Все ответы одним файлом!Матвед!


1. Для чего необходимо знать свойства различных электротехнических материалов
От правильного выбора электротехнических материалов, а так же их качества и применения зависит экономичность работы электрических приборов, электроустановок, машин, аппаратов и их надежность в целом. Тем, кто работает в электротехнической сфере, а также тем, кто ещё не знаком с разнообразными современными электротехническими материалами, необходимо знать об их свойствах и назначении, характеристиках и действии магнитных и электрических полей.
По каким основным признакам классифицируют электротехнические материалы
Прежде всего, электротехнические материалы группируют по их способности проводить электрический ток. От этого им присваивается различие – это проводниковые, полупроводниковые и электроизоляционные материалы. Способность материала проводить ток, как известно, характеризуется удельным электрическим сопротивлением.
Небольшим удельным сопротивлением (порядка ) обладают проводниковые материалы и, соответственно, являются неплохими проводниками электричества. Они используются в электроустановках как токоведущие части.
Диэлектриками называют электроизоляционные материалы – они располагают большим удельным сопротивлением (порядка ) и отчего почти не проводят электричество. Они используются в электроустановках как изолирующие части для токоведущих частей.
По сравнению с диэлектриками и проводниками, у полупроводниковых материалов удельное электрическое сопротивление изменяется в значительном интервале - , отчего полупроводники имеют особые свойства в электричестве. Применение полупроводниковых приборов часто используется в радиоэлектронных устройствах, усилителях электрических сигналов, выпрямителях переменного тока, а также в различных других областях.
Магнитные материалы составляют группу определенного действия, обладая свойством изменять магнитное поле, в которое их размещают. Их используют в изготовлении магнитопроводов, которые в свою очередь являются главной частью в устройстве электроизмерительных приборов, электрических машин, трансформаторов. Им находят применение в изготовлении постоянных магнитов, а так же прочих деталей, используемых в телефонной связи, радиоэлектронике и автоматике.
Из электротехнических материалов конструкционного типа изготавливают конструктивные элементы электроустановок. К ним непосредственно имеют отношения различные электроизоляционные и проводниковые материалы. Например, из керамики изготавливают основания электронагревательных приборов и реостатов; из пластмассы – рукоятки рубильников, щитки, различного типа корпуса электроизмерительных приборов; из стали – конструкции, на которые крепят токоведущие части, также корпуса электрических машин, электрощиты.
Лаки, эмали, клей, припой и подобные им материалы используют для монтажа и изготовления электроустановок. Как правило, они считаются вспомогательными электротехническими материалами.
2. По агрегатному состоянию диэлектрические материалы разделяются на газообразные, жидкие и твердые.
3.К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.
Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др. Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10-5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10-8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10-5—108 Ом·м.
Наряду с электрическими материалами спрос на диэлектрические материалы растёт день за днём. Это связано с увеличением мощности государственных промышленных предприятий, частных предприятий и с ростом государственных и негосударственных общественных организаций и учреждений. Большой спрос на диэлектрические материалы, также, связан с увеличением количества разнообразных электроприборов и средств связи [1-3]. В технике используют различные виды диэлектриков, которые изготавливаются в процессе переработки природных ресурсов и химических материалов. Применяемые в народном хозяйстве диэлектрические материалы условно можно классифицировать в виде, показанном на рис.
Как известно, диэлектрические свойства материалов определяются расположением атомов и молекул в кристаллической решетке. Химические элементы, входящие в состав материала, а также структура, симметрия и степень упорядоченности кристаллической решетки, определяют как диэлектрические свойства материалов, так и их зависимость от внешних факторов, включая температуру.
4,5. Классификация диэлектрических материалов

В зависимости от указанных факторов, каждый отдельно взятый диэлектрический материал может по-разному проявлять свои изоляционные свойства, определяющие область его применения. Отметим, что в настоящее время отсутствует единый подход в оценке диэлектрических материалов. В данной работе систематизированы сведения о существующих диэлектрических материалах, проанализированы их преимущества и недостатки. Составлена структурная схема, в которой представлена классификация диэлектрических материалов. Схема строилась на основе разделения всего множества диэлектрических материалов по специфическим особенностям способов их переработки и изготовления.
Если остановиться на совокупности диэлектрических материалов, приведённых на рис., то можно отметить следующее. В народном хозяйстве широко используются диэлектрические материалы, состоящие из органических и неорганических элементов.
В науке неорганические химические материалы известны как соединения углерода с другими элементами. Поскольку углерод обладает повышенной способностью образования химических соединений, то его роль можно заметить в создании веществ с цепочечными или разветвлёнными молекулами, которые могут образовываться только из атомов углерода или из атомов углерода, между которыми расположены атомы других элементов.
К органическим диэлектрическим материалам можно отнести:
С развитием электротехнической промышленности параллельно развивалось изготовление диэлектрических материалов из минералов. Технология изготовления минеральных диэлектриков и их разновидностей, настолько усовершенствована, что эти диэлектрические материалы из-за дешевизны и высоких диэлектрических показателей начали оттеснять натуральные и химические диэлектрические материалы. К минеральным диэлектрическим материалам можно отнести:
стекло (конденсаторные, установочные, ламповые, щелочные, безщелочные и другие стекла.) - аморфное вещество, которое представляет собой сложную систему различных окислов. Из-за того, что в состав стекла входят такие окислы, как SiO2, CaO, Al2O3 и т.д., диэлектрические свойства стекла заметно улучшаются;
стеклоэмаль - это материал, который наносится тонким слоем на поверхность металлических и других предметов с целью защиты их от коррозии;
стекловолокно - стеклянные нити, из которых впоследствии ткут стеклянные ткани;
световоды - светопроводящий вид стекловолокна, т.е. жгут, скрученный из волокон, имеющих сердцевину и оболочку из стёкол разного состава;
ситаллы - кристаллы, в состав которых входят силикаты;
керамические материалы (фарфор, стеатит);
слюда (миканиты, слюдопласты, микалекс);
асбест (асбоцемент) - название группы минералов, обладающих волокнистым строением, представляющие собой волокнистую разновидность минерала хризотила - 3MgO*2SiO2*2H2O.
Из представленного краткого обзора диэлектрических материалов можно увидеть их разнообразие. Следует отметить, что, несмотря на такое большое разнообразие существующих диэлектрических материалов, они не всегда могут заменить друг друга. Во многих случаях область использования диэлектрических материалов в основном зависит от их дешевизны, удобства использования, физико-механических и других второстепенных свойств.
