Водоснабжение и водоотведение с основами гидравлики. Лекции.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Институт сферы обслуживания и предпринимательства (филиал)
федерального государственного бюджетного образовательного учреждения высшего профессионального образования
«Донской государственный технический университет»
в г. Шахты Ростовской области
(ИСОиП (филиал) ДГТУ)








Автор С.А. Масленников




КОНСПЕКТ ЛЕКЦИЙ
по дисциплине «Водоснабжение и водоотведение с основами гидравлики»
для студентов направления 08.03.01 «Строительство»


















Шахты 2015

Содержание

Введение 3
Глава 1. Внутренний водопровод 5
Глава 2. Внутренняя канализация 33
Глава 3. Водоснабжение: наружные сети и сооружения 44
Глава 4. Канализация: наружные сети и сооружения 49
Глава 5. Основы гидравлики 55
Введение

Лекционный курс состоит из четырех глав:
Внутренний водопровод.
Внутренняя канализация.
Водоснабжение: наружные сети и сооружения.
Канализация: наружные сети и сооружения.
Параллельно лекциям проходят практические занятия.

ПРИНЯТЫЕ СОКРАЩЕНИЯ

СПДС – система проектной документации для строительства.
СНиП – строительные нормы и правила.
ГОСТ – государственный стандарт.
В1 – водопровод хозяйственно-питьевой .
В2 – водопровод противопожарный .
В3 – водопровод производственный .
К1 – канализация бытовая .
К2 – канализация дождевая .
К3 – канализация производственная .
Ст В1-1 – стояк водопровода В1 по порядку нумерации 1-й.
Ст К1-1 – стояк канализации К1 по порядку нумерации 1-й.
КВ1-1 – колодец водопровода В1 по порядку нумерации 1-й.
КК1-1 – колодец канализации К1 по порядку нумерации 1-й.
l – длина трубопровода на расчётном участке, м.
N – число приборов, обслуживаемых расчётным участком.
U – число водопотребителей (жителей).
P – вероятность совместного действия приборов.
qC – расчётный расход холодной воды на участке, л/с.
q0C – нормативный расход холодной воды прибором, л/с.
d – внутренний диаметр трубопровода, мм.
V – скорость движения воды в трубопроводе, м/с.
i – гидравлический уклон.
kL – коэффициент учёта местных потерь напора.
H – потери напора на расчётном участке трубопровода, м.


Условные обозначения

– видимый участок трубопровода В1 (открытая прокладка).
– невидимый участок трубопровода К1 (скрытая прокладка).
– пересечение труб.
– кран водоразборный.
– кран поливочный.
– поплавковый клапан смывного бачка унитаза.
– смеситель для мойки или умывальника.
– смеситель с душевой сеткой.
– смеситель общий для ванны и умывальника.
– вентиль запорный (диаметром 15, 20, 25, 32, 40 мм).
– задвижка (диаметром 50 мм и более).
– клапан обратный.
– водомер (счетчик расхода воды).
– манометр.
– насос центробежного типа.
– вибровставка (армированный резиновый шланг).
– мойка кухонная.
– умывальник.
– ванна.
– унитаз с косым выпуском.
– трап напольный с сифоном (гидрозатвором).
– воронка водосточная колпаковая (для неэксплуатируемых кровель).
– воронка водосточная плоская (для эксплуатируемых кровель).
– труба раструбная канализационная.
– патрубок переходной (обычно для перехода с - 50 мм на - 100 мм).
– колено (для поворота трубопроводов канализации на 90°).
– отвод (для поворота трубопроводов канализации на 135°).
– тройник прямой (для стояков).
– тройник косой (преимущественно для горизонтальных участков).
– крестовина прямая (для стояков).
– крестовина косая (преимущественно для горизонтальных участков).
– сифон коленчатого типа (под умывальниками и мойками).
– сифон бутылочного типа (под умывальниками и мойками).
– сифон для ванны.
– ревизия.

Глава 1
Внутренний водопровод зданий

Внутренний водопровод зданий это система трубопроводов и устройств, обеспечивающая подачу воды к санитарно-техническим приборам, технологическому оборудованию и к пожарным кранам в границах внешнего контура стен здания и имеющая общее водоизмерительное устройство от наружных сетей водопровода.
В состав внутреннего водопровода входят:
1) трубопроводы и соединительные фасонные детали (фитинги);
2) арматура (краны, смесители, вентили, задвижки и т.д.);
3) приборы (манометры, водомеры);
4) оборудование (насосы).
Классификация внутренних водопроводов
В зданиях (сооружениях) в зависимости от их назначения предусматривают системы внутренних водопроводов:
хозяйственно-питьевого;
горячего;
противопожарного;
оборотного;
производственного.
Классификация холодного и горячего водопроводов изображена на рис. 1.

Рис. 1
Таким образом, внутренний водопровод в жилых зданиях подразделяется в первую очередь на холодный (В) и горячий (Т) водопровод. На схемах и чертежах в отечественной документации холодные водопроводы обозначаются буквой русского алфавита В, а горячие - буквой русского алфавита Т.
Холодные водопроводы имеют следующие разновидности:
В1 - хозяйственно-питьевой водопровод;
В2 - противопожарный водопровод;
В3 - производственный водопровод (общее обозначение).
Современный горячий водопровод должен иметь в здании две трубы: Т3 - подающая, Т4 - циркуляционная. Попутно отметим, что Т1-Т2 обозначаются системы отопления (теплосети), которые не относятся непосредственно к водопроводу, однако связаны с ним, что рассмотрим позднее.
Водопроводные трубы
Все трубы внутреннего водопровода обычно имеют следующие внутренние диаметры (условный диаметр (Ду, Dy) –номинальный размер (в миллиметрах) внутреннего диаметра трубы): 15 мм (в квартирах), 20, 25, 32, 40, 50, 65, 80, 90, 100, 125, 150 мм.
В отечественной практике применяют:
Металлические трубы (стальные, стальные трубы с цинковым покрытием (оцинковка), из нержавеющей стали, медные трубы для водопровода).
Полимерные трубы (полипропиленовые трубы, пластик).
Металлопластиковые трубы (полимерные материалы комбинируются с металлом).
Стальные трубы
В большинстве домов, особенно старой постройки, трубы для водоснабжения стальные, используются они давно, и потому стальные трубы хорошо известны всем. Сейчас водопроводные стальные трубы используют:
в напорных трубопроводах;
в сейсмоопасных регионах;
в высокопористых грунтах;
при устройстве дюкеров (напорных участков трубопровода, укладываемых по дну оврага, под руслом реки или под расположенной в низине дорогой);
при монтаже водопроводов по эстакадам или мостам;
в местах, подвергающихся механическим воздействиям, в том числе вибрационным нагрузкам.
Т.е. водопроводные металлические трубы из стали укладывают в тех случаях, когда требуется высокая сопротивляемость изгибающим и динамическим нагрузкам.

Достоинства:
Механическая прочность;
Относительная дешевизна;
Большой выбор любой совместимой арматуры.
Недостатки:
Подверженность коррозии, причем крайне быстрой.
Неизбежное сужение просвета труб на холодной воде. Трубы зарастают, и все, что можно сделать помимо замены периодически разбирать водопровод для прочистки.
Электропроводность, увеличивающая вероятность поражения током при неисправностях электроприборов.
Образование гальванической пары с алюминием и медью. Слабые токи на стыке этих металлов резко ускоряют коррозию.
Крайне трудоемкий монтаж: газовая или электросварка. Альтернатива ручная нарезка резьб, требующая специального инструмента и огромных усилий, либо изготовление патрубков и сгонов необходимой длины на токарном станке.
Стальные трубы с цинковым покрытием (оцинковка)
Слой цинка на внешней и внутренней поверхностях трубы как защищает ее от коррозии, так и не дает отложениям песку и кусочкам шлака превращаться в полноценные наросты внутри. В прошлом веке до наступления эпохи всеобщей экономии, оцинковка широко использовалась.

Достоинства:
Прочность.
Защищенная цинком поверхность не подвержена коррозии.
Недостатки:
Довольно высокая цена.
Проводит электричество, бьет током и разрушает подключенный алюминиевый радиатор за несколько лет эксплуатации.
Резьбы, обнажающие во впадинах сталь под слоем цинка, ржавеют.
Трудоемкость монтажа.
Резюме.
Применение рационально, когда требуется высокая механическая прочность (активные дети; труба в силу особенностей помещения проходит под ногами на проходе); когда важно не столько то, какие лучше водопроводные трубы,  сколько то, насколько они прочны.
Трубы из нержавеющей стали
Один из самых долговечных и дорогих видов стальных труб. Изготавливаются из высококачественных легированных сталей. В качестве основной легирующей добавки применяется хром. Именно содержание – больше двенадцати процентов – хрома придает стали высокие антикоррозийные свойства и долговечность. По технологии производства трубы бывают цельнотянутыми (бесшовными) и сварными (как привило, лазерной сваркой), с матовой, шлифованной или зеркальной поверхностью. Бывают неотожжеными и отожженными (подверженные термической обработке). Благодаря термической обработке труба становятся пластичнее, и немного темнее  по цвету. Особой популярностью пользуются гибкие трубы из нержавеющей стали, а не так давно на строительном рынке появились еще и гофрированные трубы. В силу своей пластичности гибкие и гофрированные трубы активно применяются в сложных водопроводных конструкциях.
[ Cкачайте файл, чтобы посмотреть ссылку ]
Трубы из нержавеющей стали
Монтаж любых нержавеющих труб осуществляется сваркой или с помощью обжимных фитингов.
Достоинства:
Долгий срок эксплуатации – производители заявляют о ста и более лет, также нержавеющие трубы часто называют вечными;
Высокую стойкость к коррозии, как обычной, так и электрохимической;
Обладают высокой стойкостью при механических нагрузках;
Химическая инертность к любой агрессивной среде;
Гигиеничность (внутри труб не образуется отложений, питательной среды для размножения микроорганизмов);
Эстетически привлекательный вид.
Недостатки:
Высокая цена труб и монтажных работ;
Низкая устойчивость к воздействию хлора. Перед выбором труб для водопровода из нержавеющей стали, рекомендуется сделать пробное тестирование воды на процентное содержание хора. Для регионов с повышенным содержанием хлора в воде следует выбирать трубы из марок стали с повышенной антикоррозийной способностью, что приводит к значительному удорожанию водопроводной системы;
Качественный монтаж сваркой может осуществить лишь профессиональный сварщик-аргонщик, а монтаж с помощью обжимных фитингов – только специальными инструментами.
Медные трубы
Медные водопроводы широко применяются в европейских и американских частных домах с середины двадцатого века и заслужили лестные отзывы тем, что не создают проблем владельцам. Однако практически все их потребительские качества можно сейчас получить с куда меньшими затратами, использовав другие материалы.

Достоинства:
Отсутствие коррозии, деформаций, огромный срок службы;
Отсутствие отложений;
Эффектный внешний вид;
Большой диапазон рабочих температур.
Недостатки:
Высокая цена;
Редкость в продаже как самих труб, так и фитингов для них;
Относительная сложность монтажа (особенно при сборке водопровода пайкой);
Довольно умеренная механическая прочность. Медные трубы для воды довольно тонкостенны, и повредить трубу легко, просто задев ее переносимой мебелью. Стенку пробить насквозь нелегко, а вот смять трубу, уменьшив ее просвет запросто.
Металлопластиковые трубы для водопровода
Примерно десять лет назад на рынке появились металлопластиковые трубы. Они имеют три слоя: пластик, металл и снова пластик. Очень легко происходит монтаж таких труб. Их соединение осуществляется муфтами, фитингами, водными розетками или тройниками. Металлопластиковые трубы не поддаются коррозии, гибкие, морозоустойчивы и с помощью клипс легко крепятся на стены. Необходимо часто проверять места соединений, потому, что трубы чувствительны к механическим ударам и температурным перепадам. По этой причине изобрели скрытую прокладку труб в каналах или за плинтусами.

Достоинства:
Легкость монтажа;
Большой выбор фитингов;
Отсутствие коррозии;
Внешняя оболочка из диэлектрического материала.
Недостатки:
Соединения выдерживают ограниченное количество циклов нагрева, потом их нужно подтягивать;
Трубу из фитинга при сравнительно небольшом усилии можно вырвать.
Резюме: для человека, решающего, какие трубы водопроводные лучше неплохой выбор. Быть может лучший для водопровода на даче, где нет электричества для пайки полипропилена, а незначительные утечки не так страшны. Но для дома не самый лучший.
Разновидности полимерных труб
Поливинилхлоридная (ПВХ) труба – используется как для внутренних коммуникаций, так и для наружных. Экономичный вариант, обусловленный низкой себестоимостью изделий.
Труба из полипропилена – широко используется не только для водопроводных систем, но и для канализации, отопления, полива.
Полиэтиленовые трубы – применяют в сейсмически активных зонах (например, в Японии), потому что полиэтилен очень эластичный и может растягиваться до 7% своего объема, не разрушаясь. Это же свойство делает незаменимыми полиэтиленовые системы в условиях низких температур и при гидроударах.
Трубы из сшитого полиэтилена (РЕХ) – применяется полиэтилен, изготовленный под воздействием высокого давления. Материал имеет улучшенные характеристики по устойчивости к высоким температурам и нагрузкам. Используется в горячем водоснабжении и в отоплении (в том числе для «теплых» полов).
Полипропиленовые водопроводные трубы
Полипропиленовые трубы активно применяются в загородных домах и коттеджах, в связи с простотой монтажа. К таким трубам можно отнести трубы из ПВХ, полиэтиленовые и еще много видов реактопластов. Полипропилен (светлый порошок или гранулы), из которого изготавливают такие трубы, является результатом полимеризации пропилена с использованием металлических катализаторов. Для получения трубной продукции пропиленовый порошок или гранулят расплавляют, формируя затем из него трубу с помощью метода экструзии – выдавливания с помощью пресс-формы.

Достоинства:
Срок службы холодного водоснабжения составляет пятьдесят лет, горячего – двадцать пять лет.
Экономия температуры теплоносителя на 10-20% из-за низкой теплопроводности.
Отсутствие эффекта блуждающих токов.
Пропускная способность трубы всегда останется на начальном уровне.
Простота монтажа и легкий вес значительно сокращают время установки водопровода и улучшают производительность.
Исключение ухудшения качества воды.
Недостатки:
Соединения неразборны.
При монтаже трубы важно учитывать, что полипропилен имеет высокий коэффициент линейного расширения.
При некачественной пайке могут создавать препятствия водному потоку.
Заострим свое внимание на недостатках.
Температура
Температура плавления полипропилена 175 С. Однако размягчаться он начинает при 140 С. Что же до гарантированной температуры, при которой полипропиленовая труба должна работать гарантированно она всего-то 95 градусов по шкале Цельсия (а для некоторых сортов и того меньше). Отметим, что при высоком давлении и высокой температуре, действующих на материал одновременно, он куда менее стоек, чем под воздействием каждого из факторов отдельно.
Удлинение при нагреве
Все материалы расширяются при нагреве. Одни меньше, другие больше. Полипропилен расширяется весьма сильно.
Неудобно это в силу следующих причин:
Эстетика. Длинная прямая труба, удлинившись, идет неопрятными волнами.

Явная деформация при нагреве. Труба стала слишком длинной для участка, на который смонтирована
Целостность декоративных покрытий. Если трубы утоплены под стяжку на полу или в покрытие стены, то при удлинении они через какое-то время неизбежно заставят покрытие растрескаться.


