специального файлового сервера на компьютер пользователя. FTP дает возможность абоненту обмениваться двоичными и текстовыми файлами с любым компьютером сети. Установив связь с удаленным компьютером, пользователь может скопировать файл с удаленного компьютера на свой или скопировать файл со своего компьютера на удаленный.
POP (Post Office Protocol)  это стандартный протокол почтового соединения. Серверы POP обрабатывают входящую почту, а протокол POP предназначен для обработки запросов на получение почты от клиентских почтовых программ.
SMTP (Simple Mail Transfer Protocol)  протокол, который задает набор правил для передачи почты. Сервер SMTP возвращает либо подтверждение о приеме, либо сообщение об ошибке, либо запрашивает дополнительную информацию.
uucp (Unix to Unix Copy Protocol)  это ныне устаревший, но все еще применяемый протокол передачи данных, в том числе для электронной почты. Этот протокол предполагает использование пакетного способа передачи информации, при котором сначала устанавливается соединение клиент-сервер и передается пакет данных, а затем автономно происходит его обработка, просмотр или подготовка писем.
telnet  это протокол удаленного доступа. TELNET дает возможность абоненту работать на любой ЭВМ сети Интернет, как на своей собственной, то есть запускать программы, менять режим работы и так далее. На практике возможности лимитируются тем уровнем доступа, который задан администратором удаленной машины.
DTN  протокол, предназначенный для обеспечения сверхдальней космической связи.
Сервисы (Услуги), предоставляемые сетью Интернет
Протоколы семейства TCP/IP реализуют всевозможные сервисы (услуги) Интернет.
Все услуги, предоставляемые сетью Internet, можно условно поделить на две категории: обмен информацией между абонентами сети и использование баз данных сети.
К числу услуг связи между абонентами принадлежат:
Telnet удаленный доступ. Дает возможность абоненту работать на любой ЭВМ сети Internet, как на своей собственной. То есть запускать программы, менять режим работы и т.д.
FTP (File Transfer Protocol) протокол передачи файлов. Дает возможность абоненту обмениваться двоичными и текстовыми файлами с любым компьютером сети. Установив связь с удаленным компьютером, пользователь может скопировать файл с удаленного компьютера на свой или скопировать файл со своего компьютера на удаленный.
NFS (Network File System) распределенная файловая система. Дает возможность абоненту пользоваться файловой системой удаленного компьютера, как своей собственной.
Электронная почта обмен почтовыми сообщениями с любым абонентом сети Internet. Существует возможность отправки как текстовых, так и двоичных файлов. На размер почтового сообщения в сети Internet накладывается следующее ограничение размер почтового сообщения не должен превышать 64 килобайт.
Новости получение сетевых новостей и электронных досок объявлений сети и возможность помещения информации на доски объявлений сети. Электронные доски объявлений сети Internet формируются по тематике. Пользователь может по своему выбору подписаться на любые группы новостей.
Rsh (Remote Shell) удаленный доступ. Аналог Telnet, но работает только в том случае, если на удаленном компьютере стоит ОС UNIX.
Rexec (Remote Execution) выполнение одной команды на удаленной UNIX-машине.
Lpr сетевая печать. Отправка файла на печать на удаленном (сетевом) принтере.
Lpq сетевая печать. Показывает файлы, стоящие в очереди на печать на сетевом принтере.
Ping проверка доступности удаленной ЭВМ по сети.
Talk дает возможность открытия "разговора" с пользователем удаленной ЭВМ. При этом на экране одновременно виден вводимый текст и ответ удаленного пользователя.
Iptunnel дает возможность доступа к серверу ЛВС NetWare с которым нет непосредственной связи по ЛВС, а имеется лишь связь по сети Internet.
Whois адресная книга сети Internet. По запросу абонент может получить информацию о принадлежности удаленного компьютера, о пользователях.
Finger получение информации о пользователях удаленного компьютера.
Кроме вышеперечисленных услуг, сеть Internet предоставляет также следующие специфические услуги:
Webster сетевая версия толкового словаря английского языка.