В некоторых случаях, к применяемым электроизоляционным материалам предъявляются самые разнообразные требования. .Помимо электроизоляционных свойств, большую роль играют механические, тепловые и другие физико-химические свойства, включая способность материалов подвергаться тем или иным видам обработки при изготовлении из них необходимых изделий, а также стоимость и дефицитность материалов. Поэтому, для различных случаев применения выбирают разные материалы.
Виды жидких диэлектриков
Нефтяные электроизоляционные масла.
Трансформаторное масло, которым заливают силовые трансформаторы, из всех жидких электроизоляционных материалов находит наибольшее применение в электротехнике. Его назначение двояко : во-первых, масло, заполняя поры в волокнистой изоляции, а также промежутки между проводами обмоток и между обмотками и баком трансформатора, значительно повышает электрическую прочность изоляции; во-вторых, оно улучшает отвод теплоты, выделяемой за счёт потерь в обмотках и сердечнике трансформатора. Лишь некоторые силовые и измерительные трансформаторы выполняются без заливки маслом ( “ сухие трансформаторы ” ). Ещё одна важная область применения трансформаторного масла - масляные выключатели высокого напряжения. В этих аппаратах разрыв электрической дуги между расходящимися контактами выключателя происходит в масле или в находящихся под повышенным давлением газах, выделяемых маслом под действием высокой температуры дуги; это способствует охлаждению канала дуги и быстрому её гашению. Трансформаторное масло применяется также для заливки маслонаполненных вводов, некоторых типов реакторов, реостатов и других электрических аппаратов.
Трансформаторные, а также другие нефтяные (“минеральные ”) электроизоляционные масла получают из нефти посредством её ступенчатой перегонки с выделением на каждой ступени определённой ( по температуре кипения ) фракции и последующей тщательной очистки от химических нестойких примесей в результате обработки серной кислотой, а затем щёлочью, промывки водой и сушки.
Трансформаторное масло - это жидкость от почти бесцветной до тёмно - жёлтого цвета, по химическому составу представляющая собой смесь различных углеводородов. Трансформаторное масло - горючая жидкость. Электрическая прочность масла - величина, чрезвычайно чувствительная к его увлажнению. Незначительная примесь воды в масле резко снижает его электрическую прочность. Это объясняется тем, что воды ( около 80 ) значительно выше, чем масла (чистого масла около 2,2 ). Под действием сил электрического поля капельки эмульгированной в масле воды втягиваются в места, где напряжённость электрического поля особенно велика и где, собственно и начинается развитие пробоя. Ещё более резко понижается электрическая прочность масла, если в нём, кроме воды содержатся волокнистые примеси. Волокна бумаги, хлопчатобумажной пряжи, легко впитывают в себя влагу из масла, причём значительно возрастает их r. Под действием сил поля увлажнённые волокна не только втягиваются в места, где поле сильнее, но и располагаются по направлению силовых линий, что весьма облегчает пробой масла.
Кабельные масла используются в производстве силовых электрических кабелей; Пропитывая бумажную изоляцию этих кабелей, они повышают её электрическую прочность, а также способствуют отводу теплоты потерь. Кабельные масла бывают различных типов. Для пропитки изоляции силовых кабелей на рабочие напряжения до 35 кВ в свинцовых или алюминиевых оболочках ( кабели с вязкой пропиткой ) применяется масло марки КМ-25 с кинематической вязкостью не менее 23 мм2/c при 1000С, температурой застывания не выше минус 100С и температурой вспышки не ниже +2200С. Для увеличения вязкости к этому маслу дополнительно добавляется канифоль или же синтетический загуститель.
В маслонаполненных кабелях используются менее вязкие масла. Так, масло марки МН-4 применяется для маслонаполненных кабелей на напряжения 110-220 кВ, в которых во время эксплуатации с помощью подпитывающих устройств поддерживается избыточное давление 0,3 - 0,4 МПа.
Для маслонаполненных кабелей высокого давления ( до 1,5 МПа ) на напряжения от 110-500 кВ, прокладываемых в стальных трубах, применяется особо тщательно очищенное масло марки С-200.
Синтетические жидкие диэлектрики.
Нефтяные масла склонны к электрическому старению, т.е. они могут ухудшать свои свойства под действием электрического поля высокой напряжённости. Для пропитки конденсаторов с целью получения повышенной ёмкости в данных габаритных размерах конденсатора желательно иметь полярный жидкий диэлектрик с более высоким, чем у неполярных нефтяных масел, значением r имеются синтетические жидкие диэлектрики, по тем или иным свойствам превосходящие нефтяные электроизоляционные масла. Рассмотрим важнейшие из них.
Хлорированные углеводороды получаются из различных углеводородов путём замены в их молекулах некоторых ( или даже всех ) атомов водорода атомами хлора. Наиболее широкое применение имеют полярные продукты хлорирования дифенила, имеющие общий состав С12Н10-nCLn (n - степень хлорирования от 3 до 6).
Хлорированные дифенилы обладают r , повышенной по сравнению с неполярными нефтяными маслами. По этому замена масел на хлорированные дифенилы при пропитке конденсаторов уменьшает объём конденсатора ( при этой же электрической ёмкости ) почти в 2 раза. Преимуществом хлорированных дифенилов является его не горючесть. Однако хлорированные дифенилы имеют и свои недостатки. Они сильно токсичны, из-за чего применение их для пропитки конденсаторов в некоторых странах запрещено законом. На их электроизоляционные свойства весьма значительно влияют примеси, наличие которых сказывается на потерях сквозной электропроводности при повышенной температуре. Недостатком является также заметное снижение их r и, следовательно ёмкости пропитанных хлорированными дифенилами конденсаторов при пониженных температурах. Хлорированные дифенилы обладают сравнительно высокой вязкостью, что в некоторых случаях вызывает необходимость разбавления их менее вязкими хлорированными углеводородами.
Кремнийорганические жидкости обладают малым tg , низкой гигроскопичностью и повышенной нагревостойкостью. Для них характерна слабовыраженная зависимость вязкости от температуры. Эти жидкости весьма дорогие.
Фтороорганические жидкости имеют малый tg ,ничтожно малую гигроскопичность и высокую нагревостойкость. Некоторые фтороорганические жидкости могут длительно работать при температуре 2000С и выше. Пары некоторых фтороорганических жидкостей имеют высокую для газообразных диэлектриков электрическую прочность.
Сравнительно дешёвый отечественный материал (октол) представляет собой смесь полимеров изобутилена и его изомеров, имеющих общий состав С4Н8 и получаемых из газообразных продуктов крекинга нефти.
Значение r октола 2,0 - 2,2; tg  ( при 1кГц ) 0,0001; температура застывания минус 120С.
Природные смолы.