Армированная полипропиленовая труба
Армирование образует что-то вроде жесткого каркаса и не дает трубе удлиняться, а заодно и расти в толщину.
В силу свойств полипропилен при ограничении деформации в длину изгибает молекулы полимера так, чтобы каждая в отдельности вилась змейкой, а все вместе остались на месте.
При нагревании обычной полипропиленовой трубы до точки размягчения материала при большом избыточном давлении внутри она начинает надуваться, при этом стенки становятся все тоньше и тоньше, до возникновения разрывов.
Трубы армированные полипропиленовые благодаря «каркасу» деформироваться даже не начинают. Фактически, такая армированная полипропиленовая труба для отопления при непрерывном нагреве не раздуется, а просто стечет вниз, достигнув температуры в 175 С.
Виды армирования
Для армирования полипропиленовой трубы могут использоваться два основных материала: алюминий и стекловолокно (фибергласс).
Алюминий
Полипропиленовая труба армированная алюминием, помимо диаметра, может быть разной по расположению армирующего слоя. Он может быть для полипропилена внешней оболочкой, а может скрываться между слоями полипропилена. Во втором случае наличие армирования можно определить только при взгляде на срез трубы.


Слои алюминиевой фольги (это именно фольга; в отличие от металлопластиковых труб, металл здесь толщиной от 0,1 до 0,5 миллиметра) соединяется с полипропиленом клеем. Качество клеевого соединения наряду с составом самого полипропилена и толщиной фольги определяет качество трубы.
Стекловолокно
Альтернативой алюминию является стекловолокно. Полипропиленовая труба армированная стекловолокном это абсолютно иная конструкция, чем предыдущий вариант. Внутри и снаружи такой трубы в самом деле полипропилен, а в центре стекловолокно; однако вместе с тем все слои трубы их, как правило, три представляют собой монолит.
При изготовлении армированных стекловолокном полипропиленовых труб, средний слой сваривается с внутренним и наружным ведь в его основе лежит тот же материал, только предварительно замешанный с волоконцами фибера того самого стекловолокна. Два в одном: полипропилен склеивает волоконца, а они не дают ему деформироваться.



Используются два варианта сочленения труб:
- неразъемные соединения, произведенные при помощи прессовки, склейки, пайки, сварки или бетонирования;
- разъемные – на резьбе, на фланцах, раструбные и некоторые другие.
Способы соединений водопроводных труб:
1) Резьбовое соединение. В местах стыков труб применяются фасонные соединительные детали (фитинги). Нанесение резьбы на оцинкованные трубы проводят после оцинкования. Резьба труб должна быть защищена от коррозии смазкой. Способ резьбового соединения надёжный, но трудоёмкий.
2) Сварное соединение. Менее трудоёмкое, но разрушает защитное цинковое покрытие, которое нужно восстанавливать.
3) Фланцевое соединение. Применяется в основном при монтаже оборудования (насосов и т.д.).



Стандартное SAE GS-фланцевое соединение, меньше и легче, чем соединение с врезным кольцом, для одного типоразмера трубы ( Ш 38 мм).

ФЛАНЕЦ ЧУГУННЫЙ с резиновой прокладкой для РАЗЪЁМНОГО соединения стальных, чугунных и полиэтиленовых труб Ду 100 и Ду 150

Допустим есть два участка трубы и их можно сварить между собой, но тогда это будет жесткое неразъемное соединение, а для того чтобы организовать быстроразъемное соединение применяют фланцы, которые наваривают на концы труб и стягивают болтами с гайками или шпильками с гайками.
Существенные преимущества фланцевых соединений для размеров труб от 25 мм, по сравнению с резьбовыми соединениями:
- меньший размер соединения;
- разумное пространство для монтажа, благодаря меньшему моменту затяжки;
- повышенное рабочее давление;
- экономия средств благодаря унификации компонентов;
- легче установить и собрать, благодаря использованию обратных фланцев.
Фланцевые соединения, состоят из:
собственно фланца;
комплекта крепежных изделий (шпильки, гайки, шайбы);
прокладки (паронитовые, фторопластовые, из терморасширенного графита, стальные и др.).
Фланцевое соединение удобно при монтаже и пользуется огромным спросом. Существует большое количество аспектов подбора фланцевых соединений, с вопросами о которых стоит обращаться только к специалистам.
4) Клеевое соединение. Применяется главным образом для пластмассовых труб.
Клеевое соединение труб из ПВХ
Склеиванием соединяют поливинилхлоридные трубы (ПВХ), оборудованные специальным раструбом. Для этого склеиваемым поверхностям концов труб придают шероховатость: наружный конец трубы и внутреннюю поверхность раструба обрабатывают шлифовальной шкуркой. Обработанные концы обезжиривают метиленхлоридом, который частично растворяет материал трубы.
После подготовки концов труб наносят клей равномерным тонким слоем с помощью мягких кистей шириной 30–40 мм. После нанесения клея на оба соединяемые элемента необходимо немедленно ввести трубу в раструб (муфту) до упора, затем, с целью получения лучшего контакта поверхностей, повернуть ее на 1/4 оборота. На обезжиривание трубы, нанесение клея и ввод трубы в соединение должно уходить не более трех минут. Соединяемые элементы необходимо прижать и держать в таком состоянии не менее одной минуты. При приклеивании происходит сополимеризация материала труб с образованием однородного соединения. Для полной стабилизации соединения требуется несколько часов.

Рис. 5. Клеевое соединение труб из ПВХ

Фасонные детали (фитинги)
Фасонные детали (фитинги) применяются в основном для резьбового соединения водопроводных труб. Они изготавливаются из чугуна, стали или бронзы. Вот наиболее употребляемые фитинги:

- муфты (стыковое соединение труб равного или разного диаметра);
- угольники (поворот трубы на 90
·);
- тройники (боковые подсоединения труб);
- кресты (боковые подсоединения труб).
Водопроводная арматура
Водопроводная арматура применяется:
- водоразборная (краны водоразборные, банные, поплавковые клапаны смывных бачков унитазов);
- смесительная (смесители для мойки, для умывальника, общий для ванны и умывальника, с душевой сеткой и т.д.);
- запорная (вентили на диаметрах труб - 15-40 мм, задвижки на диаметрах - 50 мм и более);
- предохранительная (обратные клапаны - ставятся после насосов).
Приборы
Приборы на водопроводе:
- манометры (измеряют давление и напор);
- водомеры (измеряют расход воды).
Оборудование
Насосы - это основное оборудование на водопроводе. Они повышают давление (напор) внутри водопроводных труб. Подавляющее число водопроводных насосов в настоящее время работает за счёт электродвигателей. Насосы чаще всего применяют центробежного типа.
ХОЗЯЙСТВЕННО-ПИТЬЕВОЙ ВОДОПРОВОД В1
Хозяйственно-питьевой водопровод В1 - это разновидность холодного водопровода. Это основной водопровод в городах и населённых пунктах, поэтому ему и присвоена цифра 1. В его названии на первом месте стоит слово "хозяйственный", так как основной объём воды - более 95 % - используется в зданиях на хозяйственные нужды и лишь менее 5 % - на питьё. Например, на одного жителя крупного города суточная норма водопотребления холодной воды, согласно СНиП 2.04.01-85, составляет около 180 л/сут, из которых на питьё в среднем расходуется около 3 литров.
Требования к качеству воды В1
Качество холодной и горячей воды (санитарно-эпидемиологические показатели), подаваемой на хозяйственно-питьевые нужды, должно соответствовать СанПиН 2.1.4.1074 и СанПиН 2.1.4.2496. Качество воды, подаваемой на производственные нужды, определяется заданием на проектирование (технологическими требованиями).
Требования к качеству воды в хозяйственно-питьевом водопроводе В1 можно разбить на две группы:
- вода должна быть питьевой, согласно ГОСТ 2874-82*;
- вода должна быть холодной, то есть с температурой t
· +8 ... +11
·С.
Стандарт на питьевую воду содержит показатели трёх типов:
1) ФИЗИЧЕСКИЕ: мутность, цветность, запах, привкус;
2) ХИМИЧЕСКИЕ: общая минерализация (не более 1 г/литр - это пресная вода), а также содержание неорганических и органических веществ не более предельно-допустимых концентраций (ПДК);
3) БАКТЕРИОЛОГИЧЕСКИЕ: не более трёх бактерий на литр воды.
Температура воды в пределах t
· +8 ... +11
·С достигается за счёт контакта подземных труб наружного водопровода с грунтом, для чего эти трубы не теплоизолируются под землёй. Наружный водопровод прокладывается всегда на глубинах ниже зоны промерзания грунта, где круглый год температуры положительные.
Элементы В1
Элементы хозяйственно-питьевого водопровода В1 рассмотрим на примере двухэтажного здания с подвалом (рис. 2).

Рис. 2
Элементы хозяйственно-питьевого водопровода В1:
1 - ввод водопровода;
2 - водомерный узел;
3 - насосная установка (не всегда);
4 - разводящая сеть водопровода;
5 - водопроводный стояк;
6 - поэтажная (поквартирная) подводка;
7 - водоразборная и смесительная арматура.
Ввод водопровода
Ввод водопровода это участок подземного трубопровода с запорной арматурой от смотрового колодца на наружной сети до наружной стены здания, куда подаётся вода (см. рис. 2).
Каждый ввод водопровода в жилых зданиях рассчитан на количество квартир не более 400. На схемах и чертежах ввод обозначается, например, так:
Ввод В1-1.
Это означает, что ввод относится к хозяйственно-питьевому водопроводу В1 и порядковый номер ввода № 1.
Глубина заложения трубы ввода водопровода принимается по СНиП 2.04.02-84 для наружных сетей и находится по формуле:
Hзал = Нпромерз + 0,5 м ,
где Нпромерз нормативная глубина промерзания грунта в данной местности; 0,5 м запас пол-метра.
Водомерный узел
Водомерный узел (водомерная рамка) это участок водопроводной трубы непосредственно после ввода водопровода, который имеет водомер, манометр, запорную арматуру и обводную линию (рис. 3).

Рис. 3
Водомерный узел надлежит устанавливать у наружной стены здания в удобном и легкодоступном помещении с искусственным или естественным освещением и температурой воздуха не ниже +5 °С согласно СНиП 2.04.01-85.
Обводная линия водомерного узла обычно закрыта, а арматура на ней опломбирована. Это необходимо для учёта воды через водомер. Достоверность показаний водомера можно проверить с помощью контрольного крана-вентиля, установленного после него (см. рис. 3).
Насосная установка
Насосная установка на внутреннем водопроводе необходима при постоянном или периодическом недостатке напора, обычно когда вода не доходит по трубам до верхних этажей здания. Насос добавляет необходимый напор в водопроводе. Чаще всего используются насосы центробежного типа с приводом от электродвигателя. Минимальное число насосов два, из которых один рабочий насос, а другой резервный насос. Схема насосной установки для этого случая показана в аксонометрии на рис. 4.

Рис. 4
Обратные клапаны препятствуют противодавлению на насос воды из здания, а также предохраняют от паразитной циркуляции. Обводная линия насосной установки в отличие от водомерного узла наоборот всегда открыта. Это связано с тем, что в периоды достаточного напора из наружной сети работа насоса не требуется. Тогда электроманометром насос выключается, а вода поступает в здание через обводную линию.
Разводящая сеть водопровода
Разводящие сети внутреннего водопровода прокладываются, согласно СНиП 2.04.01-85, в подвалах, технических подпольях и этажах, на чердаках, в случае отсутствия чердаков на первом этаже в подпольных каналах совместно с трубопроводами отопления или под полом с устройством съёмного фриза или под потолком верхнего этажа.
Трубопроводы могут крепиться:
- с опиранием на стены и перегородки в местах монтажных отверстий;
- с опиранием на пол подвала через бетонные или кирпичные столбики;
- с опиранием на кронштейны вдоль стен и перегородок;
- с опиранием на подвески к перекрытиям.
В подвалах и техподпольях к разводящим сетям водопровода присоединяют трубы - 15, 20 или 25 мм, подающие воду к поливочным кранам, которые обычно выводят в ниши цокольных стен наружу на высоте над землей около 30-35 см. По периметру здания поливочные краны размещают с шагом 60-70 метров.
Водопроводные стояки
Стояком называется любой вертикальный трубопровод. Водопроводные стояки размещают и конструируют по следующим принципам:
1) Один стояк на группу близкорасположенных водоразборных приборов.
2) Преимущественно в санузлах.
3) С одной стороны от группы близкорасположенных водоразборных приборов.
4) Зазор между стеной и стояком принимают 3-5 см.
5) В основании стояка предусматривают запорный вентиль.
Поэтажные подводки В1
Поэтажные (поквартирные) подводки подают воду от стояков к водоразборной и смесительной арматуре: к кранам, смесителям, поплавковым клапанам смывных бачков. Диаметры подводок обычно принимают без расчёта - 15 мм. Это связано с тем же диаметром водоразборной и смесительной арматуры.
Непосредственно около стояка на подводке устанавливают запорный вентиль - 15 мм и квартирный водомер ВК-15. Далее подводят трубы к кранам и смесителям, причём ведут трубы на высоте 10-20 см от пола. Перед смывным бачком на подводке устанавливают дополнительный вентиль для ручной регулировки напора перед поплавковым клапаном.
Водоразборная и смесительная арматура
Водоразборная и смесительная арматура служит для получения воды из водопровода. Она устанавливается на концах трубопроводов подводок на определённой высоте над полом, регламентированной СНиП 3.05.01-85. Например, общий смеситель для умывальника и ванны устанавливается в уровне верха борта умывальника на высоте над полом равной 850 мм.
ПРОТИВОПОЖАРНЫЙ ВОДОПРОВОД В2
Противопожарный водопровод В2 предназначен для тушения пожаров водой в зданиях. Согласно СНиП 2.04.01-85, систему В2 должны иметь следующие здания:
1) жилые здания от 12 и более этажей;
2) здания управлений от 6 и более этажей;
3) клубы с эстрадой, театры, кинотеатры, актовые и конференц-залы, оборудованные киноаппаратурой;
4) общежития и общественные здания объёмом от 5000 м3 и более;
5) административно-бытовые здания промпредприятий объёмом от 5000 м3 и более.

Классификация противопожарных водопроводов
Противопожарный водопровод подразделяется на три разновидности (рис. 5).

Рис. 5
Системы с пожарными кранами проектируются по СНиП 2.04.01-85, а полуавтоматические (дренчерные) и автоматические (спринклерные) установки по СНиП 2.04.09-84.
Системы В2 с пожарными кранами
Область применения систем водопровода В2 с пожарными кранами см. выше.
Согласно СНиП 2.04.01-85, система В2 носит подчинённый характер по отношению к системам В1 или В3. Это означает, что если в здании предусмотрена сеть В1 или В3, то противопожарный водопровод В2 стояками присоединяется к сети В1 или В3.
Стояки В2 принимают диаметром не менее 50 мм и прокладывают в лестничных клетках и коридорах. Пожарные краны 50 мм располагают на высоте 1,35 м над полом. Их помещают в шкафчиках, куда кладут свёрнутый пеньковый пожарный рукав длиной 10, 15 или 20 м. На одном конце рукава имеется полугайка для быстрого присоединения к пожарному крану, а на другом конце конический пожарный ствол для получения компактной водяной струи длиной около 10-20 метров.
Полуавтоматические дренчерные установки
Полуавтоматические дренчерные установки предназначены для создания водяных завес из мелких капель во время пожара. Они применяются на сценах зрительных залов, а также в боксах крупных производственных гаражей. Главным элементом является дренчер-ороситель - это особый вид водоразборной арматуры. Под потолок прокладывается стальная труба диаметром не менее - 20 мм и на ней с шагом 3 метра устанавливаются дренчеры, направленные вниз. В ожидании действия система находится без воды, то есть она сухотрубная. При возникновении пожара нажимают на кнопку, почему система и считается полуавтоматической, так как срабатывает от кнопки. В результате включается пожарный насос и открывается электрозадвижка и вода по трубе поступает к дренчерам. Те распыляют воду вниз, например, на занавес сцены и создают водяную завесу, которая кроме тушения огня также способствует благоприятному психологическому эффекту, несколько сбивая панику среди зрителей в зале.
Дренчерные системы проектируются по СНиП 2.04.09-84.
Автоматические спринклерные установки
Автоматические спринклерные установки предназначены для создания площадного орошения водой при тушении пожара. Они применяются в архивах библиотек и документации, в торговых залах крупных супермаркетов и в складах с повышенной пожароопасностью. Главным элементом является спринклер-ороситель - это особый вид водоразборной арматуры. Под потолком помещения прокладывается разводящая сеть из стальных труб диаметром не менее - 20 мм и на них с шагом 3 метра устанавливаются спринклеры, направленные вниз. В ожидании действия система находится под напором. При возникновении пожара под конкретным спринклером внутри него расплавляется легкоплавкая вставка и он сам автоматически открывается и начинает поливать-брызгать водой вниз туда, где возник пожар, почему система и называется автоматической, так как срабатывает без участия человека.
Спринклерные системы проектируются по СНиП 2.04.09-84.
ПРОИЗВОДСТВЕННЫЙ ВОДОПРОВОД В3
Производственный водопровод подаёт воду в производственные здания на различные технологические нужды, поэтому требования по качеству воды весьма разнообразны. Стандартная классификация производственного водопровода В3 по качеству воды изображена на рис. 6.