Факс-сервис дает возможность пользователю отправлять сообщения по факсимильной связи, пользуясь факс-сервером сети.
Электронный переводчик производит перевод присланного на него текста с одного языка на другой. Обращение к электронным переводчикам происходит посредством электронной почты.
Шлюзы дают возможность абоненту отправлять сообщения в сети, не работающие с протоколами TCP\IP (Fido, Goldnet, AT50) .
К системам автоматизированного поиска информации в сети Internet принадлежат следующие системы:
Gopher наиболее широко распространенное средство поиска информации в сети Internet, позволяющее находить информацию по ключевым словам и фразам. Работа с системой Gopher напоминает просмотр оглавления, при этом пользователю предлагается пройти сквозь ряд вложенных меню и выбрать нужную тему. В Internet в настоящее время свыше 2000 Gopher-систем, часть из которых является узкоспециализированной, а часть содержит более разностороннюю информацию.
Gopher позволяет получить информацию без указания имен и адресов авторов, благодаря чему пользователь не тратит много времени и нервов. Он просто сообщает системе Gopher, что именно ему нужно, и система находит соответствующие данные. Gopher-серверов свыше двух тысяч, поэтому с их помощью не всегда просто найти требуемую информацию. В случае возникших затруднений можно воспользоваться службой VERONICA. VERONICA осуществляет поиск более чем в 500 системах Gopher, освобождая пользователя от необходимости просматривать их вручную.
WAIS еще более мощное средство получения информации, чем Gopher, поскольку оно осуществляет поиск ключевых слов во всех текстах документов. Запросы посылаются в WAIS на упрощенном английском языке. Это значительно легче, чем формулировать их на языке алгебры логики, и это делает WAIS более привлекательной для пользователей-непрофессионалов.
При работе с WAIS пользователям не нужно тратить много времени, чтобы найти необходимые им материалы.
В сети Internet существует более 200 WAIS-библиотек. Но поскольку информация представляется преимущественно сотрудниками академических организаций на добровольных началах, большая часть материалов относится к области исследований и компьютерных наук.
WWW система для работы с гипертекстом. Потенциально она является наиболее мощным средством поиска. Гипертекст соединяет различные документы на основе заранее заданного набора слов. Например, когда в тексте встречается новое слово или понятие, система, работающая с гипертекстом, дает возможность перейти к другому документу, в котором это слово или понятие рассматривается более подробно.
WWW часто используется в качестве интерфейса к базам данных WAIS, но отсутствие гипертекстовых связей ограничивает возможности WWW до простого просмотра, как у Gopher.
Пользователь со своей стороны может задействовать возможность WWW работать с гипертекстом для связи между своими данными и данными WAIS и WWW таким образом, чтобы собственные записи пользователя как бы интегрировались в информацию для общего доступа. На самом деле этого, конечно, не происходит, но воспринимается именно так.
WWW это относительно новая система. Установлены несколько демонстрационных серверов, в том числе Vatican Exibit в библиотеке Конгресса США и мультфильм о погоде "Витки спутника" в Мичиганском государственном университете. В качестве демонстрационных также работают серверы into. funet. fi (Финляндия) ; into. cern. ch. (Швейцария) и eies2. njit. edu (США) .
Практически все услуги сети построены на принципе клиент-сервер. Сервером в сети Internet называется компьютер способный предоставлять клиентам (по мере прихода от них запросов) некоторые сетевые услуги. Взаимодействие клиент-сервер строится обычно следующим образом. По приходу запросов от клиентов сервер запускает различные программы предоставления сетевых услуг. По мере выполнения запущенных программ сервер отвечает на запросы клиентов.
Все программное обеспечение сети также можно поделить на клиентское и серверное. При этом программное обеспечение сервера занимается предоставлением сетевых услуг, а клиентское программное обеспечение обеспечивает передачу запросов серверу и получение ответов от него.