Канифоль - хрупкая смола, получаемая из живицы ( природной смолы сосны ) после отгонки её жидких составных частей ( скипидара ). Канифоль в основном состоит из органических кислот. Канифоль растворима в нефтяных маслах ( особенно при нагреве) и других углеводородов, растительных маслах, спирте, скипидаре и прочие.
Электроизоляционные свойства канифоли : =1012- 1013 Ом  м; ЕПР= 10 - 15 МВ/м; зависимость r и tg  от температуры характерна для полярных диэлектриков. Температура размягчения канифоли составляет 50 - 700С. На воздухе канифоль постепенно окисляется, при чём температура размягчения её повышается, а растворимость снижается.
Канифоль, растворённая в нефтяных маслах, применяется при изготовлении пропиточных и заливочных кабельных компаундов.
Растительные масла.
Растительные масла - вязкие жидкости, получаемые из семян различных растений. Из этих масел особенно важны высыхающие масла, способные под воздействием нагрева, освещения, соприкосновения с кислородом воздуха и других факторов переходить в твёрдое состояние. Тонкий слой масла, налитый на поверхность какого-либо материала, высыхает и образует твёрдую, блестящую, прочно пристающую к подложке электроизоляционную плёнку. Высыхание масел является сложным химическим процессом, связанным с поглощением маслом некоторого количества кислорода из воздуха.
Скорость высыхания масел увеличивается с повышением температуры, при освещении, а также в присутствии катализаторов химических реакций высыхания - сиккативов. В качестве сиккативов используют соединения свинца, кальция, кобальта и др.
Отверждённые плёнки высыхающих масел в тяжёлых углеводородах, например в трансформаторном масле, не растворяются даже при нагреве, так что являются практически маслостойкими, но к ароматическим углеводородам, например бензолу, они менее стойки. При нагреве отверждённая плёнка не размягчается. Наиболее распространённые высыхающие масла - льняное и тунговое.
Льняное масло золотисто - жёлтого цвета получается из семян льна. Его плотность 0,93-0,94 Мг/м3, температура застывания - около -200С.
Тунговое (древесное) масло получают из семян тунгового дерева, которое разводится на Дальнем Востоке и на Кавказе. Тунговое масло не является пищевым и даже токсично. Плотность тунгового масла - 94 МГ/м3 , температура застывания - от 0 до минус 50С.
По сравнению с льняным маслом тунговое высыхает быстрее. Оно даже в толстом слое высыхает более равномерно и даёт водонепроницаемую плёнку, чем льняное. Высыхающие масла применяются в электропромышленности для изготовления электроизоляционных масляных лаков, лакотканей, для пропитки дерева и для других целей. В последнее время наблюдается тенденция к замене высыхающих масел синтетическими материалами. Невысыхающие масла могут применяться в качестве жидких диэлектриков.
Касторовое масло получается из семян клещевины; иногда используется для пропитки бумажных конденсаторов. Плотность касторового масла 0,95-0,97 МГ/м3, температура застывания от минус 10 до минус 180С ; r равно 4,0 - 4,5 при температуре 200С; tg 0,01 - 0,03, ЕПР=15-20 МВ/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте.
6. ПРОБО́Й ДИЭЛЕ́КТРИКОВ, резкое возрастание электропроводности диэлектрика в электрическом поле, напряженность которого превышает т. н. электрическую прочность и образование проводящего канала в диэлектрике. Пробой диэлектриков может сопровождаться их разрушением.
Минимальное приложенное к диэлектрику напряжение, приводящее к его пробою, называют пробивным напряжением Uпр.
Предпробойное состояние диэлектрика характеризуется резким возрастанием тока, отступлением от закона в сторону увеличения проводимости .Значение пробивного напряжения зависит от толщины диэлектрика h и формы электрического поля, обусловленной конфигурацией электродов и самого диэлектрика. Поэтому оно характеризует не столько свойства материала, сколько способность конкретного образца противостоять сильному электрическому полю. Для сравнения свойств различных материалов более удобной характеристикой является электрическая прочность. Электрической прочностью называют минимальную напряженность однородного электрического поля, приводящую к пробою диэлектрика:
Eпр = Uпр/ h.
Если пробой произошел в газообразном диэлектрике, то благодаря высокой подвижности молекул пробитый участок после снятия напряжения восстанавливает свои электрические свойства. Пробой твердых диэлектриков заканчивается разрушением изоляции. Однако разрушение материала можно предупредить, ограничив нарастание тока при пробое допустимым пределом.
Пробой диэлектриков может возникать в результате чисто электрических, тепловых, а в некоторых случаях и электрохимических процессов, обусловленных действием электрического поля. Механизмы пробоя диэлектриков зависят и от агрегатного состояния вещества.
7. Пробой жидких диэлектриков может быть вызван разными процессами,
определяющимися в основном состоянием жидкости, степенью её дегазации и чистотой.
Наиболее часто в жидком диэлектрике встречается влага. Газы, также, как и вода, могут
находиться в жидкости в разных состояниях от молекулярного до сравнительно крупных
включений – пузырьков. Как и в газах, в жидкостях в неоднородных электрических полях
наблюдаются формы пробоя: неполный пробой – корона, искровой и дуговой разряд.
Установлено, что развитие пробоя начинается с формирования оптических неоднородностей вмежэлектродном пространстве: в местах образования будущих каналов пробоя жидкость
становится малопрозрачной. Экспериментально установлено, что при повышении напряжения
в жидкости, содержащей растворённый газ, перед пробоем появляются газовые пузырьки. В
результате пробивное напряжение таких жидкостей значительно падает с понижением
давления или с приближением к температуре кипения, то есть в условиях, облегчающих
образование газовых пузырьков. Вблизи электрода имеется слой жидкости с повышеннымудельным сопротивлением, содержащий микроскопические зародыши газовых пузырьков. При
прохождении тока через этот слой в сильном электрическом поле выделяется такое количество
тепла, что при некотором напряжении указанный слой нагревается до температуры кипения,
происходит интенсивное газовыделение и наступает пробой. В электроизоляционных маслах,
температура кипения которых выше температуры разложения (110 – 1200С), появление
газовых пузырьков перед пробоем может быть связано не с испарением жидкости, а схимическим разложением под влиянием нагревания. Кроме того, образование пузырьков и их
рост могут происходить под действием газового разряда. В этом случае повышается удельныйвес, возрастает вязкость масла, увеличивается температура вспышки.