Рис. 6
В3 это общее обозначение любого производственного водопровода.
На первом месте в классификации стоит оборотное водоснабжение В4-В5, в котором В4 подающая труба, а В5 труба обратная. Оборотное водоснабжение это перспективные, экологически чистые и ресурсосберегающие системы.
В6 системы с умягчённой водой.
В7 системы с речной водой.
В8 системы с осветлённой водой.
В9 системы с подземной (промышленной) водой и так далее
Классификация В3 по использованию воды
Классификация производственного водопровода
по использованию воды:
1) Прямоточный водопровод. Это самый простой производственный водопровод, когда вода после использования напрямую сбрасывается в канализацию. Однако он загрязняет окружающую среду и не экономит ресурсы, поэтому предприятия стремятся от него перейти на другие, более прогрессивные системы.
2) С повторным использованием воды. Вода, использованная в технологии одного цеха, не сбрасывается сразу в канализацию, а используется на другие технологические нужды, по цепочке. Система более прогрессивная по сравнению с предыдущей.
3) Оборотное водоснабжение. Вода подаётся из местного очистного сооружения на производственно-технологические нужды по трубопроводу В4, используется и уходит обратно в очистное сооружение по трубопроводу В5. Оборотное водоснабжение - это перспективные, экологически чистые и ресурсосберегающие системы. Примером могут служить мойки автомобилей с такими системами, которые к тому же и выгодны для данного предприятия автосервиса, так как дают экономию по забору воды из водопровода и сбросу стоков на водоотведение.
Классификация В3 по объёму водопотребления
Классификация производственного водопровода по объёмам потребляббемой воды:
1) Объединённые системы В1+В2+В3. Применяются для небольших производственных зданий при суточном расходе водопотребления не более 100 м3/сут.
2) Раздельные системы (В1+В2, В3) или (В1, В3+В2). Применяются для производственных зданий при значительном суточном расходе водопотребления более 100 м3/сут.
Области использования воды в строительстве
ОБЛАСТИ ИСПОЛЬЗОВАНИЯ ВОДЫ В СТРОИТЕЛЬНОМ ПРОИЗВОДСТВЕ:
1) В составе выпускаемой продукции (В1): приготовление бетонов, строительных растворов.
2) На парообразование (В6):
а) пропарка бетонных и железобенных изделий;
б) строительные котельные.
3) На охлаждение (В6):
а) строительных машин;
б) котельных.
4) Поливка (В7):
а) кирпича перед кладкой или оштукатуриванием;
б) твердеющего бетона;
в) для предварительного замачивания просадочного грунта.
5) Промывка (В7 или В8):
а) щебня;
б) песка.
6) Вода в качестве гидротранспорта (В7):
гидронамыв территорий для дальнейшей застройки (например, в 1960 г. Иртышская набережная в г. Омске).
ГОРЯЧИЙ ВОДОПРОВОД Т3-Т4
Современный горячий водопровод Т3-Т4 имеет в здании две трубы: Т3 это подающий трубопровод; Т4 циркуляционный трубопровод.
Требования к качеству воды Т3-Т4
Требования к качеству горячей воды в системе Т3-Т4 содержатся в СНиП 2.04.01-85:
1) Горячая вода в Т3-Т4 должна быть питьевой по ГОСТ 2874-82. Качество воды, подаваемой на производственные нужды, определяется технологическими требованиями.
2) Температуру горячей воды в местах водоразбора следует предусматривать:
а) не ниже +60 С для систем централизованного горячего водоснабжения, присоединяемых к открытым системам теплоснабжения;
б) не ниже +50 С для систем централизованного горячего водоснабжения, присоединяемых к закрытым системам теплоснабжения;
в) не выше +75 С для всех систем, указанных в подпунктах "а" и "б".
3) В помещениях детских дошкольных учреждений температура горячей воды, подаваемой для душей и умывальников, не должна превышать +37 С.
Классификация Т3-Т4 по расположению источника тепла
Классификация горячего водопровода Т3-Т4 по расположению источника тепла показана на рис. 7.

Рис. 7
Необходимо отметить, что наружных сетей горячего водопровода обычно не прокладывают, то есть горячий водопровод Т3-Т4 - это типично внутренний водопровод. Классификация, показанная на рис. 7 отражает тот факт, что централизованно или местно решается расположение источника тепла. В крупных и средних городах тепло несут наружные водяные теплосети Т1-Т2 и заводят тепло в здания отдельными вводами Т1-Т2. Это централизованные системы теплоснабжения. В малых городах и населённых пунктах источник тепла находится в доме или квартире - это домовая котельная или водогрейная колонка, работающая на газе, мазуте, нефти, угле, дровах или электричестве. Это местная система.
Открытая система горячего водопровода (см. рис. 7) берёт воду из обратного трубопровода теплосети Т2 непосредственно, напрямую, и далее вода поступает по трубе Т3 к смесителям в квартиры. Такое решение горячего водоснабжения не самое лучшее с точки зрения обеспечения питьевого качества горячей воды, так как вода идёт фактически из системы водяного отопления. Однако такое решение весьма недорогое. Таким способом, например, снабжается большинство зданий правобережья г. Омска.
Закрытая система горячего водопровода (см. рис. 7) берёт воду из холодного водопровода В1. Вода нагревается с помощью водонагревателей-теплообменников (бойлеров или скоростных) и поступает по трубе Т3 к смесителям в квартиры. Часть неиспользованной горячей воды циркулирует внутри здания по трубопроводу Т4, что поддерживает постоянную необходимую температуру воды. Источником тепла для водонагревателей служит подающая труба теплосети Т1. Такое решение горячего водоснабжения уже лучше с точки зрения обеспечения питьевого качества горячей воды, так как вода берётся из системы хозяйственно-питьевого водопровода В1. Таким способом, например, снабжается большинство зданий левобережья г. Омска.
Элементы Т3-Т4
Элементы горячего водопровода Т3-Т4 рассмотрим на примере рис. 8.

Рис. 8
1 ввод теплосети в техподполье здания. Это не элемент горячего водопровода.
2 тепловой узел. Здесь реализуется схема (открытая или закрытая ) горячего водопровода.
3 водомер на подающей трубе горячего водопровода Т3 у теплового узла.
4 разводящая сеть подающих трубопроводов Т3 горячего водопровода.
5 подающий стояк Т3 горячего водопровода. В его основании устанавливают запорный вентиль.
6 полотенцесушители на подающих стояках Т3.
7 квартирные водомеры горячей воды на поэтажные подводках Т3.
8 поэтажные подводки горячей воды Т3 (обычно - 15 мм).
9 смесительная арматура (на рис. 8 показан смеситель общий для умывальника и ванны с душевой сеткой и поворотным изливом).
10 циркуляционный стояк Т4 горячего водопровода. В его основании тоже устанавливают запорный вентиль.
11 отводящая сеть циркуляционных трубопроводов Т4 горячего водопровода.
12 водомер на циркуляционной трубе горячего водопровода Т4 у теплового узла.
МОНТАЖ, ИСПЫТАНИЕ И ЭКСПЛУАТАЦИЯ ВНУТРЕННИХ ВОДОПРОВОДОВ
МОНТАЖ ВНУТРЕННИХ ВОДОПРОВОДОВ
Работы по монтажу внутренних водопроводов зданий обычно выполняются специализированными монтажными организациями, которые являются субподрядными организациями по отношению к чисто строительным организациям (генподрядчикам), например, какая-либо монтажная фирма по отношению к строительному тресту.
Монтаж проводят руководствуясь положениями СНиП 3.05.01-85 «Внутренние санитарно-технические системы». Перед началом монтажа, до того как монтажники придут на строительный объект, строители должны сделать:
1) выполнить основные строительные работы, то есть возвести фундаменты, стены, перекрытия, покрытия, перегородки и т.д., но до отделочных работ;
2) пробить все монтажные отверстия в стенах, перекрытиях и перегородках для пропуска трубопроводов и оборудования;
3) установить монтажные закладные детали в стенах, перекрытиях и перегородках для крепления трубопроводов и оборудования;
4) прокопать траншеи вводов водопровода;
5) прочертить по стенам отметки 0,5 метра выше уровня пола, так как самого уровня пола пока нет.
Монтажная организация выполняет следующие работы:
- монтажное проектирование (составление эскизов и чертежей заготовок по рабочим чертежам и натурным обмерам);
- заготовительные работы (нарезка труб, резьбы на их концах, изготовление заготовок);
- собственно монтаж на объекте (он выполняется всегда по способу "снизу - вверх").
Методы монтажа:
1. Россыпью. То есть сборка водопровода по месту. Такой метод применяется при строительстве здания по индивидуальному проекту.
2. Блоками. Выполняется для зданий по типовым проектам.
3. Санитарно-техническими кабинами. Применяется в крупно-панельном домостроении. Основные трубопроводы и арматура установлены в кабине на заводе, а в условиях стройки кабины нужно лишь тщательно стыковать по осям.
Как только монтаж водопровода закончен наступает следующая стадия: испытание.
ИСПЫТАНИЕ ВНУТРЕННЕГО ВОДОПРОВОДА
Испытание смонтированной системы внутреннего водопровода проводится в присутствии комиссии в составе представителей:
а) заказчика;
б) генподрядчика (строительной организации);
в) субподрядчика (монтажной организации).
Проверяются следующие показатели системы:
1) Расходы. Например, нормальный расход холодной воды из крана или смесителя должен быть не менее 0,2 л/с.
2) Напоры. Минимальный свободный напор у наиболее удалённого и самого высокого водоразборного прибора на верхнем этаже не должен быть менее 2-3 метров водяного столба.
3) Система должна соответствовать проекту по размерам, высотным отметкам, диаметрам труб, их материалу, в том числе по показателям качества воды.
4) Не должно быть каких-либо утечек и подтеканий на трубопроводах.
Испытание внутреннего водопровода проводится в течении 10 минут при давлении в полтора раза превышающем максимально допустимое избыточное (манометрическое) давление для данной системы. Например, для хозяйственно-питьевого водопровода максимально допустимое избыточное (манометрическое) давление составляет 0,45 МПа или 45 метров водяного столба. Тогда давление при испытании будет 0,675 МПа или 67,5 м вод. ст. Если система успешно выдержала испытание давлением, то есть не потекла, то окончательно составляется акт манометрического испытания на герметичность по форме приложения 3 СНиПа 3.05.01-85, который подписывается представителями вышеупомянутой комиссии.
После испытания система внутреннего водопровода готова к передаче на её эксплуатацию.
ЭКСПЛУАТАЦИЯ ВНУТРЕННЕГО ВОДОПРОВОДА
Экслуатация внутренних водопроводов находится в ведении ПЖРЭУ (производственных жилищно-ремонтно-эксплуатационных участков) или в ведении отдела главного энергетика или механика предприятий это зависит от принадлежности здания (муниципальное или ведомственное) и от типа системы (В1, В2, В3, Т3-Т4).
Выполняемые работы следующие:
- текущие ремонты по заявкам жильцов (смена прокладок кранов, замена неисправной арматуры, оборудования, устранение течей в трубах, постановка хомутов, замена участков труб с большой степенью повреждения коррозией и т.д.);
- капитальные ремонты с заменой трубопроводов (через 15-20 лет при стальных трубопроводах или через 50 лет при пластмассовых трубах).
Глава 2
Внутренняя канализация зданий
Внутренняя канализация зданий - это система трубопроводов и устройств, отводящих сточные воды из зданий, включая наружные выпуски до смотровых колодцев.
В состав внутренней канализации входят:
1) санитарно-технические приборы и приёмники сточных вод;
2) раструбные трубопроводы;
3) соединительные фасонные детали;
4) устройства для прочистки сети.
Условные обозначения по внутренней канализации см. выше.
Классификация внутренней канализации
Классификация внутренней канализации изображена на рис. 9.

Рис. 9
Таким образом, внутреннюю канализацию на схемах и чертежах в отечественной документации обозначают буквой русского алфавита К.
Внутренняя канализация имеет следующие разновидности:
К1 - бытовая канализация (по-старому: "хозяйственно-фекальная канализация");
К2 - дождевая канализация (или "внутренние водостоки");
К3 - производственная канализация (общее обозначение).
Санитарно-технические приборы и приёмники сточных вод
Санитарно-технические приборы и приёмники сточных вод первыми в канализации принимают стоки. Вот наиболее применимые в бытовой канализации К1 санитарно- технические приборы:
- мойки кухонные;
- умывальники;
- ванны;
- унитазы.
Писсуары применяют для общественных туалетов, а души-биде для комнат гигиены женщин.
В полу общественных туалетов и мусорокамер зданий в К1 устанавливают напольные трапы (разновидность воронок) из чугуна или пластмассы по ГОСТ 1811-97 соответственно диаметром 50 мм и 100 мм, согласно СНиП 2.04.01-85.
В дождевой канализации К2 на кровлях зданий устанавливают водосточные воронки: колпаковые (для неэксплуатируемых кровель) или плоские (для эксплуатируемых кровель).
В производственной канализации К3 применяют следующие приёмники сточных вод: трапы, ванны, напольные решетки с гидрозатворами и без гидрозатворов, лотки.
Условные обозначения санитарно-технических приборов и приёмников сточных вод см. выше.
Сифоны и гидравлические затворы
Сифоны и гидравлические затворы располагают сразу под санитарно-техническими приборами и приёмниками сточных вод. Принцип их действия можно рассмотреть на примере сифона коленчатого типа, устанавливаемого под умывальником или кухонной мойкой (рис. 10).

Рис. 10
За счёт изогнутости трубы сифона в виде петли в нём всегда остаётся вода, создающая гидравлический затвор, то есть водяную пробку, препятствующую проникновению запахов из системы канализации в помещения зданий.
Условные обозначения сифонов см. выше.
Канализационные раструбные трубопроводы
Трубы для канализации применяют раструбные. Рбструб это уширение на одном конце трубы, служащее для соединения с другими трубами или с фасонными деталями (рис. 11). Раструбы должны быть направлены против движения сточных вод.