Лабораторная работа № 11. Работа с Интернет ресурсами
Лабораторная работа № 12. Настройка и работа с приложением MS Internet Explorer
Лабораторная работа № 13. Создание почтового ящика
Лабораторная работа № 14. Настройка почтового ящика
Лабораторная работа № 15. Поисковые системы в Internet
Лабораторная работа № 16. Общение в режиме реального времени ( ICQ)
Лабораторная работа № 17. Общение в Internet (Чат)


                      
 
Литература:
http://pirzakir.narod.ru/zakir/Algor/testalg.html -Арифметические и логические основы персонального компьютера, тест
http://www.chebgym5.ru/inf/p29aa1.html -Арифметические основы ПК
http://gdpk.narod.ru/dmenu/memory.html - Память и виды памяти
Большой толковый словарь русского языка / автор, сост. и гл. ред. С. А. Кузнецов. 2000 г. РАН Институт лингвистических исследований
Захаренко Е. Н., Комарова Л. Н., Нечаева И. В. Новый словарь иностранных слов. М.: 2003
Толковый словарь по вычислительной технике. Microsoft Press, из-во «Русская Редакция», 1995
Русский орфографический словарь: около 180 000 слов / Российская академия наук. Институт русского языка им. В. В. Виноградова / О. Е. Иванова, В. В. Лопатин (отв. ред.), И. В. Нечаева, Л. К. Чельцова.  2-е изд., испр. и доп.  М.: 2004.  960 с.
Першиков В. И., Савинков В. М. Толковый словарь по информатике / Рецензенты: канд. физ.-мат. наук А. С. Марков и д-р физ.-мат. наук И. В. Поттосин. М.: Финансы и статистика, 1991. 543 с. 50 000 экз. ISBN 5-279-00367-0
Борковский А. Б. Англо-русский словарь по программированию и информатике (с толкованиями). М.: Русский язык, 1990. 335 с. 50 050 (доп.) экз. ISBN 5-200-01169-3
G. C. Stierhoff, A. G. Davis. A History of the IBM Systems Journal // IEEE Annals of the History of Computing. январь 1998. Т. 20. № 1. С. 2935.
Большая советская энциклопедия. 3-е изд. 19691978 гг.
Скотт Мюллер Модернизация и ремонт ПК = Upgrading and Repairing PCs. 17 изд. М.: «Вильямс», 2007. С. 1047-1088. ISBN 0-7897-3404-4
"Glossary of Internet Terms". Macmillan Computing Publishing http://www.mcp.com/
Новиков Ю.В., Кондратенко С.В. - Локальные сети: архитектура, алгоритмы, проектирование. М.: Издательство ЭКОМ, 2001.
Спортак Марк, Паппас Френк и др. - Компьютерные сети и сетевые технологии. К.: ООО "ТИД "ДС", 2002.
В.Г.Олифер, Н.А.Олифер - Компьютерные сети. СПБ: Издательство "Питер", 2000.
Д.Л.Шиндер - Основы компьютерных сетей, М.: Издательский дом "Вильямс", 2002
С. Клименко, В. Уразметов. "Internet. Среда обитания информационного общества". http://www.relcom.ru/internet/literature/internetlsmedia.
Крук Б.И., Попантонопуло В.Н., Шувалов В.П. Телекоммуникационные системы и сети. Т1:учеб.пособие/изд.2-е, испр. и доп. -Новосибирск: Сиб.предприятие "Наука" РАН, 1998.
Компьютерные системы и сети: Учеб.пособие/ В.П.Косарев и др./Под ред. В.П.Косарева и Л.В.Еремина-М.:Финансы и статистика, 1999.
В.П.Леонтьев - Новейшая энциклопедия персонального компьютера, 2002 
 




Заголовок 1 Заголовок 2 Заголовок 315

Приложенные файлы

  • doc 8818697
    Размер файла: 360 kB Загрузок: 0

Добавить комментарий