8. Пробой газов определяется двумя механизмами - лавинным и лавинно-стримерным, связанными с процессами ударной ионизации электронами и фотоионизацией. Для пробоя газа в постоянном однородном поле (рис. 4.2) характерна зависимость Епр от давления. Давление 0,1 МПа соответствует нормальному атмосферному давлению. Eпр при больших давлениях растет в связи с уменьшением длины свободного пробега электронов и уменьшением вероятности актов ионизации; возрастание Eпр при малых давлениях связано с уменьшением вероятности столкновения электронов с молекулами газа из-за малой плотности газа. Eпр воздуха в однородном поле растет, как показано на рис. 4.3 с уменьшением расстояния между электродами из-за уменьшения вероятности столкновения электронов с молекулами газа.

рис. 4.2

рис. 4.3
Пробивное напряжение газов существенно снижается в неоднородных полях, например для воздуха при h=l см от 30 кВ до 9 кВ. В неоднородном поле влияет также полярность электродов. Так для электродов с малым радиусом кривизны Uпр при положительной полярности оказывается меньше, чем при отрицательной. Это связано с образованием положительного объемного заряда у острия в результате развития коронного разряда, что приводит к возрастанию напряженности поля в остальной части промежутка.
9. Электрический пробой по своей природе является чисто электронным процессом,
когда из немногих начальных электронов в твердом теле создается электронная лавина.
Развитие лавин сопровождается фотоионизацией, которая ускоряет образование проводящего
канала. Ускоренные полем электроны при столкновениях передают свою энергию узлам
решетки и разогревают ее вплоть до плавления. В разрядном канале создается значительноедавление, которое может привести к появлению трещин или полному разрушению изолятора.
Пробой твердых диэлектриков
Различают четыре вида пробоя твердых диэлектриков:
электрический пробой макроскопически однородных диэлектриков;
электрический пробой неоднородных диэлектриков;
тепловой (электротепловой) пробой;
электрохимический пробой.
Электрический пробой макроскопически однородных диэлектриков. Этот вид пробоя характеризуется весьма быстрым развитием, он протекает за время, меньшее 10-7 – 10-8 с, и не обусловлен тепловой энергией.Электрический пробой по своей природе является чисто электронным процессом, когда из немногих начальных электронов в твердом теле создается электронная лавина.
Чисто электрический пробой имеет место, когда исключено влияние электропроводности и диэлектрических потерь, обуславливающих нагрев материала, а также отсутствует ионизация газовых включений.
Электрический пробой неоднородных диэлектриков. Такой пробой характерен для диэлектриков, имеющих газовые включения. Он также характеризуется весьма быстрым развитием. Пробивные напряжения для неоднородных диэлектриков во внешнем однородном и неоднородном поле, как правило, невысоки и мало отличаются друг от друга.
С увеличением толщины образца усиливается неоднородность структуры, возрастает количество слабых мест, газовых включений и снижается электрическая прочность как в однородном, так и в неоднородном поле. Площадь электродов тоже влияет на прочность диэлектрика. Чем меньше площадь электродов, тем выше может быть значение электрической прочности из-за уменьшения количества слабых мест, попадающих в пределы поля.
Низкой электрической прочностью отличаются диэлектрики с открытой пористостью: мрамор, непропитанная бумага, дерево, пористая керамика.
Высокой электрической прочностью характеризуются диэлектрики, имеющие плотную структуру и не содержащие газовых включений: слюда, стекла, бумага, тщательно пропитанная жидким диэлектриком.
Тепловой пробой. Этот пробой сводится к разогреву материала в электрическом поле до температур, соответствующих хотя бы местной потере им электроизоляционных свойств, связанной с чрезмерным возрастанием сквозной электропроводности или диэлектрических потерь. Пробивное напряжение при тепловом пробое зависит от ряда факторов: частоты поля, условий охлаждения, температуры окружающей среды и др. Кроме того, напряжение теплового пробоя связано с нагревостойкостью материала.
Для того, чтобы температура изолятора не превышала некоторого критического значения, выше которого неизбежно наступает тепловое разрушение изолятора, необходимо правильно установить допустимое напряжение. Если считать, что все изменение температуры происходит вне диэлектрика, то рабочее напряжение можно найти, приравняв тепловыделение количеству тепла, отводимого при данной температуре с поверхности изолятора:
U2wCtgd= sS(Tраб – T0), (1.28)
где U – напряжение, В; U2wC– реактивная мощность, В·А; w – угловая частота, с-1; С – емкость изолятора, Ф; tgd – тангенс угла потерь при рабочей температуре; s – коэффициент теплоотдачи , Вт/м2·К; S – площадь поверхности изолятора, м2; Tраб и T0 – температуры поверхности изолятора и окружающей среды, К.
Данное выражение с достаточной степенью точности позволяет рассчитать допустимое напряжение для изделий с известной электрической емкостью и хорошей теплопроводностью диэлектрика, обеспечивающей малый перепад температуры по сечению изделия.
Для более точных расчетов В.А.Фоком и Н.Н.Семеновым получено строгое аналитическое выражение для пробивного напряжения в случае теплового пробоя:
(1.29)
где g т – удельная электропроводность диэлектрика, Вт/м·К; f – частота, Гц; tgd0 – тангенс угла потерь диэлектрика при температуре окружающей среды; atgd – температурный коэффициент tgd, 1/K; j(cs) – поправочная функция аргумента с, зависящая от теплопроводности металла электродов, коэффициента теплопередачи из диэлектрика в металл, толщины диэлектрика и электродов.
Электрохимический пробой имеет особенно существенное значение при повышенных температурах и высокой влажности воздуха. Этот вид пробоя наблюдается при постоянном и переменном напряжении низкой частоты, когда в материале развиваются электролитические процессы, обуславливающие необратимое уменьшение сопротивление изоляции.
Такое явление часто называют старением диэлектрика в электрическом поле, поскольку оно приводит к постепенному снижению электрической прочности, заканчивающемуся пробоем при напряженности поля, значительно меньшей пробивной напряженности, полученной при кратковременном испытании. Это явление имеет место в органических (пропитанная бумага, резина и т.д.) и некоторых неорганических диэлектриках (титановая керамика).
Электрохимический пробой требует для своего развития длительного времени, т.к. он связан с явлением электропроводности, приводящем к медленному выделению в материале малых количеств химически активных веществ, или с образованием полупроводящих соединений. В керамике, содержащей окислы металлов переменной валентности (например, ТiО2), электрохимический пробой встречается значительно чаще, чем в керамике, состоящей из окислов алюминия, кремния, магния, бария.
Наличие щелочных окислов в алюмосиликатной керамике способствует возникновению электрохимического пробоя и ограничивает допустимую рабочую температуру. При электрохимическом пробое большое значение имеет материал электрода. Серебро, способное диффундировать в керамику, облегчает электрохимический пробой в противоположность, например, золоту.
10. Тепловые свойства диэлектриков.