Рис. 11
Диаметры труб внутренней канализации чаще всего применяют 50 мм и 100 мм. В бытовой канализации К1 трубы 50 мм используют для отведения сточных вод от умывальников, моек и ванн. Трубы 100 мм служат для присоединения унитазов.
По материалу наибольшее распространение получили чугунные и пластмассовые трубопроводы.
Чугунные канализационные трубы - 50 мм и - 100 мм применяют по ГОСТ 6942-98 "Трубы чугунные канализационные и фасонные части к ним" (введён с 1 января 1999 г.). Они могут быть длиной 750 мм, 1000 мм, 1250 мм, 2000 мм, 2100 мм, 2200 мм. Покажем обозначение марки трубы. Например, труба чугунная канализационная - 100 мм длиной 2000 мм обозначается в спецификациях так:
ТЧК-100-2000.
Раструбный стык чугунных труб зачеканивают смоляной или битумизированной пеньковой прядью (кбболкой) и замазывают расширяющимся цементным раствором (см. рис. 11).
Пластмассовые канализационные трубы диаметрами - 40, 50, 90 и 110 мм применяют по ГОСТ 22689-89* "Трубы полиэтиленовые канализационные и фасонные части к ним". Их изготавливают из полиэтилена низкого (ПНД) и высокого (ПВД) давления. Они предназначены для систем внутренней канализации зданий с максимальной температурой сточной жидкости +60 °С и кратковременной (до 1 мин) +95°С. Это является недостатком полиэтиленовых труб.
Раструбный стык пластмассовых трубопроводов уплотняют резиновым кольцом, которое вставлено в паз раструба. С силой вдвигая трубу в раструб, получают необходимое уплотнение стыка за счёт обжатия резинового кольца.
Уклоны внутренней канализации обычно не рассчитывают, а назначают конструктивно так:
- для - 50 мм уклон 0,035;
- для - 100 мм уклон 0,02.
Условные обозначения канализационных трубопроводов см. в . Полный перечень условных обозначений см. в ГОСТ 6942-98 "Трубы чугунные канализационные и фасонные части к ним" (введён с 1 января 1999 г.).
Соединительные фасонные детали
Как уже было сказано, канализационные трубы соединяют между собой с помощью раструбов этих же труб (см. рис. 11). Однако обойтись одними раструбами труб невозможно, поэтому для переходов с меньшего диаметра на больший, поворотов и боковых присоединений применяют соединительные фасонные детали по ГОСТ 6942-98 "Трубы чугунные канализационные и фасонные части к ним" (введён с 1 января 1999 г.):
-патрубки переходные (для перехода с меньшего на больший диаметр);
- колена (для поворота трубопроводов на 90°);
- отводы (для поворота трубопроводов на 135°);
- тройники прямые (для стояков);
- тройники косые (преимущественно для горизонтальных участков);
- крестовины прямые (для стояков);
- крестовины косые (преимущественно для горизонтальных участков).
Условные обозначения соединительных фасонных деталей для канализации см. Полный перечень условных обозначений см. в ГОСТ 6942-98 "Трубы чугунные канализационные и фасонные части к ним" (введён с 1 января 1999 г.).
Устройства для прочистки сети
Для прочистки канализационных сетей от засоров применяют следующие фасонные детали:
- ревизии (на стояках);
- прочистки из косых тройников или отводов с пробками-заглушками (на горизонтальных участках) или прямых тройников с пробками-заглушками (на вертикальных участках), а также по ГОСТ 6942-98 "Трубы чугунные канализационные и фасонные части к ним" (введён с 1 января 1999 г.).
Ревизия - это раструбная труба, на боковой поверхности которой имеется съёмный фланец с резиновой прокладкой, прикреплённый к трубе четырьмя или двумя болтами (рис. 12).

Рис. 12
Ревизии устанавливаются на стояках в соответствии с требованиями СНиП 2.04.01-85:
- на верхнем и нижнем этажах;
- в жилых зданиях высотой 5 этажей и более - не реже чем через три этажа.
Прочистки устанавливают на горизонтальных участках (вернее, почти горизонтальных, так как они прокладываются с уклоном) с шагом по СНиП 2.04.01-85 не более 8-10 метров.
БЫТОВАЯ КАНАЛИЗАЦИЯ К1
Бытовая канализация К1 предназначена для отведения сточных вод от санузлов, ванн, кухонь, душевых, общественных уборных, мусорокамер и т.д. Это основная канализация зданий. Старое название её "хозяйственно-фекальная" канализация.
Элементы К1
Элементы бытовой канализации К1 рассмотрим на примере двухэтажного здания с подвалом (рис. 13).

Рис. 13
Вот основные элементы К1 по ходу движения сточных вод:
1 - санитарно-технический прибор;
2 - сифон (гидравлический затвор);
3 - отводящий поэтажный трубопровод;
4 - канализационный стояк;
5 - отводящая сеть в подвале;
6 - выпуск канализации.
Отметим некоторые детали. Под сифоном показано колено. Оно применяется на невысоких стояках (не более 1 этажа). Отводящий поэтажный трубопровод 3 проложен с уклоном и присоединён с помощью прямого тройника к стояку 4. На стояке установлены ревизии.
Верх стояка выведен выше кровли в атмосферу на высоту z - это вентиляция канализационного стояка. Она необходима для проветривания внутренности канализации, а также от появления избыточного давления или, наоборот, вакуума в канализации. Вакуум может появиться при неисправной вентиляции стояка во время слива воды с верхнего этажа, что приведёт в срыву сифона, то есть вода из сифона нижнего этажа уйдёт и появится запах в помещении.
Высоту стояка над кровлей принимают по СНиП 2.04.01-85 не менее величин:
z = 0,3 м - для плоских неэксплуатируемых кровель;
z = 0,5 м - для скатных кровель;
z = 3 м - для эксплуатируемых кровель.
Канализационный стояк можно устраивать без вентиляции, то есть не выводить над кровлей, если его высота Hст не превышает 90 внутренних диаметров трубы стояка.
В последнее время в продаже появились вакуумные клапаны для канализационных стояков, постановка которых в уровне верхнего этажа избавляет от устройства вентиляционного вывода стояка над кровлей здания.
В основании стояка установлены два отвода, так как стояк крайний на сети в подвале. Если стояк сверху попадает на трубу сети, то применяют косой тройник и отвод. Применять прямой тройник в подвале нельзя, так как ухудшается гидравлика стока и возникают засоры.
В конце отводящей сети 5 перед наружной стеной собрана прочистка из прямого тройника с пробкой-заглушкой. Считая от этой прочистки, длина выпуска канализации L не должна быть более 12 метров при диаметре трубы - 100 мм, согласно СНиП 2.04.01-85. С другой стороны, расстояние от смотрового колодца дворовой канализации до стены здания не должно быть менее 3 метров. Поэтому расстояние от дома до колодца обычно принимают 3-5 метров.
Глубина заложения выпуска канализации от поверхности земли до лотка (низа трубы) у наружной стены принимается равной глубине промерзания в данной местности, уменьшенной на величину 0,3 метра (учитывается влияние здания на незамерзание грунта рядом с домом).
ДОЖДЕВАЯ КАНАЛИЗАЦИЯ К2
Дождевая канализация К2 предназначена для отведения атмосферных (дождевых и талых) вод с кровель зданий по внутренним водостокам. Поэтому второе название К2 - внутренние водостоки.
Способов отведения атмосферных (дождевых и талых) вод с кровель зданий три:
1) Неорганизованный способ. Применяется для одно- и двухэтажных зданий. Вода просто стекает с карниза здания, для чего вынос карниза от вертикальной поверхности наружной стены должен быть не менее 0,6 метра.
2) Организованный способ по наружным водостокам (это не К2). Применяется для 3-5 этажных зданий. Вдоль карниза здания устраивается желоб, который направляет стекающие атмосферные воды в водосточным воронкам. Далее вода стекает вниз по наружным водосточным стоякам и выходит через выпуски на отмостку здания, которую обычко укрепляют бетонированием от размывания.
3) Организованный способ по внутренним водостокам - это дождевая канализация К2). Применяется для жилых зданий более 5 этажей, а также для зданий любой этажности с широкой кровлей (более 48 метров) или многопролётных зданий (обычно это промздания).
Элементы К2
Элементы дождевой канализации К2 рассмотрим на примере двухэтажного здания с подвалом (рис. 14).

Рис. 14
1 - водосточная воронка. Здесь воказана воронка колпакового типа, для неэксплуатируемых кровель. Плоские коронки устраиваются для эксплуатируемых кровель. Условные обозначения см. в . Марка воронки подбирается по её пропускной способности, которая рассчитывается по методике СНиП 2.04.01-85 .
2 - водосточный стояк. Прокладывается в лестничных клетках и коридорах.
3 - ревизия.
4 - сифон (гидравлический затвор). Он предохраняет от образования ледяной пробки на выпуске К2 в весенний период.
5 - открытый выпуск К2. Устраивается при отсутствии наружной водосточной сети К2. Рекомендуется устраивать с южной стороны здания. При наличии наружной водосточной сети К2 выпуск дождевой канализации устраивают как в К1 (см. выше).
ПРОИЗВОДСТВЕННАЯ КАНАЛИЗАЦИЯ К3
Производственная канализация К3 предназначена для отведения технологических сточных вод из промзданий. Отличительной особенностью К3 от К1 и К2 является наличие дополнительных сооружений (местных очистных сооружений, насосных станций перекачки и т.д.).
Классификация производственной канализации К3 по составу сточных вод изображена на рис. 15.

Рис. 15
К3 - это общее обозначение любой производственной канализации.
К4 - системы с механически загрязнёнными сточными водами.
К5 - системы с илосодержащими сточными водами.
К6 - системы с шламосодержащими сточными водами.
К7 - системы с простоками, содержащими химические загрязнения.
К8 - системы с кислыми сточными водами.
К9 - системы со щелочными сточными водами.
Элементы К3
Элементы производственной канализации К3 рассмотрим на примере одноэтажного промздания, у которого с пола в напольный трап (воронку) стекают механически загрязнённые производственные сточные воды. Тогда система К3 конкретизируется системой К4. Элементы К3:
1 - приёмник сточных вод (в данном случае трап).
2 - отводящая внутренняя канализационная сеть.
3 - местное очистное сооружение (песколовка, жироловка, нефтеловушка и т.д.).
4 - насосная станция перекачки.
5 - выпуск канализации К3 в городскую канализационную сеть.
МУСОРОПРОВОДЫ ЗДАНИЙ
Мусоропроводы в зданиях устраивают для обеспечения удобства удаления мусора по трубопроводу в контейнеры, находящиеся в мусорокамерах, откуда мусор периодически вывозят. Специального СНиПа на мусоропроводы нет. Их проектируют на основе накопленного опыта (типовые проекты). Они связаны с системами водопровода и канализации зданий, особенно в помещениях мусорокамер.

Элементы мусоропроводов
Элементы мусоропроводов рассмотрим на примере многоэтажного жилого дома. Эти элементы могут быть следующие:
1 - стояк мусоропровода собирают из стальных или бетонных труб диаметром 400-500 мм. На каждом этаже или междуэтажной площадке на стояке устанавливают приёмные клапаны.
2 - над кровлей стояк выводят на высоту около 1 метра и снабжают дефлектором для усиления вентиляции мусоропровода.
3 - внизу находится помещение мусорокамеры с отдельным входом. Здесь стояк имеет плоскую шибер-задвижку
4 - под стояком в мусорокамере установлен контейнер для сбора и вывоза мусора.
5 - в помещение мусорокамеры подводят холодную В1 и горячую Т3 воду к смесителю (поливочному крану), а в полу устраивают трап диаметром 100 мм с подсоединением к бытовой канализации К1
6 - под потолком мусорокамеры устанавливают спринклер (если здание имеет 10 и более этажей) для автоматического тушения пожара орошаемой водой.
Элементы инженерных сетей 5 и 6 в мусорокамере устраивают в соответствии с требованиями СНиП 2.04.01-85.
МОНТАЖ, ИСПЫТАНИЕ И ЭКСПЛУАТАЦИЯ ВНУТРЕННЕЙ КАНАЛИЗАЦИИ
МОНТАЖ ВНУТРЕННЕЙ КАНАЛИЗАЦИИ
Работы по монтажу внутренней канализации зданий обычно выполняются специализированными монтажными организациями, которые являются субподрядными организациями по отношению к чисто строительным организациям (генподрядчикам), например, какая-либо монтажная фирма по отношению к строительному тресту.
Монтаж проводят руководствуясь положениями СНиП 3.05.01-85 «Внутренние санитарно-технические системы». Перед началом монтажа, до того как монтажники придут на строительный объект, строители должны сделать:
1) выполнить основные строительные работы, то есть возвести фундаменты, стены, перекрытия, покрытия, перегородки и т.д., но до отделочных работ;
2) пробить все монтажные отверстия в стенах, перекрытиях и перегородках для пропуска трубопроводов и оборудования;
3) установить монтажные закладные детали в стенах, перекрытиях и перегородках для крепления трубопроводов и оборудования;
4) прокопать траншеи выпусков канализации;
5) прочертить по стенам отметки 0,5 метра выше уровня пола, так как самого уровня пола пока нет.
Монтажная организация выполняет следующие работы:
- монтажное проектирование (составление эскизов и чертежей заготовок по рабочим чертежам и натурным обмерам);
- заготовительные работы;
- собственно монтаж на объекте (он выполняется всегда по способу "снизу - вверх").
Методы монтажа:
1. Россыпью. То есть сборка канализации по месту. Такой метод применяется при строительстве здания по индивидуальному проекту.
2. Блоками. Выполняется для зданий по типовым проектам.
3. Санитарно-техническими кабинами. Применяется в крупно-панельном домостроении. Основные трубопроводы и фасонные детали установлены в кабине на заводе, а в условиях стройки кабины нужно лишь тщательно стыковать по осям.
Как только монтаж канализации закончен наступает следующая стадия: испытание.
ИСПЫТАНИЕ ВНУТРЕННЕЙ КАНАЛИЗАЦИИ
Испытание смонтированной системы внутренней канализации проводится в присутствии комиссии в составе представителей:
а) заказчика;
б) генподрядчика (строительной организации);
в) субподрядчика (монтажной организации).
Проверяются следующие показатели системы:
1) Сток от приборов.
2) Система должна соответствовать проекту по размерам, высотным отметкам, диаметрам труб, их материалу.
4) Не должно быть каких-либо утечек и подтеканий на трубопроводах.
Испытание бытовой канализации К1 проводится способом пролива воды из 75% водоразборных приборов в здании. Система должна обеспечивать нормальный сток. Если система успешно выдержала испытание, то окончательно составляется акт испытания внутренней канализации по форме приложения 4 СНиПа 3.05.01-85, который подписывается представителями вышеупомянутой комиссии.
Испытание дождевой канализации К2 проводится способом заполнения водосточного стояка водой до отметки кровли. В течение 10 минут стояк не должен протечь в местах его установки (лестничные клетки, коридоры).
Испытание производственной канализации К3 проводится способом пролива воды из 75% водоразборных приборов в промздании. Кроме того проверяют эффективность работы очистных сооружений и насосов станций перекачки.
После испытания система внутренней канализации готова к передаче на её эксплуатацию.
ЭКСПЛУАТАЦИЯ ВНУТРЕННЕЙ КАНАЛИЗАЦИИ
Экслуатация внутренней канализации находится в ведении ПЖРЭУ (производственных жилищно-ремонтно-эксплуатационных участков) или в ведении отдела главного энергетика или механика предприятий это зависит от принадлежности здания (муниципальное или ведомственное) и от типа системы (К1, К2, К3).
Выполняемые работы следующие:
- текущие ремонты по заявкам жильцов (чаще всего прочистка засорившихся труб с помощью гибких стальных тросов длиной 3-10 метров);
- капитальные ремонты с заменой трубопроводов.