Теплопроводность -  это перенос тепловой энергии структурными частицами вещества (молекулами, атомами, ионами) в процессе их теплового движения. 
Теплоемкость -  это величина, характеризующая способность тела изменять свою температуру с подводом или отводом теплоты. 
Теплостойкость – это температура, при которой диэлектрик работает без ухудшения своих свойств в течении длительного времени.
Нагревостойкость – температура, при кратковременном достижении которой диэлектрик теряет свои эксплуатационные свойства.
Теплостойкость и нагревостойкость органических диэлектриков наблюдается по началу ухудшения механических свойств: излом, изгиб, текучесть. У неорганических наблюдается поначалу ухудшения электрических свойств: угол электрических потерь, удельное сопротивление.
Характерные точки для сегнетоэлектриков – точка Кюри, для магнитных – температура Нееля, для жидких – температура вспышки( температура, при которой происходит вспышка смеси паров испытуемой жидкости с воздухом при поднесении пламени. Температура воспламенения – температура, при которой происходит воспламенение жидкости при поднесении пламени. Температура самовоспламенения – температура, при которой загорается жидкость без внешнего источника пламени.) Для полимерных материалов – температура стеклования (температура, при которой полимер переходит из хрупкого состояния в вязко-текучее) и температура плавления ( из вязко- текучего в высокоэластичное).
класс нагревостойкостиТемпература, °СХарактеристика основных групп электроизоляционных материалов, соответствующих данному классу нагревостойкостиY 90 Волокнистые материалы из целлюлозы, хлопка и натурального шелка, не пропитанные и не погруженные в жидкий электроизоляционный материал
А 105 Волокнистые материалы из целлюлозы, хлопка или натурального, искусственного и синтетического шелка, пропитанные или погруженные в жидкий электроизоляционный материал
Е  120 Синтетические органические материалы (пленки, волокна, смолы и др.) и материалы или простые сочетания материалов, для которых на основании практического опыта или соответствующих испытаний установлено, что они могут работать при температуре, соответствующей данному классу
 В  130 Материалы на основе слюды, асбеста и стекловолокна, применяемые с органическими связующими и пропитывающими составами
F 155 Материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с синтетическими связующими и пропитывающими составами, которые соответствуют данному классу нагревостойкостиН 180 Материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические эластомеры
С  Свыше 180 Слюда, керамические материалы, стекло, кварц или их комбинации, применяемые без связующих или с неорганическими и элементоорганическими составами. Температура применения этих материалов определяется их физическими, химическими, механическими и электрическими свойствами
11. Влажностные свойства диэлектриков.
Смачиваемость определяется кривым углом смачивания.

Q <90 градусов –смачивается водой, если >90 градусов – не смачивается.Чтобы увеличить угол – пропитывают лаками.
Гигроскопичность – способность материала впитывать в себя влагу

Влагопроницаемость – способность материала пропускать сквозь себя пары воды.
12. Механические свойства диэлектриков.
Определяют внешнее механическое воздействие: статические и динамические нагрузки.
Твердость материала – способность материала сопротивляться внедрению на него более твердого тела. (определяется царапаньем).
Стойкость к вибрации – определяется на испытательных стендах, когда создаются условия, близкие к рабочим. Создается вибрация и определяется стойкость к амплитуде.
Хрупкость – способность материала разрушаться без заметной пластической деформации. Зависит от его структуры и условий эксплуатации. Хрупкость, возникающая под действием ударных нагрузок, называется ударной хрупкостью. Для оценки хрупкости применяется понятие ударной вязкости.
Вязкость – свойство жидкости или газа оказывать сопротивление перемещению одной его части относительно другой.
Гибкость – обеспечивает сохранение механических и электрических параметров при механической деформации. Определяется числом двойных перегибов.
13. Способ определения удельной ударной вязкости.
Определяется на маятнике Шастри.

Устанавливается испытуемый материал. Маятник из положения (1) поднимают в положение (2). Затем отпускают и он ударяет по испытуемому образцу, проходя через него и достигая высоты h2 ( от верхней границы образца).
σуд=AS;S – площадь поперечного сечения.
A=h1-h2PP – вес маятника
Если образец разбить не удалось, его догружают дополнительным весом и A находим по формуле A=h1-h2P+P1Если вы не догадались, что такое P1-мне вас жаль.14. Понятие «быстрой поляризации». Виды.( упругая поляризация – это и есть быстрая)
Упругая поляризация обусловлена упругим смещением ( поворотом) сильно связанных заряженных частиц ( электронов, ионов) или диполей, причем это смещение ( угол поворота) пропорционально внешнему полю. 
Существует четыре вида упругой поляризации: электронная, атомная, ионная и дипольная. 
Наиболее распространенным видом упругой поляризации является электронная поляризация, которая заключается в упругой деформации электронных оболочек. В результате атом приобретает дипольный момент, направленный согласно с напряженностью внешнего электрического поля и пропорциональный напряженности поля. Такой диполь называется упругим. Электронная поляризация существует у всех диэлектриков. 
Вторым видом упругой поляризации является ионная, характерная для твердых тел с ионным строением. Она обуславливается смещением упруго связанных ионов под воздействием электрического поля на расстояния, меньшие постоянной кристаллической решетки.
15. «Замедленная поляризация». Виды.
Релаксационная поляризация есть результат действия внешнего поля на беспорядочное тепловое движение слабо связанных заряженных частиц или диполей; при этом постепенно устанавливается некоторое преимущественное смещение или ориентация диполей.
Релаксационные (замедленные) виды поляризации - проявляются в газах, жидкостях и твердых диэлектриках в том случае, если они состоят из полярных молекул, диполей или молекул, имеющих отдельные радикалы или части (сегменты), обладающие собственными электрическими моментами:
         дипольная;
         дипольно - релаксационная;
         дипольно - радикальная.
В твердых телах возможны также различные разновидности релаксационных поляризаций, связанные, главным образом, с химическим составом, структурой и типом дефектов поляризации:
         электронно - релаксационная;
         ионно - релаксационная;
         миграционная;
         спонтанная.
16. Лаки. Классификация по режиму сушки, по способу получения, по назначению. Применение.
Лаки – коллоидные растворы смол, битумов, высыхающих масел в растворителях. Входят: разбавители, красители, катализаторы – ускоряют процесс застывания лака, ингибиторы.
По назначению: 1). Покрывные лаки повышают механические свойства поверхности, повышают влагостойкость, повышают химостойкость и повышают напряжение поверхностного разряда.
2).Пропиточные лаки (пропитывают волокнистую изоляцию) повышают влагостойкость, повышают механические свойства, повышаются изоляционные свойства.