Глава 3
Водоснабжение: наружные сети и сооружения
Водоснабжение городов, населенных пунктов и промплощадок устраивают в нашей стране по требованиям следующих нормативных документов:
1) Строительные нормы и правила. СНиП 2.04.02-84 (с изм.). Водоснабжение. Наружные сети и сооружения.
2) Санитарные правила и нормы. СанПиН 2.1.4.559-96. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.
Водоснабжение в данном курсе рассмотрено в основном на примере г. Омска.
Системы водоснабжения и их показатели
Системы наружного водоснабжения могут быть объединёнными (В1+В2+В3), то есть подающими воду питьевого качества и одновременно на пожаротушение, и на производственные нужды. Такие системы применяются в городах. Промплощадки могут брать воду не питьевого качества там, где оно не требуется по технологии производства. Водопроводы предприятий обычно тоже обьединённые В3+В2. Однако основные городские водопроводы несут воду питьевого качества: В1+В2+В3.
В частности, в Омске ежесуточное водопотребление может достигать около 600 тысяч кубометров, из которых половину забирают жители, а примерно другую половину объёма воды потребляют предприятия.
Показатели городских водопроводов делятся на количественные и качественные.
Количественными показателями водопроводов, как гидравлических систем, являются расходы и напоры. Например, для такого крупного города как Омск норма расхода холодной и горячей воды на жителя составляет около 300 л/сут. В одноэтажной неблагоустроенной застройке при водоразборе из колонок водопотребление жителя уменьшается до 30-50 л/сут. Напор в сети наружного водопровода (считая от оси трубы) должен находится в пределах 10 < H < 60 метров водяного столба.
Показатели качества питьевой воды:
а) физические:
- мутность;
- цветность;
- запах;
- вкус;
б) химические:
- общее солесодержание пресной воды не более 1 г/л (вода в Иртыше в районе Омска имеет среднее солесодержание около 300 мг/л, то есть достаточно добротная);
- предельно допустимые концентрации (ПДК) химических элементов в воде;
в) бактериологические:
количество бактерий в одном литре воды. Некоторые бактерии могут содержаться в воде в небольших количествах, но некоторые не допускаются даже в количестве одной в литре воды. Всё это подробно оговорено в СанПиН 2.1.4.559-96 «Питьевая вода».
Знакомство с показателями по наружному водопроводу полезно для дальнейшего рассмотрения элементов схем наружных водопроводов городов.
Элементы схем водоснабжения
Элементы схемы наружного водоснабжения рассмотрим на примере города Омска (рис. 16).

Рис. 16
Элементы наружного водоснабжения:
1 - источник водоснабжения;
2 - водозабор;
3 - водоводы;
4 - станция водоподготовки; 5 - городская водопроводная сеть с сооружениями.
Источники водоснабжения
Источник водоснабжения может быть поверхностный или подземный. Доля поверхностных источников (рек, озёр, водохранилищ, каналов) составляет около 70%, а доля подземных (грунтовых и напорных артезианских вод) - около 30%. Источником водоснабжения г. Омска является река Иртыш.
Водозаборные сооружения
Водозаборное сооружение захватывает воду из источника водоснабжения, поэтому водозаборы могут быть соответственно поверхностными (береговыми, русловыми, ковшовыми) или подземными (скважины, колодцы). Смешанными являются лучевые подрусловые водозаборы, которые выполняют из горизонтальных скважин, пробуривая их в подрусловые аллювиальные отложения. Вместе с водозабором обычно совмещают насосную станцию I подъёма, которая перекачивает необработанную воду к станции водоподготовки.
Водоводы
Водоводы это напорные трубопроводы значительного поперечного сечения. Их количество должно быть не менее двух (в две нитки). по водоводам вода перекачивается к городской станции водоподготовки.
Станции водоподготовки: процессы и сооружения
Процессы
Сооружения

Отстаивание воды.
В воде содержаться песчинки, иловые частицы. Поэтому их необходимо извлечь с помощью отстаивания. Вода должна не стоять, а медленно течь, примерно со скоростью 1 см/с, то есть в ламинарном режиме. Загрязнения выпадают в осадок, происходит первичная очистка воды.
Отстойники.
Это проточные сооружения, где вода движется медленно, примерно со скоростью 1 см/с, то есть в ламинарном режиме. Поэтому загрязнения выпадают в осадок, происходит первичная очистка воды. Отстойники строят из железобетона.

Фильтрование воды.
Производится для окончательной очистки воды от механических загрязнений, которые невозможно извлечь отстаиванием. Для эффективной и быстрой очистки воды фильтрованием через пористую загрузку (песок, керамзит), вначале воду обрабатывают химическими реагентами для образования хлопьев из взвесей в воде.
Скорые фильтры.
Вначале вода обрабатывается химическими реагентами, например сернокислым алюминием Al2(SO4)3. Тогда тонкие взвеси в воде коагулируются в хлопья и после этого эффективно осаждаются на фильтрующей загрузке. Это и есть технология работы скорых фильтров с крупной загрузкой, например из керамзитовой крошки.


Обеззараживание воды.
В воде содержаться бактерии, в том числе болезнетворные. Обеззараживание воды производят чаще всего хлорированием. Известны также способы озонирования воды и обработкой ультрафиолетом.
Сооружения по обеззараживанию воды.
При хлорировании воды сооружениями являются хлораторные, при озонировании применяют озонаторы (электрические разрядники), а лампы ультрафиолета применяют для прозрачных вод, обычно подземных.

Станция водоподготовки это целая промплощадка по приготовлению питьевой воды для города. На сооружениях станции водоподготовки происходят процессы по приготовлению воды питьевого качества, что показано в сравнении ниже.
Наружные сети водопровода
и сооружения на них
Водопроводная сеть прокладывается по городу с кольцеванием магистралей вокруг основных районов, микрорайонов и промплощадок (см. рис. 16 ). Глубину заложения труб водопровода принимают равной нормативной глубине промерзания в данной местности плюс запас 0,5 метра. Трубы небольшого диаметра 100-200 мм монтируют из стали с антикоррозионным покрытием или из чугуна. Трубы большего диаметра прокладывают из железобетона.
Сооружения на городском водопроводе:
- смотровые колодцы с задвижками и пожарными гидрантами (около зданий), шаг колодцев 100-150 метров;
- насосные станции подкачки (районные и местные) для компенсации потерь напора на водопроводе, а гарантированный напор должен поддерживаться в пределах
10 < H < 60 м водяного столба.
Особенности водоснабжения промпредприятий
Промпредприятия снабжаются водой по следующим схемам:
1) Прямоточная схема.
2) Схема с повторным использованием воды.
3) Схема оборотного водоснабжения.

Глава 4
Канализация: наружные сети и сооружения
Канализация - это система подземных трубопроводов, самотёком удаляющая сточные воды за пределы территории, с последующей их очисткой и сбросом в водоём. В условиях плоского равнинного рельефа (как в Омске) дополнительно сооружают насосные станции перекачки и напорные коллекторы-трубопроводы. Состав остаточных загрязнений в очищенных сточных водах при сбросе в водоём не должен превышать предельно-допустимых концентраций (ПДК).
Городскую канализацию обычно устраивают двух типов:
1) К1+К3, то есть объединённую, предназначенную для транспортировки бытовых (хозяйственно-фекальных) и промышленных стоков за черту города на очистные сооружения.
2) К2, то есть дождевую (ливневую), районные коллекторы которой сбрасывают условно-чистые стоки в водоём в черте города, а при необходимости строят дополнительные очистные сооружения, в основном механической очистки.
Канализацию городов, населенных пунктов и промплощадок устраивают в нашей стране по требованиям строительных норм и правил:
СНиП 2.04.03-85 (с изм.). Канализация. Наружные сети и сооружения.
Канализация в данном курсе рассмотрена в основном на примере г. Омска.
Элементы городской канализации
Элементы схемы городской канализации рассмотрим на примере Омска (рис. 17).

Рис. 17
Элементы городской канализации:
1 дворовые и внутриквартальные канализационные сети (не показаны на карте-схеме);
2 уличные коллекторы (не показаны на карте-схеме);
3 районные коллекторы с насосными станциями перекачки;
4 городской (главный) коллектор с насосными станциями перекачки;
5 дюкеры с насосными станциями перекачки;
6 главная канализационная насосная станция перекачки;
7 загородный напорный трубопровод;
8 очистные сооружения канализации;
9 выпуск в водоём.
Канализационные сети и сооружения на них
Наружные сети канализации проектируют согласно требованиям СНиП 2.04.03-85 «Канализация: наружные сети и сооружения».
Канализационные сети города устраивают по иерархическому принципу: мелкие сети подсоединяют к сетям более крупного диаметра (коллекторам). При этом прокладку канализационных сетей по возможности стараются устраивать так, чтобы трубы работали самотёком, используя рельеф местности. Это становится проблематично в условия равнинного, плоского рельефа, как например в Омске. Тогда дополнительно строят канализационные насосные станции перекачки.
Иерархия городских канализационных сетей следующая:
- дворовые и внутриквартальные сети диаметром - 150-200 мм, которые строят на территории застройки в пределах красных линий, то есть не выходя на территорию улиц:
- уличные коллекторы диаметром - 250-400 мм, которые строят, наоборот, за красными линиями застройки, то есть по территории улиц (могут иметь насосные станции перекачки);
- районные коллекторы диаметром - 500-1000 мм, которые строят для района канализования (могут иметь насосные станции перекачки);
- городской коллектор диаметром - 1000-5000 мм, который строят вдоль города по наиболее пониженной его части (имеет насосные станции перекачки).
На канализационных сетях сооружают смотровые колодцы из железобетонных колец диаметром 1 метр (глубиной до 6 метров) и 1,5 метра (глубиной до 6 метров). Шаг колодцев принимают по СНиП 2.04.03-85. Например, для дворовых канализационных сетей диаметром - 150-200 мм шаг между соседними колодцами должен быть не более:
- 35 метров при - 150 мм;
- 50 метров при - 150 мм.
Для перехода сточных вод через реки устраивают дюкеры - трубы под дном водоёма на глубине не менее 0,5 метров до шелыги (верха трубы).
На окраине города, куда сточные воды поступают по городскому канализационному коллектору, находится главная насосная станция перекачки, которая по напорному загородному коллектору перекачивает стоки на очистные сооружения канализации (см. рис. 17).
Очистные сооружения канализации
Очистные сооружения канализации проектируют согласно требованиям СНиП 2.04.03-85 «Канализация: наружные сети и сооружения».
Они должны находиться за чертой города и ниже по течению реки.
Очистные сооружения канализации - это целая промплощадка, которая должна так очистить сточные воды после города, чтобы остаточные загрязнения в очищенных сточных водах при сбросе в водоём не превышал предельно-допустимые концентрации (ПДК).
Технологии очистки сточных вод зависят от состава загрязнений. После города на очистные сооружения поступают бытовые (хозяйственно-фекальные) и промышленные стоки К1+К3, поятому применяют следующие виды (ступени) очистки сточных вод:
1) Механическая очистка. С помошью решеток, песколовок и первичных отстойников сточные воды очищаются примерно на 30%.
2) Биологическая очистка. Это основная технология очистки канализационных стоков. Для крупных городов чаще всего применяют аэротенки - проточные сооружения, где сточные воды аэрируются вдувом воздуха от компрессорных станций. Сюда же подают активный ил - смесь микроорганизмов и простейших животных типа амёб, инфузорий, рачков, улиток, которые в присутствии кислорода воздуха интенсивно очищают сточные воды, окисляя органические загрязнения (аэробный процесс). Окисленные органические загрязнения затем выпадают в осадок на вторичных отстойниках. После сооружений биологической очистки сточные воды очищаются примерно на 95%, то есть остаточных загрязнений остаётся около 5% (бактериальные загрязнения).
3) Сооружения по обеззараживанию сточных вод. Применяют хлорирование. Очистка считается выполненной на 100%.
Рассмотрим некоторые сооружения по обработке осадка. После сооружений механической и биологической очистки остаётся сырой осадок, представляющий опасность для окружающей среды, поэтому его обрабатывают на сооружениях: метантенках, биологических фильтрах, септиках.
Метантенки применяют для крупных городов. Это подземные железобетонные резервуары диаметром до - 20-30 м глубиной до 15 метров. В них примерно на месяц для сбраживания загружают сырой осадок очистных сооружений. Процесс сбраживания осадка происходит без доступа воздуха (анаэробный процесс) и выделяется газ метан, почему сооружение и называется метантенк. Метан является попутным газом, который, например, сжигают и полученным теплом обогревают сам метантенк, что ускоряет процесс брожения осадка. Примерно через месяц осадок перегнивает и становится безопасным. Его обезвоживают и сушат. Если осадок не содержал токсических загрязнений, то его можно использовать как ценное органическое удобрение в сельском хозяйстве.
Дождевая канализация городов
Дождевую канализацию К2 городов проектируют согласно требованиям СНиП 2.04.03-85 «Канализация: наружные сети и сооружения». Её старое название: ливневая канализация, ливнёвка.
Дождевая канализация К2 собирает на территории города дождевые и талые поверхностные воды, отводит самотёком их по сети К2 и через свои районные коллекторы сбрасывает условно-чистые стоки в водоём в черте города, При необходимости строят дополнительные очистные сооружения, в основном механической очистки, а в условиях плоского, равнинного рельефа устраивают насосные станции перекачки.
Элементы наружной дождевой канализации:
1 - дождеприёмники-решетки, устраиваются вдоль дорог с шагом через 50-80 метров;
2 - отводящий подземный трубопровод диаметром не менее - 200 мм;
3 - уличные коллекторы диаметром - 400-1000 мм;
4 - районные коллекторы диаметром - 1000-2500 мм.
С территорий промпредприятий стоки К2 очищают, в основном на сооружениях механического типа.
Дренаж для понижения уровня подземных вод
Дренаж это инженерная система из дрен (труб с отверстиями), фильтрующих обсыпок, слоёв и других элементов, предназначенная для понижения УПВ не менее нормы осушения или не менее 0,5 метра ниже пола подвала, основания сооружения со сбросом дренажных вод:
в дождевую канализацию К2 ;
близлежащий водоём или водоток;
нижележащий подземный пласт.
Дренаж чаще всего связан с дождевой канализацией К2, но в отличие от неё отводит не поверхностные, а подземные воды.
Перечислим основные элементы дренажа:
1) водоприёмное устройство (дрена, скважина);
2) фильтрующие обсыпки и слои (защита от заиления);
3) смотровые колодцы (для удобства обслуживания и ремонта);
4) водоотводящая труба (дренажный коллектор);
5) насосная станция перекачки дренажных вод (не всегда);
6) труба-выпуск дренажных вод (в К2, водоём или пласт).