3). Клеящие лаки – приклеить на поверхность изоляцию (металл – неметалл или металл – металл)
По режиму сушки:
1). Холодной сушки – образуют твердую пленку на поверхности изоляции при нормальной температуре +20 градусов.
2). Горячей сушки – пленка при температуре не менее +70 градусов.
Глиталиевый лак – раствор глиталиевой смолы в смесях спиртов с углеводородами. Термореактивный лак, применяется как клеящий.
Кремнеорганические лаки – высокие тепловые свойства, высокая нагревостойкость, влагостойкость. Требует горячей сушки. Используют как покрывной лак. Стоек к действию бензина, масел и других активных веществ.
Целлюлоидные лаки – изготовлены на основе искусственных смол. Высокие влагостойкость, химостойкость, но плохо пристает к металлу.
Масляные (светлые лаки) – требуют горячей сушки, либо ингибиторов, но при добавлении ингибитора образуют пленку с высокой хрупкостью. Применяют в производстве лакотканей для пропитки обмотки электрических машин. Применяют масляно-смоляные лаки.
Черные лаки – на основе битумов. Применяются при необходимости толстого слоя изоляции. Изоляция плохая. Низкая нагревостойкость,гибкость, химостойкость. Антикоррозийное покрытие. Масляно-битумные лаки – выше гибкость и изоляционные свойства. Токсичны.
17. Компаунды, классификация по назначению и способу получения.
Компаунд — термоактивная, термопластическая полимерная смола (отверждаемая в естественных условиях) и  HYPERLINK "http://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B0%D1%81%D1%82%D0%BE%D0%BC%D0%B5%D1%80" \o "Эластомер" эластомерные материалы с наполнителями и (или) добавками или без них после затвердевания. Используется в качестве электроизоляционного материала и как средствовзрывозащиты.
Компаунды – растворы смол, битумов, высыхающих лаков, но без растворителя. Термопластичные и термореактивные. По назначению: заливочные, пропиточные, обмоточные, кабельные компаунды – все термопластичные компаунды могут быть пропиточными и заливочными. Эпоксидные компаунды на основе эпоксидной смолы с наполнителями. Термореактивный компаунд получают на основе полиэфирной смолы, стерола, метилметокрилата.
18. Полимеры. Классификация. Термореактивные и термопластичные полимеры.
Полимером называется органическое вещество, длинныемолекулы которого построены из одинаковых многократно повторяющихся звеньев —
мономеров.
Полимеры, как правило, являются хорошими диэлектриками. Они обладают низкими диэлектрическими потерями, высоким удельным сопротивлением, высокой электрической прочностью, высокой технологичностью и, как правило, невысокой ценой. Кроме того, на основе полимеров с дисперсными добавками различной электропроводности, теплопроводности, магнитной проницаемости, диэлектрической проницаемости, твердости и т.п. можно получать разнообразные композиционные материалы с широким спектром свойств. По технологическим признакам полимерные материалы  делятся на 2 класса -  термопласты и реактопласты.
По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.
Органические полимеры.
Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
Термопласты - размягчаются при нагревании, что позволяет использовать простую технологию термопрессования. При этом гранулы исходного полимера помещают в камеру термопласт - автомата, нагревают до температуры размягчения, прессуют и охлаждают. Так делают мелкие диэлектрические детали. Для крупногабаритных изделий, типа кабелей, полутвердый расплав выдавливают через фильеру вместе с внутренним электродом кабеля. 
Наиболее распространенным диэлектриком этого класса является полиэтилен H-(CH2)nH.  Полиэтилен производят путем полимеризации газа этилена при повышенных давлениях и температурах.
Из других термопластичных полимеров, используемых в энергетике в виде электроизоляционных пленок отметим полипропилен, поливинилхлорид, лавсан.
Рядом уникальных свойств обладает фторопласт (политетрафторэтилен). Он химически инертен, не растворяется в растворителях, вплоть до температуры 260 С, абсолютно не смачивается водой, не гигроскопичен. Недостатки - не стоек под действием радиации, обладает хладотекучестью.
Реактопласты - при нагревании не размягчаются, после достижения некоторой температуры начинаются разрушаться. Изделия из них обычно делают различными способами. Одна из распространенных дешевых технологий заключается в следующем. Сначала готовят пресс-порошки полимера. Затем пресс порошок засыпают в пресс-форму и прессуют при определенном давлении и температуре. При этом возникает сцепление между деформированными частицами, и после охлаждения материал готов к использованию. Возможно проведение полимеризации из исходных компонентов в заранее подготовленных формах. Так делают изделия из эпоксидных полимеров, кремнийорганической резины.
Достаточно дешевы и технологичны реактопласты на основе фенолформальдегидных полимеров (бакелит) и аминоформальдегидных полимеров. Их электрофизические характеристики невысоки.
Эпоксидные полимеры обладают хорошей механической прочностью, удовлетворительными электрофизическими характеристиками. Они являются полярными диэлектриками, некоторые марки эпоксидных материалов имеют диэлектрическую проницаемость до 16. Высокая полярность приводит к слабой водостойкости. Главное преимущество эпоксидных компаундов - простота технологии приготовления. Компаунды холодного отвержения получают смешиванием эпоксидной смолы, отвердителя и пластификатора. В период времени до начала твердения (от минут до часов) жидкую композицию можно заливать в требуемую форму. Часто компаунд используют для ремонта диэлектрических деталей в качестве клея.
Из других полимеров-реактопластов отметим диэлектрический материал с высокой механической прочностью - капролон, с большим диапазоном рабочих температур (-100С до +250С) - полиимиды и композиты на их основе.
 
19. Смолы. Природные смолы. Применение.
Смола́ — собирательное название аморфных веществ, относительно твёрдых при нормальных условиях и размягчающихся или теряющих форму при нагревании.
Природные: при низких температурах стеклообразные или аморфные вещества, с повышением температуры становятся пластичными и гибкими. Чаще всего используются непосредственно для изготовления изоляции, лаков, пластмасс, компаундов.
Канифоль – слабополярный диэлектрик, растворяется в спирте, бензине, нефтяных и растительных маслах. Применяется в лаках для загущения масла.
Янтарь – практически ни в чем нерастворим. Температура размягчения 400 градусов. Слабополярный диэлектрик.
Капалы – смесь смол, полученных из растений смолоносов со смолой разложившихся растений-смолоносов. Тугоплавкие, темно-коричневого цвета, труднорастворимые. Применяют в качестве спиртитового раствора при изготовлении лаков и изоляции.
Шеллак – продукт жизнедеятельности тропических насекомых: растворяется в спирте, нерастворим в бензине, температура плавления +180 градусов, слабополярный диэлектрик. При длительном нагревании переходит в неплавкое, нерастворимое состояние.