Рис. 18. Элементы дренажа (на примере кольцевого дренажа)
Элементы дренажа рассмотрим на примере кольцевого дренажа (рис. 17). Он защищает от подтопления грунтовыми водами подвал дома. Дрены 1 уложены вокруг здания на такой глубине, чтобы кривая депрессии УГВ находилась относительно пола подвала как минимум на 0,5 метра ниже. Дрены обсыпаны слоями щебня (в непосредственной близости) и песка (между щебнем и окружающим грунтом) для защиты внутреннего пространства дрен от заиления частицами грунта. Грунтовая вода проходит фильтрующую обсыпку 2 и, довольно чистая, попадает в дрену 1 через водоприёмные отверстия или щели-пропилы. Подземная вода, попавшая внутрь дрены, называется дренажным стоком, который самотёком отводится дренами и через один из смотровых колодцев 3 поступает по дренажному коллектору 4 в резервуар насосной станции перекачки 5. Оттуда дренажные воды время от времени насосом перека- чиваются в коллектор дождевой канализации К2. Элемент 5 не всегда нужен.
Дренажи для промышленного и гражданского строительства рассмотрены в другом курсе: «Защита от подтопления в городском строительстве» (Автор: Сологаев В.И., СибАДИ, Омск, 2000 г.). Нормативным документом является СНиП 2.06.15-85 «Инженерная защита территории от затопления и подтопления».
Глава 5.
Основы гидравлики
5.1 Общие сведения о жидкости
Чтобы представить и правильно понять характер поведения жидкости в различных условиях необходимо обратиться к некоторым представлениям классической физики о жидкости как физическом теле. Не ставя перед собой цель детального и всестороннего описания жидких тел, что подробно рассматривается в классическом курсе физики, напомним лишь некоторые положения, которые могут пригодиться при изучении гидравлики как самостоятельной дисциплины.
Так, согласно молекулярно-кинетической теории строения вещества все физические тела в природе (независимо от их размеров) находятся в постоянном взаимодействии между собой. Степень (интенсивность) взаимодействия зависит от масс этих тел и от расстояния между телами. Количественной мерой взаимодействия тел является сила, которая пропорциональна массе тел и всегда будет убывать при увеличении расстояния между телами. В зависимости от размеров тел (элементарные частицы, атомы и молекулы, макротела) характер взаимодействия будет различным. Согласно классическим представлениям физики можно выделить четыре вида взаимодействия тел. Каждый вид взаимодействия обусловлен наличием своего переносчика взаимодействия. Два вида взаимодействия относятся к типу дальнодействующих и повседневно наблюдаются человеком: гравитационное и электромагнитное. При электромагнитном взаимодействии происходит процесс излучения и поглощения фотонов. Именно этот процесс порождает электромагнитные силы, под действием которых протекают практически все процессы в природе, которые мы наблюдаем. Характерной особенностью этого (электромагнитного) взаимодействия является то, что его проявление зависит от многих внешних условий, которые приводят к различным наблюдаемым результатам. Так имея одну и туже природу взаимодействия (электромагнитную) мы изучаем, на первый взгляд, совершенно разные физические процессы: движение жидкости, трение, упругость, передачу тепла, движение зарядов в электрическом поле и т.д. И, как следствие, дифференциальные уравнения, описывающие эти процессы, одинаковые.
Согласно молекулярно-кинетической теории строения вещества молекулы находятся в равновесии и, как материальные объекты постоянно взаимодействуют друг с другом. Такое равновесие нельзя считать абсолютным, т.к. молекулы находятся в состоянии хаотического движения (колебания) вокруг центра своего равновесия. Расстояния между молекулами вещества будет зависеть от величин сил действующих на молекулы. Независимо от природы действующих сил их можно сгруппировать на силы притяжения и силы отталкивания.
Условие равновесия этих сил определяет оптимальные расстояния между молекулами. Однако, в связи с тем, что такое равновесие между действующими силами является динамическим равновесием, молекулы находятся в постоянном колебательном движении относительно друг друга, испытывая при этом действие некоторой равнодействующей силы порождаемой силами притяжения и отталкивания. Поэтому особенности состояния вещества будут зависеть от соотношения между кинетической энергией колебательного движения молекул вещества и энергией взаимодействия между молекулами вещества. Так при больших массах молекул энергия взаимодействия между молекулами многократно превышает кинетическую энергию колебательного движения вещества, вследствие чего молекулы вещества занимают устойчивое положение относительно друг друга, обеспечивая тем самым постоянство формы и размеров макротела. Такие вещества, как известно, относятся к категории твёрдых тел. Противоположными особенностями характеризуются вещества, состоящие из «лёгких» молекул (молекул обладающих малой массой). Такие вещества обладают кинетической энергией колебательного движения молекул вещества превышающей многократно энергию взаимодействия между молекулами, из которых вещество состоит. По этой причине молекулы такого вещества имеют очень слабую связь между собой и легко перемещаются в пространстве на любые расстояния. Такое свойство вещества носит название диффузии (летучести). Вещества, обладающие эти свойством, относятся к категории газов. В тех случаях, когда энергия взаимодействия имеет тот же порядок, что и величина кинетической энергии колебательного движения молекул, последние обладают свойством относительной подвижности, но, при этом, сохраняют целостность самого макротела. Такое тело обладает способностью легко деформироваться при минимальных касательных напряжениях, т. е. такое тело обладает текучестью. На самом деле колебательный процесс среди молекул жидких тел достаточно сложен, и с целью простого описания данного процесса можно нарисовать упрощенную картину взаимодействия молекул жидкости. Так в отличие от молекул в твёрдых телах, при колебательном процессе в жидкости центры взаимодействия молекул могут смещаться в пространстве на столько, на сколько это допускают расстояния между молекулами (до величины 1x10 " см). Смещение центра равновесия сил в пространстве называется релаксацией. Время, за которое происходит такое смещение, называется временем релаксации, t0. При этом смещение центра равновесия осуществляется не постепенно, а скачком. Таким образом, время релаксации характеризует продолжительность «оседлой жизни» молекул жидкости. Если на жидкость будет действовать некоторая сила F, то при совпадении линии действия этой силы с направлением скачка, жидкость начнёт перемещаться. При этом необходимо выполнение дополнительного условия: продолжительность действия силы должна быть больше длительности времени релаксации t0, т.к. в противном случае жидкость не успеет начать своё движение, и будет испытывать упругое сжатие подобно твёрдому телу. Тогда процесс движения жидкости будет характеризовать свойство текучести присущее практически только жидким телам. Тела с такими свойствами относятся к категории жидких тел.
При этом следует отметить, что чётких и жёстких границ между твёрдыми, жидкими и газообразными телами нет. Имеется большая группа тел занимающих промежуточное положение между твёрдыми телами и жидкостями и между жидкостями и газами. Вообще говорить о состоянии вещества можно только при вполне определённых внешних условиях. В качестве стандартных условий приняты условия при температуре 20 °С и атмосферном давлении. Стандартные (нормальные) условия вполне соотносятся с понятием благоприятных внешних условий для существования человека. Понятие о состоянии вещества необходимо дополнить. Так при увеличении кинетической энергии молекул вещества (нагрев вещества) твёрдые тела могут перейти в жидкое состояние (плавление твёрдого тела) и твёрдые тела приобретут при этом некоторые свойства жидкостей. Подобно этому увеличение кинетической энергии молекул жидкого вещества может привести жидкость в газообразное состояние (парообразование) и при этом жидкость будет иметь свойства соответствующие газам. Аналогичным способом можно превратить расплавленное твёрдое тело в пар, если в большей степени увеличить кинетическую энергию колебательного движения молекул первоначально твёрдого вещества. Уменьшение кинетической энергии молекул (охлаждение вещества) приведёт процесс в обратном направлении. Газ может быть превращён в жидкое, а, затем и в твёрдое состояние
Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонентов, которые могут образовывать с жидкостью различные смеси как гомогенные (растворы) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам.
Идеальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств и, кроме того, характеризуется абсолютной несжимаемостью, абсолютной текучестью (отсутствие сил внутреннего трения), отсутствием процессов теплопроводности и теплопереноса.
Реальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств, но в отличие от идеальной модели, обладает внутренним трением при движении.
Идеальный газ - модель, характеризующаяся изотропностью всех физических свойств и абсолютной сжимаемостью.
Реальный газ - модель, при которой на сжимаемость газа при условиях близких к нормальным условиям существенно влияют силы взаимодействия между молекулами.
При изучении движения жидкостей и газов теоретическая гидравлика (гидромеханика) широко пользуется представлением о жидкости как о сплошной среде. Такое допущение вполне оправдано, если учесть, что размеры пространства занимаемого жидкостью, во много раз превосходят межмолекулярные расстояния (исключением можно считать лишь разряженный газ). При изучении движения жидкостей и газов последние часто рассматриваются как жидкости с присущими им некоторыми особыми свойствами. Всвязи с этим принято различать две категории жидкостей: капельные жидкости (практически несжимаемые тела, или собственно жидкости) и сжимаемые жидкости (газы).
5.2. Основные физические свойства жидкостей
Плотность и удельный вес. К основным физическим свойствам жидкостей следует отнести те её свойства, которые определяют особенности поведения жидкости при её движении. Такими являются свойства, характеризующие концентрацию жидкости в пространстве, свойства, определяющие процессы деформации жидкости, определяющие величину внутреннего трения в жидкости при её движении, поверхностные эффекты.
Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является плотность жидкости. Под плотностью жидкости понимается масса единицы объёма жидкости:

где: М - масса жидкости,
W - объём, занимаемый жидкостью.
В международной системе единиц СИ масса вещества измеряется в кг, объём жидкого тела в м 3 , тогда размерность плотности жидкости в системе единиц СИ - кг/м 3. В системе единиц СГС плотность жидкости измеряется в г/см 3.
Величины плотности реальных капельных жидкостей в стандартных условиях изменяются в системе единиц СИ в широких пределах от 700 кг/м 3 до 1800 кг/м 3, а плотность ртути достигает 13550 кг/м , плотность чистой воды составляет 998 кг/м 3. В системе единиц СГС пределы изменения плотности жидкости от 0,7 г/см до 1,8 г/см 3, плотность чистой воды 0,998 г/см . Величины плотности газов меньше плотности капельных жидкостей приблизительно на три порядка, т.е. в системе единиц СИ плотности газов при атмосферном давлении и температуре О °С изменяются в пределах от 0,09 кг/м 3 до 3,74 кг/м , плотность воздуха составляет 1,293 кг/м 3.
Плотность капельных жидкостей при стандартных условиях, р кг/м 3
Плотность газов при атмосферном давлении и температуре 0 °С, р кг/м 3

Азотная кислота
1510
Азот
1,251

Анилин
1020
Аммиак
0,771

Ацетон
791
Аргон
1,783

Бензин
680-720
Ацетилен
1,173

Бензол
879
Водород
0,090

Бром
3120
Воздух
1,293

Вода, Н2О
998
Гелий
0,178

Вода тяжёлая, DaO
1109
Кислород
1,429

Глицерин
1260
Криптон
3,740

Морская вода
1010-1030
Неон
0,900

Нефть
760-995
Озон
2,139

Серная кислота
1830
Углекислота, СОа
1,977

Этиловый спирт
790
Хлор
3,220

Плотность капельных жидкостей и газов зависит от температуры и давления. Зависимость величины плотности жидкости и газа при температуре отличной от 20 °С определяется по формуле Д.И. Менделеева:

где: р и р20 - плотности жидкости (газа) при температурах соответственно
ГиГо=20°С,

·i - коэффициент температурного расширения.
Исключительными особенностями обладает вода, максимальная плотность которой отмечается при 4 °С
Плотность воды при различных температурах и атмосферном давлении

Т,°С
р кг/м
Т,°С
р кг/м
Т, °С
р кг/м

-10
998,15
10
999,73
200
869,00

-5
999,30
20
998,23
250
794,00

0
999,87
50
988,07
300
710,00

2
999,97
100
958,38
350
574,00

4
1000,00
150
917,30
374,15
307,00

Плотность капельных жидкостей в зависимости от давления может быть определена в соответствии с уравнением состояния упругой жидкости:
5
где: - плотность капельной жидкости при атмосферном давлении рат ,
- коэффициент объёмного сжатия капельной жидкости.
Плотность идеальных газов при давлениях отличных от атмосферного можно определить по известному закону газового состояния Менделеева-Клайперона:

давление,
удельный объём газа
универсальная газовая постоянная
температура газа
при
Кроме абсолютной величины плотности капельной жидкости, на практике пользуются и величиной её относительной плотности, которая представляет собой отношение величины абсолютной плотности жидкости к плотности чистой воды при температуре 4 °С: . Относительная плотность жидкости - величина безразмерная.
Имеется аналогичная характеристика и для газов. Под относительной плотностью газа (по воздуху) понимается отношение величины абсолютной плотности газа к плотности воздуха при стандартных условиях.
О плотности жидкости косвенно можно судить по весовому показателю, - удельному весу жидкости. Под удельным весом жидкости (газа) понимается вес единицы объёма жидкости (газа):

где: G вес жидкости (газа),
W объем, занимаемый жидкостью (газом).
Связь между плотностью и удельным весом жидкости такая же как и между массой тела и её весом:

Размерность удельного веса жидкости в системе единиц СИ н/м 3 , удельный вес чистой воды составляет 9810 н/м3. Аналогично вводится понятие об относительном удельном весе жидкости,
На практике величина плотности жидкости определяется с помощью простейшего прибора - ареометра. По глубине погружения прибора в жидкость судят о её плотности.
Упругость. Капельные жидкости относятся к категории плохо сжимаемых тел. Причины незначительных изменений объёма жидкости при увеличении давления очевидны, т.к. межмолекулярные расстояния в капельной жидкости малы и при деформации жидкости приходится преодолевать значительные силы отталкивания, действующие между молекулами, и даже испытывать влияние сил, действующих внутри атома. Тем не менее, сжимаемость жидкостей в 5 - 10 раз выше, чем сжимаемость твёрдых тел, т.е. можно считать, что все капельные жидкости обладают упругими свойствами.
Оценка упругих свойств жидкостей может осуществляться по ряду специальных параметров.
коэффициент объёмного сжатия жидкости представляет собой относительное изменение объёма жидкости при изменении давления на единицу. По существу это известный закон Гука для модели объёмного сжатия:

начальный объём жидкости, (при начальном давлении),
коэффициент объёмного (упругого) сжатия жидкости.
Считается, что коэффициент объёмного сжатия жидкости зависит с достаточно большой точностью только от свойств самой жидкости и не зависит от внешних условий. Коэффициент объёмного сжатия жидкости имеет размерность обратную размерности давления, т.е. м/н.
адиабатический модуль упругости жидкости К, зависящий от термодинамического состояния жидкости (величина обратная коэффициенту объёмного сжатия жидкости): ,

Величина модуля упругости жидкости имеет размерность напряжения, т.е. н/м. Об упругих свойствах капельной жидкости можно судить по скорости распространения продольных волн в жидкой среде, которая равна скорости звука в покоящейся жидкости:

С упругими свойствами капельных жидкостей также связаны представления о сопротивлении жидкостей растяжению. Теоретически в чистых жидкостях могут быть достигнуты довольно значительные напряжения. Однако, в реальных жидкостях при наличии в них даже весьма незначительных примесей (твёрдые частицы, газ) уменьшает величину сопротивления жидкости растяжению практически до 0. По этой причине можно считать, что в капельных жидкостях напряжения растяжению невозможны.
Об упругих свойствах газов можно судить исходя из классического уравнения Пуассона:
;
где: п - показатель адиабаты равный отношению теплоёмкости газа при постоянном давлении к величине теплоёмкости газа при постоянном объёме.