20. Синтетические смолы. Способы получения, применение. Достоинства и недостатки
Синтетическими смолами называются высокомолекулярные соединения, получаемые в результате реакций полимеризации или поликонденсации.
Полимеризация - это процесс соединения большого количества ненасыщенных элементарных групп (мономеров) в одну сложную молекулу (полимер) без выделения побочных продуктов. Поликонденсация- это реакция образования сложной молекулы органического вещества из более простых с возникновением связей между углеродными и другими атомами с отщеплением молекул Н20, НО и др. В строительстве применяют полимеризационные и поликонденсационные смолы.
По отношению к температурному воздействию синтетические смолы делятся на термопластичные и термореактивные.
К термопластичным относят смолы, сохраняющие при известных температурах постоянную плавкость и пластичность (все пластмассы на основе полимеризационных смол, сложных и простых эфиров, целлюлозы, асфальтобитумные и др.). К термореактивным относят смолы, обладающие плавкостью и пластичностью лишь в ограниченных температурных границах, выше которых, теряя указанные свойства, они переходят в неплавкое и нерастворимое состояния (в основном пластмассы, изготовленные на основе поликонденсационных смол).
На свойства смол большое влияние оказывает структура молекул, величина молекулярного веса, наличие функциональных групп и др.
По виду применяемых для изготовления пластмасс исходных материалов, по способу изготовления и свойствам смолы, применяемые в строительстве, делятся на классы: смолы, получаемые цепной полимеризацией; смолы, получаемые поликонденсацией и ступенчатой полимеризацией; смолы из природных химически модифицированных соединений; смолы, получаемые деструкцией различных органических веществ.
Важнейшие высокомолекулярные соединения, получаемые цепной полимеризацией,- полиэтилен, полиизобутилен, поливинилхло-рид, полистирол, поливинилацетат, полиметилметакрилат, кумарон.
Полиэтилен, или высокомолекулярный парафин- важнейший синтетический продукт группы термопластичных смол. Исходное сырье для его производства - этилен, значительную часть которого получают при термической переработке нефтяных газов (этана, пропана и бутана) и при пиролизе нефтепродуктов. Основными техническими способами получения полиэтилена являются процессы полимеризации при высоком давлении и каталитической полимеризации при низком давлении.
21.Полимеры, полученные полимеризацией. Применение, достоинства и недостатки.
Полимеризацией называют процесс соединения множества молекул низкомолекулярного вещества, т.е. мономера в одну большую макромолекулу высокомолекулярного вещества, т.е. полимера.
К полимеризационным материал относят: полиэтилен, полипропилен, полистирол, полиизобутилен и др. Полиэтилен – это полимерный материал, который получают путем полимеризации этилена под давлением.Изготавливают полиэтилен тремя способами:- при высоком давлении (до 1500 ат);- при низком давлении (до 1-5 ат);- при среднем давлении (35-40 ат).Полиэтилен, полученный при низких давлениях, имеет большую плотность, жесткость, прочность т повышенную теплостойкость по сравнению с полиэтиленом, синтезированным при высоком давлении.Физические свойства полиэтилена зависят от степени его полимеризации, например, температура плавления низкомолекулярного полиэтилена – около 100С, а высокомолекулярного – около 120С.Высокомолекулярный полиэтилен не растворим на холоде и в обычных условиях, но при t=80С он растворяется в некоторых растворителях (бензоле, толуоле и др).Предел прочности его при растяжении составляет 10-20 МПа.Полиэтилен находит широкое применение в строительстве. Он используется для производства мелиоративных труб, гидроизоляционных пленок и др. изделий.
Астирол – это бесцветная жидкость, не смешивается с водой, но образует растворы со спиртом, эфиром и др. органическими растворителями.
22. Полимеры, полученные поликонденсацией. Применение, достоинства и недостатки.
Вторым способом получения полимеров является поликонденсация.Поликонденсация – это процесс получения полимеров, при котором наряду с образованием полимера происходит выделение того или иного низкомолекулярного продукта (воды, соляной кислоты, углекислоты и др.).В результате реакции поликонденсации образуются следующие полимеры с различными свойствами: фенолоформальдегидные, полиэфирные, карбамидные, эпоксидные, кремнийорганические и др. смолы.Фенолформальдегидные смолы получают в виде твердых продуктов для производства твердых порошков, а также для лакокрасочной промышленности.Полиэфирные смолы получают поликонденсацией многоатомных спиртов с многоосновными кислотами. Используют их для изготовления лаков, эмалевых красок и при производстве линолеума.Карбамидные полимеры получают путем амидоформальдегидной по-ликонденсации.Они светостойки, не имеют запаха, долговечны. На их основе получают древесно-стружечные плиты, слоистые пластики. В основном их применяют для изготовления отделочных материалов, используют в качестве тепло- и звукоизоляционных материалов.
23. Растительные масла. Способы получения, Применение, достоинства и недостатки.
Растительные масла, получаемые преимущественно из плодов и семян растений, обычно представляют собой смесь триглицеридов жирных кислотОсновными способами получения растительных масел являются отжим (прессование) и экстрагирование (органическими растворителями, либо сжиженным углекислым газом).
Растительные масла применяют в парфюмерно-косметической промышленности, для производства биотоплива ( HYPERLINK "http://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BE%D0%B4%D0%B8%D0%B7%D0%B5%D0%BB%D1%8C" \o "Биодизель" биодизель), различных лаков, красок и пропиток.
Масла делятся на высыхающие(для изготовления лаков, красок) и невысыхающие(для пропитки и заполнения конденсаторов). Высыхающие – льняное, древесное. Невысыхающие- касторовое масло(не растворяется в бензине, не вызывает набухания резины)
24.Воскообразные диэлектрики. Способы получения. Применение, достоинства и недостатки.
Воскообразные диэлектрики - вещества кристаллического строения; применяются в качестве пропитывающих и заливочных составов. Преимуществом воскообразных диэлектриков является возможность пропитки конденсаторов негерметичной конструкции. Общий недостаток - значительная усадка при застывании
Воскообразные диэлектрики - вещества, внешне похожие на воск, отличаются малой механической прочностью, высокой влагостойкостью, легко плавятся. К таким веществам относятся натуральный воск, искусственные ( парафин, церезин) и синтетические материалы. Воскообразные диэлектрики применяют для заливки и пропитки обмоток и других частей электрических аппаратов в целях предохранения их от влаги. Общий недостаток этих материалов - их большая усадка при застывании, что приводит к появлению воздушных пузырей в залитых изделиях и снижению электрической прочности
Воскообразные диэлектрики ( парафин, церезин) находят применение в качестве пропиточных составов в конденсаторном и в кабельном производстве.