Для оценки упругих свойств движущегося газа пользуются не абсолютной величиной скорости звука сзв, а отношением скорости потока газа v к скорости звука в газе. Этот показатель носит название числа Маха;

Вязкость. При движении реальных (вязких) жидкостей в них возникают внутренние напряжения, обусловленные силами внутреннего трения жидкости. Природа этих сил довольно сложна; возникающие в жидкости напряжения связаны с процессом переноса импульса(вектора массовой скорости движения жидкости). При этом возникающие в жидкости напряжения обусловлены двумя факторами: напряжениями, возникающими при деформации сдвига и напряжениями, возникающими при деформации объёмного сжатия.
Наличие сил вязкостного трения в движущейся жидкости подтверждается простым и наглядным опытом. Если в цилиндрическую ёмкость, заполненную жидкостью опустить вращающийся цилиндр, то вскоре придёт в движение (начнёт вращаться вокруг своей оси в том же направлении, что и вращающийся цилиндр) и сама ёмкость с жидкостью. Этот факт свидетельствует о том, что вращательный момент от вращающегося цилиндра был передан через вязкую жидкость самой ёмкости, заполненной жидкостью.
Напряжения, возникающие при деформации сдвига согласно гипотезе Ньютона пропорциональны градиенту скорости в движущихся слоях жидкости, а сила трения между слоями движущейся жидкости будет пропорциональна площади поверхности движущихся слоев жидкости:

где: сила трения между слоями движущейся жидкости,
- площадь поверхности слоев движущейся жидкости,
- касательные напряжения, возникающие в жидкости при деформации сдвига,
коэффициент динамической вязкости жидкости.
Величина коэффициента динамической вязкости жидкости при постоянной температуре и постоянном давлении зависит от внутренних (химических) свойств самой жидкости. Размерность коэффициента динамической вязкости в системе единиц СИ: н с/м 2, в системе СГС - д-с/см . Последняя размерность носит название пуаза (пз). Таким образом, \пз =1 д-с/см , а соотношение между единицами вязкости. 1да=0,1 н с/м 2.
Помимо коэффициента динамической вязкости жидкости широко используется коэффициент кинематической вязкости жидкости v, представляющий собой отношение коэффициента динамической вязкости к плотности жидкости:

В системе единиц СИ коэффициент кинематической вязкости измеряется в м/с, в системе единиц СГС единицей измерения коэффициента кинематической вязкости жидкости является стоке (cm), т.е. 1 cm = 1 см /с.
Коэффициент динамической вязкости чистой воды составляет 1-10~3 н-с/м (или 0,01 пз), коэффициент кинематической вязкости чистой воды составляет МО" м /с (или 0,01 cm).
Коэффициенты вязкости жидкостей варьируют в весьма широких пределах от 0,0003 доО,139н-с/л/2.
Вязкость жидкости в значительной степени зависит от температуры и давления. При увеличении температуры капельной жидкости коэффициенты её вязкости (как динамический, так и кинематический) резко снижается в десятки и сотни раз, что обусловлено увеличением внутренней энергии молекул жидкости по сравнению с энергией межмолекулярной связи в жидкости.
Зависимость вязкости капельной жидкости от температуры может быть выражена в виде экспоненциальной зависимости:

где: - вязкость капельной жидкости при стандартной температуре TQ - 20 °С,
- экспериментальный температурный коэффициент. Зависимость вязкости жидкости от давления в широком диапазоне давлений остаётся практически линейной:

где: - вязкость жидкости при атмосферном давлении,
ар – экспериментальный коэффициент пропорциональности.
Газы обладают несравнимо более низкими коэффициентами вязкости от 0,0000084 до 0,0000192 н-с/м 2, и в отличие от капельных жидкостей вязкость газов увеличивается при увеличении температуры, т.к. с увеличением температуры газа возрастают скорости теплового движения молекул и, соответственно, увеличивается число соударений молекул газа, что делает газ более вязким. Зависимость вязкости газа от давления ничем не отличается от аналогичной зависимости для капельных жидкостей.
Коэффициент динамической вязкости жидкостей и газов

Капельные жидкости приГ=18°С

Газы при Т= 0 °С


Анилин
0,00460
Азот
0,0000167

Ацетон
, 0,00034
Аммиак
0,0000093

Бром -.-.
0,00102
Водород
0,0000084

Вода
.* 0,00105
Воздух
0,0000172

Глицерин
1,39300
Кислород
0,0000192

Масло машинное
0,11300
Метан
0,0000104

Нефть
0,0080-0,1000
Углекислота COi
0,0000140

Спирт этиловый
0,00122
Хлор
0,0000129

Измерение вязкости жидкостей осуществляется с помощью вискозиметров, работающих на принципе истечения жидкости через малое калиброванное отверстие; вязкость вычисляется по скорости истечения.
Кроме деформации сдвига внутреннее сопротивление в жидкости возникает и при объёмном сжатии жидкости, т.е. сжимаемая жидкость стремится восстановить состояние первоначального равновесия. Этот процесс, в некоторой степени, аналогичен проявлению сил сопротивления при деформации сдвига, хотя сам процесс и отличается по своей сути. По этой причине говорят, что в жидкости проявляется так называемая вторая вязкость Ј, обусловленная деформацией объёмного сжатия жидкости.
Поверхностное натяжение. Когда мы говорим о жидкости как о сплошной среде, это вовсе не означает, что эта среда бесконечна и безгранична. Жидкое тело всегда имеет границы, это либо твёрдые стенки каналов, либо границы раздела с газообразной средой, либо это граница раздела между различными несмешивающимися жидкостями. Такие границы можно с полным правом называть естественными границами.
В некоторых случаях границы могут выделяться условно внутри самой движущейся жидкости. На естественных границах в пограничном слое жидкости между молекулами самой жидкости и молекулами окружающей жидкость среды существуют силы притяжения, которые, в общем случае, могут оказаться не равными. В то же время силы взаимодействия между остальными молекулами жидкости, находящимися внутри объёма, ограниченного пограничным слоем эти силы взаимно уравновешены. Таким образом, остаются не уравновешеными силы взаимодействия между молекулами, находящимися лишь во внешнем (пограничном слое). Тогда в пограничном слое возникают напряжения, которые автоматически балансируют не сбалансированные силы притяжения. Такие напряжения называются поверхностным натяжением жидкости. Этому напряжению будут соответствовать силы поверхностного натяжения. Под действием этих сил малые объёмы жидкости принимают сферическую форму (форму капли), соответствующей минимуму внутренней энергии; в трубках малого диаметра жидкость поднимается (или опускается) на некоторую высоту по отношению к уровню покоящейся жидкости. Последнее явление носит название капиллярности. Жидкость в трубке малого диаметра (капилляре) будет подниматься, если жидкость по отношению к стенке капилляра будет смачивающей жидкостью, и наоборот, будет опускаться, если жидкость для стенки капилляра окажется не смачивающей. Высоту h подъёма (опускания) жидкости в капилляре с диаметром d можно определить из соотношения:
где: А - постоянная зависящая от свойств жидкости.
Для воды, мм,
Для ртути , мм.
Силы поверхностного натяжения малы и проявляются при малых объёмах жидкости. Величина напряжений на границе раздела зависит от температуры жидкости; при увеличении температуры внутренняя энергия молекул возрастает и, естественно, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверхностного натяжения.
Растворимость газов в капельных жидкостях. В реальных жидкостях всегда находится в растворённом состоянии газ. Это может быть воздух, азот, углеводородный газ, углекислотасероводороди др. Наличие газа растворённого в жидкости может
оказывать как благоприятное воздействие (снижается вязкость жидкости, плотность и т.д.), так и неблагоприятные факторы. Так при снижении давления из жидкости выделяется свободный газ, который может стать источником такого нежелательного явления как кавитация; выделяющийся газ может оказаться не безопасным для окружающей среды (HiS), огнеопасным и взрывоопасным (углеводородный газ). Газ, растворённый в жидкости, как и газ в свободном состоянии может также способствовать коррозии стенок труб и оборудования, вызывать химические реакции, ведущие к образованию отложений твёрдых солей на стенках труб, накипей и др. По этой причине знание особенностей и законов растворения газа в жидкости крайне желательно.
Количество газа, которое может раствориться в капельной жидкости, зависит от физико-химических свойств самой жидкости и растворяемого в ней газа, а также от температуры и давления. Максимальное количество газа, которое может быть растворено в данной жидкости носит название предельной газонасыщенности для данного газа s0. Естественно, что величины предельной газонасыщенности для разных газов будут разными. Другой характеристикой процесса растворения газа в жидкости является давление насы-
чении температуры внутренняя энергия молекул возрастает и, естественно, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверхностного натяжения.
Растворимость газов в капельных жидкостях. В реальных жидкостях всегда находится в растворённом состоянии газ. Это может быть воздух, азот, углеводородный газ, углекислота, сероводород HiS и др. Наличие газа растворённого в жидкости может оказывать как благоприятное воздействие (снижается вязкость жидкости, плотность и т.д.), так и неблагоприятные факторы. Так при снижении давления из жидкости выделяется свободный газ, который может стать источником такого нежелательного явления как кавитация; выделяющийся газ может оказаться не безопасным для окружающей среды , огнеопасным и взрывоопасным (углеводородный газ). Газ, растворённый в жидкости, как и газ в свободном состоянии может также способствовать коррозии стенок труб и оборудования, вызывать химические реакции, ведущие к образованию отложений твёрдых солей на стенках труб, накипей и др. По этой причине знание особенностей и законов растворения газа в жидкости крайне желательно.
Количество газа, которое может раствориться в капельной жидкости, зависит от физико-химических свойств самой жидкости и растворяемого в ней газа, а также от температуры и давления. Максимальное количество газа, которое может быть растворено в данной жидкости носит название предельной газонасыщенности для данного газа s0. Естественно, что величины предельной газонасыщенности для разных газов будут разными. Другой характеристикой процесса растворения газа в жидкости является давление насыщения , это такое минимальное давление в жидкости, при котором достигается насыщение капельной жидкости газом. При невысоких давлениях значительно уступающих величине давления насыщения справедлив закон растворимости Генри:

Количество газа растворимого в единице объёма жидкости пропорционально давлению. При увеличении давления до давления насыщения величина


Кривая растворимости газа в жидкости s(p). коэффициента растворимости газа
давление насыщения, sn величина снижается.
В жидкости может одновременно растворяться целая группа различных газов; нередки случаи, когда капельная жидкость и растворяемый в ней газ имеют одинаковую природу (нефть и углеводородные газы); в последнем случае между жидкостью и газом может существовать весьма условная граница, зависящая от температуры смеси и других прочих условий.
Испаряемость. При повышении температуры жидкости и, в некоторых случаях, при снижении давления часть массы капельной жидкости постепенно переходит в газообразное состояние (пар). Интенсивность процесса парообразования зависит от температуры кипения жидкости при нормальном атмосферном давлении: чем выше температура кипения жидкости, тем меньше её испаряемость. Однако, более полной характеристикой испаряемости следует считать давление (упругость) насыщенных паров, данное в функции температуры. Чем больше насыщенность паров при данной температуре, тем больше испаряемость жидкости.
Адсорбция Адсорбцией принято называть концентрацию одного из веществ, происходящую в его поверхностном слое, т.е. на границе раздела двух фаз (например, жидкость и поверхность твёрдого тела). Такая концентрация молекул жидкости на поверхности твёрдого тела обуславливается силами межмолекулярного взаимодействия. Так сила притяжения молекул жидкости со стороны молекул твёрдого тела неизмеримо выше, силы притяжения оказываемой со стороны молекул самой жидкости. По этой причине на поверхности твёрдого тела образуется устойчивая пленка, состоящая из молекул жидкости, которая способна удерживаться на поверхности твёрдого тела даже в том случае, когда вдоль поверхности твёрдого тала перемещается поток жидкости. Сильное притяжение со стороны молекул твёрдого тела могут испытывать также и молекулы второго и третьего слоев молекул жидкости, т.е. образующаяся на поверхности твердого тела плёнка из частиц жидкости может быть многослойной. Поскольку сила взаимодействия между молекулами убывает с увеличением расстояния между ними, то молекулы удалённых от поверхности твёрдого тела слоев легко разрушаются под действием различных сил, т.е. внешние слои молекул жидкости крайне неустойчивы. Процесс разрушения образованной плёнки из жидких молекул называется десорбцией. Как правило, эти два процесса идут одновременно, образуя состояние неустойчивого равновесия.
Адсорбируемое вещество (в нашем случае это жидкость) называется адсорбатом, а адсорбирующее вещество (в нашем случае это твёрдое тело) называется адсорбентом. Процесс собственно адсорбции происходит на поверхности твёрдого тела без внедрения молекул адсорбата в твёрдое тело.
В тех случаях, когда молекулы адсорбата проникают в поверхностный слой адсорбента, то такой процесс приято называть абсорбцией. Если же при этом будет происходить химические реакции между веществами, то такой процесс носит название хемсорб-ции. Следует отметить, что скорость сорбционных процессов зависит от внешних условий (температура и давление) а также от свойств самих веществ. На практике с сорбционными процессами мы встречаемся при гидроизоляции зданий и сооружений, при уплотнении сальников в различных механизмах и машинах.
5.3. Многокомпонентные жидкости
В природе химически чистых жидкостей нет, технических рафинированных тоже немного. Обычно в основной жидкости всегда имеются незначительные или весьма существенные добавки (примеси). Для капельной жидкости примесями могут быть другие жидкости, газы и твёрдые тела. В таких случаях жидкость с примесями может образовать гомогенную или гетерогенную смесь.
Гомогенные смеси образуются в тех случаях, когда в основной жидкости (в таких случаях эта жидкость называется растворителем) примеси распределяются по всему объёму растворяющей жидкости равномерно на уровне молекул. В таких случаях смесь физически представляет собой однородную среду, называемую раствором. Сами же примеси носят название компонент. Физические свойства такой гомогенной смеси (плотность и удельный вес) можно определить по компонентному составу:

где: - плотность смеси, - плотность i - той компоненты, количество i - той компоненты.
Величины других параметров смеси (вязкость и др.) зависят от многих физико-химических факторов, что является самостоятельным объектом изучения.
В тех случаях, когда примеси в основной жидкости находятся не на молекулярном уровне, а в виде частиц, представляющих собой многочисленные ассоциации молекул вещества примеси, то такие смеси не могут считаться однородными растворами. Физические свойства таких смесей (включая плотность и удельный вес) будут зависеть от того, какое вещество будет находиться в точке измерения. Такие смеси будут неоднородными (гетерогенными) смесями. В литературе такие смеси часто называют многофазными жидкостями. Отличительной особенностью многофазных жидкостей является наличие в них внутренних границ раздела между фазами, вдоль этих поверхностей раздела действуют силы поверхностного натяжения, которые могут оказаться значительными при большой площади поверхности границ между фазами. Силы поверхностного натяжения вкупе с другими силами, действующими в многофазной жидкости, увеличивают силы сопротивления движению жидкости.
Примеров многофазных жидкостей в природе достаточно: эмульсии - смеси двух и более нерастворимых друг в друге жидкостей; газированные жидкости - смеси жидкости со свободным газом, окклюзии - смеси жидких и газообразных углеводородов; суспензии и пульпы - смеси жидкостей и твёрдых частиц, находящихся в жидкости во взвешенном состоянии и т.д.
5.4 Силы, действующие в жидкости
Поскольку жидкость обладает свойством текучести и легко деформируется под действием минимальных сил, то в жидкости не могут действовать сосредоточенные силы, а возможно существование лишь сил распределённых по объёму (массе) или по поверхности. В связи с этим действующие на жидкости распределённые силы являются по отношению к жидкости внешними. По характеру действия силы можно разделить на две категории: массовые силы и поверхностные.
Массовые силы пропорциональны массе тела и действуют на каждую жидкую частицу этой жидкости. К категории массовых сил относятся силы тяжести и силы инерции переносного движения. Величина массовых сил, отнесённая к единице массы жидкости, носит название единичной массовой силы. Таким образом, в данном случае понятие о единичной массовой силе совпадает с определением ускорения. Если жидкость, находится под действием только сил тяжести, то единичной силой является ускорение свободного падения:

где М' - масса жидкости
Если жидкость находится в сосуде, движущимся с некоторым ускорением а, то жидкость в сосуде будет обладать таким же ускорением (ускорением переносного движения):

Поверхностные силы равномерно распределены по поверхности и пропорциональны площади этой поверхности. Эти силы, действуют со стороны соседних объёмов жидкой среды, твёрдых тел или газовой среды. В общем случае поверхностные силы имеют две составляющие нормальную и тангенциальную. Единичная поверхностная сила называется напряжением. Нормальная составляющая поверхностных сил называется силой давления Р, а напряжение (единичная сила) называется давлением:

где: S - площадь поверхности.
Напряжение тангенциальной составляющей поверхностной силы Т (касательное напряжение) определяется аналогичным образом (в покоящейся жидкости Т=0).

Величина давления (иногда в литературе называется гидростатическим давлением) в системе СИ измеряется в паскалях.

Поскольку эта величина очень мала, то величину давления принято измерять в мега-паскалях МПа
1МПа = 1 106 Па.
В употребляемой до сих пор технической системе единиц давление измеряется в технических атмосферах, am. С,
1 am = 1 кГ/см2 = 0,1 МПа, 1 МПа = 10 am.
В технической системе единиц давление кроме технической атмосферы измеряется также в физических атмосферах, А.
1 А = 1,033 am.
Различают давление абсолютное, избыточное и давление вакуума. Абсолютным давлением называется давление в точке измерения, отсчитанное от нуля. Если за уровень отсчёта принята величина атмосферного давления, то разница между абсолютным давлением и атмосферным называется избыточным давлением.

Если давление, измеряемое в точке ниже величины атмосферного давления, то разница между замеренным давлением и атмосферным называется давлением вакуума

Избыточное давление в жидкостях измеряется манометрами. Это весьма обширный набор измерительных приборов различной конструкции и различного исполнения.
5.5. Свойства гидростатического давления
В неподвижной жидкости возможен лишь один вид напряжения - напряжение сжатия. Как отмечалось ранее, жидкость в общем случае может находиться под действием двух сил - силы давления равномерно распределённой по всей внешней поверхности выделенного жидкого тела и массовых сил, определяемых характером переносного движения. Под внешней границей жидкого тела могут пониматься как соседние тела: твёрдые (стенки сосуда или трубы, в которые помещена жидкость), газообразные (поверхность раздела между жидкостью и газовой средой), так и условные поверхности, мысленно выделяемые внутри самой жидкости. Действующее на внешнюю поверхность жидкости давление обладает двумя основными свойствами: t
1. Давление всегда направлено по внутренней нормали к выделенной поверхности. Это свойство вытекает из самой сущности давления и доказательств не требует. Тем не менее, поясним этот постулат простым примером. Отсечём от жидкого тела часть его объ-
ёма и для сохранения равновесия оставшейся части жидкости приложим к образовавшемуся сечению систему распределённых сил. По своей величине и напрвлению действия эти силы должны обеспечить эк вивалентное влияние на оставшийся объём жидкости со стороны отсечённой части жидкого тела. Поскольку в покоящейся
жидкости не могут существовать касательные напряжения, то приложенные к сечению силы могут быть направлены лишь по внутренней нормали к площади сечения.

2. В любой точке внутри жидкости давление по всем направлениям одинаково. Другими словами величина давления в точке не зависит от ориентации площадки, на которую действует давление.
Для доказательства этого положения выделим в районе произвольно выбранной точки находящейся внутри жидкости малый отсек жидкости в виде тетраэдра. Три взаимно перпендикулярные грани отсека будут параллельны координатным плоскостям, четвёртая грань расположена под произвольным углом (по отношению к одной из координатных плоскостей).

Отбросим массу жидкости, находящуюся с внешней стороны поверхности тетраэдра, а действие
отброшенной массы жидкости на выделенный отсек заменим силами, которые обеспечат равновесие в покоящейся жидкости. При такой замене мы сделали некоторое допущение, ввели сосредоточенные силы, действующие на грани отсека. Однако это допущение мож- . но считать справедливым ввиду малости отсека. Тогда для обеспечения равновесия на отсек жидкости должны действовать силы давления нормальные к граням отсека корме того, на этот же отсек жидкости будут действовать массовые силы характер действия которых определяется переносным движением, т.е. движением сосуда, относительно которого покоится жидкость. Величина массовых сил будет
пропорциональна массе жидкости в отсеке:
Запишем уравнение равновесия отсека жидкости в проекциях на оси координат.

Выразив силы через напряжения, уравнения равновесия будут иметь следующий вид:

где: - площадь наклонной грани отсека, - проекции ускоре-
ния переносного движения на оси координат.
учитывая, что:
Уравнения равновесия примут вид:

Пренебрегая малыми величинами, получим:
3. Для жидкости находящейся в состоянии равновесия справедлив так называемый закон Паскаля утверждающий, что всякое изменение давления в какой-либо точке жидкости передаётся мгновенно и без изменения во все остальные точки жидкости.
5.6. Основное уравнение гидростатики
Рассмотрим случай равновесия жидкости в состоянии «абсолютного покоя», т.е. когда на жидкость действует только сила тяжести. Поскольку объём жидкости в сосуде мал по сравнению с объёмом Земли, то уровень свободной поверхности жидкости в сосуде можно считать горизонтальной плоскостью. Давление на свободную поверхность жидкости равно атмосферному давле нию р0. Определим давление р в произвольно выбранной точке М, расположенной на глубине h. Выделим
около точки М горизонтальную площадку площадью dS . Построим на данной площадке вертикальное тело, ограниченное снизу самой площадкой, а сверху (в плоскости свободной поверхности жидкости) её проекцией. Рассмотрим равновесие полученного жидкого тела. Давление на основание выделенного объёма будет внешним по отношению к жидкому телу и будет направлено вертикально вверх. Запишем уравнение равновесия в проекции на вертикальную ось тела.


Сократив все члены уравнения на dS, получим:

Давление во всех точках свободной поверхности одинаково и равно р0, следовательно, давление во всех точках жидкости на глубине h также одинаково согласно основному уравнения гидростатики. Поверхность, давление на которой одинаково, называется поверхностью уровня. В данном случае поверхности уровня являются горизонтальными плоскостями.
Выберем некоторую горизонтальную плоскость сравнения, проходящую на расстоянии z0 от свободной поверхности, тогда можно записать уравнение гидростатики в виде:

Все члены уравнения имеют линейную размерность и носят название:
- геометричкская высота,
- пьезометрическая высота
Величинаносит название гидростатического напора.
Основное уравнение гидростатики, доказанное на примере жидкости находящейся под действием только сил тяжести, будет справедливо и для жидкости, которое испытывает на себе ускорение переносного движения. Под действием сил инерции переносного движения будет меняться положение свободной поверхности жидкости и поверхностей равного давления относительно стенок сосуда и относительно горизонтальной плоскости. Вид этих поверхностей целиком зависти от комбинации ускорений переносного движения и ускорения сил тяжести. В литературе состояние равновесия жидкости при наличии переносного движения называется относительным покоем жидкости. Любые комбинации ускорений сводятся к двум возможным видам равновесия жидкости
Равновесие жидкости при равномерно ускоренном прямолинейном движении сосуда. Примером может быть равновесие жидкости в цистерне, движущейся с некоторым ускорением а. В этом случае на жидкость будут действовать силы тяжести и сила инерции равномерно укоренного движения цистерны. Тогда равно-
действующая единичная массовая сила определиться как сумма векторов ускорения переносного движения и ускорения свободного падения.


При данных условиях вектор единичной массовой силы переносного движения а будет направлен в сторону противоположную движению цистерны, ускорение свободного падения g, как всегда ориентировано вертикально вниз, т.е. как показано на рисунке. При движении цистерны начальное положение свободной поверхности жидкости изменится. Новое положение свободной поверхности жидкости, согласно основному условию равновесия жидкости будет направлена перпендикулярно вектору, т.к., равнодействующий вектор массовых сил должен быть направлен по внутренней нормали к свободной поверхности жидкости. Наклон свободной поверхности жидкости к горизонтальной плоскости определяется соотношением ускорений
Выберем некоторую точку М расположенную внутри жидкости на глубинепод уровнем свободной поверхности (расстояние до свободной поверхности жидкости измеряется по нормали к этой поверхности). В точке М выделим малую площадку параллельную свободной поверхности жидкости. Тогда уравнение равновесия жидкости запишется в следующем виде:

Величинузаменим эквивалентной величиной, где h -погружение точки М под уровень свободной поверхности жидкости (измеряется по вертикали). Эти две величины одинаковы, т.к. . После этих преобразований уравнение равновесия жидкости в цистерне примет привычный вид, соответствующий записи основного закона гидростатики:

Таким образом, давление в любой точке жидкости будет зависеть только от положения этой точки относительно уровня свободной поверхности жидкости. Поверхности равного давления будут параллельны свободной поверхности жидкости, и иметь такой же уклон
Равновесие жидкости в равномерно вращающемся сосуде. Свободная поверхность жидкости, залитой в цилиндрический сосуд и находящейся под действием сил тяжести примет форму горизонтальной плоскости на некотором уровнеотносительно дна сосуда. После того как мы приведём сосуд во вращение вокруг его вертикальной оси с некоторой постоянной угловой скоростью со = const, начальный уровень свободной поверхности жидкости изменится: в центре сосуда он понизится, а по краям сосуда повысится. При этом форма свободной поверхности примет явно вид криволинейной поверхности вращения. Это явление объясняется тем, что при вращении сосуда вокруг своей оси жидкость в нём будет испытывать ускорение переносного движения направленное в сторону стенок сосуда. Поскольку равнодействующая двух сил: силы тяжести и центробежной силы должна быть направлена по нормали к свободной поверхности жидкости в каждой точке поверхности, то эта равнодействующая будет иметь, как быль сказано выше, две составляющие соответственно силу тяжести, направленную вертикально вниз и центробежную, направленную в горизонтальной плоскости.


В каждой точке свободной поверхности жидкости АОВ вектор углового ускорения будет направлен под некоторым углом а по отношению к касательной плоскости, проходящей через данную точку свободной поверхности.

Отсюда:

В центре на оси вращения, на расстоянии от дна сосуда будет расположена самая низкая точка свободной поверхности жидкости, т.е.

Отсюда: свободная поверхность жидкости находящейся в равномерно вращающемся вокруг его вертикальной оси сосуде будет иметь вид параболоида вращения (кривая АОВ-парабола).
Выберем любую точку жидкости на глубине под свободной поверхностью h (в частности точка находится на дне сосуда), тогда давление в ней будет равно:

Этот вывод можно распространить и на более сложные случаи вращения сосуда, наклоняя ось его вращения под углом к горизонту; результат получим тот же, что подтверждает универсальность формулы основного уравнения гидростатики.


5.7. Дифференциальное уравнение равновесия жидкости
После рассмотрения некоторых частных случаев равновесия жидкости рассмотрим общее диф ференциальное равновесия в самом общем виде. Для этой цели выделим отсек жидкости малых размеров в виде параллелепипеда. Масса жидкости в выделенном объёме:


На боковые грани параллелепипеда действуют силы давления: (на левую и правую грани соответственно):. На переднюю и заднюю грани: , на нижнюю и верхнюю грани:

Поскольку давление на правую грань больше, то i
По аналогии можно записать силы давления на остальные пары граней.
на переднюю , на заднюю , на нижнюю
, на верхнюю Проекции массовых сил на координатные оси:
на ось ОХ будет на ось ОУ будет
на ось OZ будет Тогда сумма сил действующих вдоль оси ОХ:

сумма сил действующих вдоль оси 07:

сумма сил действующих вдоль оси OZ:

где:, проекции ускорения массовых сил на координатные оси.
После преобразования получим систему дифференциальных уравнений равновесия жидкости:
i i >
5.8. Сообщающиеся сосуды
В своей практической деятельности человек часто сталкивается с вопросами равновесия жидкости в сообщающихся сосудах, когда два сосуда А и В соединены между собой жёстко или гибким шлангом. Сами сосуды (А и В) обычно называются коленами. Такой гидравлический элемент часто используется в различных гидравлических машинах (гидравлические прессы и др.), системах гидропривода и гидроавтоматики, различных измерительных приборах и в ряде других случаев. С природ ными сообщающимися сосудами человек встречается с давних пор: сообщающимися сосудами больших размеров являются водонасыщенные пласты горных пород с системой колодцев, играющих роль отдельных колен природной гидродинамической системы.

В открытых сообщающихся сосудах, заполненных однородной жидкостью свободный уровень жидкости устанавливается на одном и том же уровне в обоих коленах. Если в коленах сосудов залиты две несмешивающиеся жидкости с различной плотностью, то свободные уровни жидкости в правом и левом коленах устанавливаются на разных высотах в зависимости от соотношения плотностей жидкостей.
Для типичного случая, изображённого на рисунке, запишем уравнение равновесия жидкости относительно уровня раздела жидкостей.
или:
В закрытых сообщающихся сосудах давления на свободную поверхность могут быть шными, тогда уравнение равновесия будет иметь следующий вид:

5.9. Сила давления жидкости па плоскую поверхность, погружённую в жидкость
Согласно основному закону гидростатики величина давления р определяется глубиной погружения точки под уровень свободной поверхности h жидкости и величиной
плотности жидкости р.
Для горизонтальной поверхности величина давления одинакова во всех точках этой поверхности, т.к.:

Отсюда:

Таким образом, Сила давления жидкости на горизонтальную поверхность (дно сосуда) равно произведению площади этой поверхности на величину давления на глубине погружения этой поверхности. На рисунке показан так называемый «гидравлический парадокс», здесь величины силы давления на дно всех сосудов одинаковы, независимо от формы стенок сосудов и их физической высоты, т.к. площади доньев у всех сосудов одинаковы, одинаковы и величины давлений.
Сила давления на наклонную поверхность, погруженную в жидкость. Практическим примером такой поверхности может служить наклонная стенка сосуда. Для вывода урав-
нения и вычисления силы давления на стенку выберем следующую систему координат: ось ОХ направим вдоль пересечения плоскости свободной поверхности жидкости с наклонной стенкой, а ось OZ направим вдоль этой стенки перпендикулярно оси ОХ. Тогда в качестве координатной плоскости XOZ будет выступать сама наклонная стенка. На плоскости стенки выделим малую площадку, которую, в связи с малыми размерами можем считать горизонтальной. Величина давления на глубине площадки будет равна:

где: h - глубина погружения площадки относительно свободной поверхности жидкости (по вертикали).

СиладавленияdP на площадку:
Для определения силы давления
на всю смоченную часть наклонной стенки (часть площади стенки сосуда, расположенная ниже уровня свободной поверхности жидкости) необходимо проинтегрировать это уравнение по всей смоченной части площади стенки S .

Интеграл представляет собой статический момент площади S относительно оси ОХ. Он, как известно, равен произведению этой площади на координату её центра тяжести zc. Тогда окончательно:

Таким образом, сила давления на наклонную плоскую поверхность, погружённую в жидкость равна смоченной площади этой поверхности на величину давления в центре тяжести этой площади. Сила давления на плоскую стенку кроме величины и направления характеризуется также и точкой приложения этой силы, которая называется центром давления.
Центр давления силы атмосферного давления p0S будет находиться в центре тяжести площадки, поскольку атмосферное давление передаётся на все точки жидкости одинаково. Центр давления самой жидкости на площадку можно определить исходя из теоремы о моменте равнодействующей силы. Согласно этой теореме момент равнодействующей
силы относительно оси ОХ будет равен сумме моментов составляющих сил относительно этой же оси.

откуда:
где: - положение центра избыточного давления на вертикальной оси,
- момент инерции площадки S относительно оси ОХ.
Отсюда центр давления (точка приложения равнодействующей силы избыточного давления) расположен всегда ниже центра тяжести площадки. В сучаях, когда внешнней действующей силой на свободную поверхность жидкости является сила атмосферного давления, то на стенку сосуда будут одновременно действовать две одинаковые по величине и противоположные по направлению силы обусловленные атмосферным давлением (на внутреннюю и внешнюю стороны стенки). По этой причине реальной действующей несбалансированной силой остаётся сила избыточного давления.








13 PAGE \* MERGEFORMAT 144615





·
·
·
·
·
·
·
·
·
·
·
·
·
·у

Приложенные файлы

  • doc 8856037
    Размер файла: 1 MB Загрузок: 1

Добавить комментарий