Парафин - воскообразный диэлектрик, представляющий собой продукт переработки нефти. Парафин не имеет запаха, жирен на ощупь, растворим в бензоле и бензине.
25. Пластмассы. Способы получения. Применение, достоинства и недостатки.
Пластма́ссы (пласти́ческие ма́ссы) или пла́стики — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.
Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное состояние.
В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на:
Термопласты (термопластичные пластмассы) — при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние;
Реактопласты (термореактивные пластмассы) — в начальном состоянии имеют линейную структуру макромолекул, а при некоторой температуре отверждения приобретают сетчатую. После отверждения не могут переходить в вязкотекучее состояние. Рабочие температуры выше, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.
Пластмассы характеризуются малой плотностью (0,85—1,8 г/см³), чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований,Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много», например этилен-полиэтилен).
26.Волокнистые материалы. Способы получения. Применение, достоинства и недостатки.
Применяемыми волокнистыми электроизоляционными материалами являются: деревянные доски и бруски, листовой и рулонный картоны, бумаги, ткани и ленты.Волокнистые материалы могут быть органического и неорганического происхождения.К первой группе материалов относятся древесина, хлопчатобумажные и шелковые ткани и ленты, а также   картоны, бумаги и фибра, изготовленные из целлюлозных и хлопчатобумажных волокон.Характерными для этой группы материалов являются их высокая пористость и большая гигроскопичность, что обусловливает возможность их применения только после сушки и пропитки маслом, парафином, смолами и некоторыми другими материалами.Ко второй группе относятся материалы из асбестовых, стеклянных и синтетических волокон.Отличительные особенности волокнистых материалов неорганического происхождения — высокая нагревостойкость (удовлетворяющая классу С) и негорючесть.
Дерево. При изготовлении и ремонте электрических машин и трансформаторов применяется древесина твердых пород — главным образом бука, граба и березы.Несмотря на дешевизну, высокие электроизоляционные и механические качества, легкость обработки, дерево имеет ограниченное применение из-за своей горючести и гигроскопичности.
Бумаги. Электрические изоляционные бумаги изготовляются из волокон целлюлозы, хлопка, тростника и асбеста, применяются как для работы на воздухе, так и в масле.Наибольшее применение получили кабельная и телефонная бумаги, изготовленные из волокон органического происхождения, обладающие сравнительно высокими механическими качествами и воздухонепроницаемостью, но малой нагреваемостью и низкой электрической прочностью. Пропитка бумаг маслом, лаком, компаундами значительно повышает ее электрическую прочность и в меньшей степени — нагревостойкостьПрименяется для изоляции, изготовления нитей, холстов, лент, шнуров, трикотажа, войлоков.
27. Слоистые пластики. Способы получения. Применение, достоинства и недостатки.
Слоистые пластики — текстолит, асбестотекстолит, стеклотестолит, гетинакс и древесно-слонстый пластик (дельта-древесина) состоят из нескольких слоев ткани или  бумаги, или древесного шпона, склеенных между собой термореактивными смолами в процессе термической обработки под высоким давлением. В качестве основы применяются: для текстолита —хлопчатобумажная, шелковая и капроновая ткани и пряжа;
Для асбестотекстолита — асбестовые ткани и волокна;для стеклотекстолита — бесщелочная стеклоткань;для гетинакса — целлюлозная бумага;для дельта-древесины — березовый фанерный шпон толщиной 0,2—0,8 мм.Связующими при изготовлении слоистых пластиков являются фенольные, меламнновые, эпоксидные, диаллилфталатные, полиэфирные, кремнийорганические и некоторые другие смолы и их смеси.Сочетая в себе высокие электрические и механические качества, слоистые пластики применяются в равной мере как электроизоляционный и как конструкционный, главным образом крепежный, материал. Выпускаются слоистые пластики в виде листов, досок, а также в виде так называемых намотанных изделий — трубок, цилиндров и стержней. Асбестотекстолит выпускается также в виде заготовок деталей — клиньев и распорок для роторов турбогенераторов, фасонных дистанирующих прокладок и др.
Пригодны для работы при температуре от —60 до +105° С, очень стойки к воздействию минеральных масел,имеют несколько пониженную электрическую и механическую прочность, но обладает более высокой нагревостойкостью, может использоваться для работы при температуре до 155° С.Стеклотекстолит на кремнийорганических и эпоксидных связующих превосходит все другие виды слоистых пластиков по своим электрическим характеристикам, влагостойкости и стойкости к грибковой плесени.28. Эластомеры. Способы получения. Применение, достоинства и недостатки.
Эластомеры— под этим термином понимают полимеры, обладающие в диапазоне эксплуатации высокоэластичными свойствами. Называют резиной или эластомером любой упругий материал, который может растягиваться до размеров, во много раз превышающих его начальную длину, и, что существенно, возвращаться к исходному размеру, когда нагрузка снята.
Типичные эластомеры — различные каучуки и резины.
Наиболее массовое применение каучуков — это производство резин для автомобильных, авиационных и велосипедных шин.
Из каучуков изготавливаются специальные резины огромного разнообразия уплотнений для целей тепло- звуко- воздухо- гидроизоляции разъёмных элементов зданий, в санитарной и вентиляционной технике, в гидравлической, пневматической и вакуумной технике.
Каучуки применяют для электроизоляции, производства медицинских приборов и средств контрацепции.
В ракетной технике синтетические каучуки используются в качестве полимерной основы при изготовлении твёрдого ракетного топлива, в котором они играют роль горючего, а в качестве наполнителя используется порошок селитры (калийной или аммиачной) или перхлората аммония, который в топливе играет роль окислителя.
Изопреновые каучуки — синтетические каучуки, получаемые полимеризацией изопрена в присутствии катализаторов — металлического лития, перекисных соединений.
Достоинтсва: стойкость к тепловому старению, влагостойкость. Недостатки: деформация при растяжении и сжатии, низкая клейкость.
29. Стекла. Классификация. Применение. Достоинства и недостатки.
Стекло́ — вещество и материал, один из самых древних и, благодаря разнообразию своих свойств, — универсальный в практике человека. Физико-химически — неорганическое вещество, твёрдое тело, структурно — аморфно, изотропно; все виды стёкол при формировании преобразуются в агрегатном состоянии — от чрезвычайной вязкости жидкого до так называемого стеклообразного — в процессе остывания со скоростью, достаточной для предотвращения кристаллизации расплавов, получаемых плавлением сырья. Температура варки стёкол, от 300 до 2500 °C, определяется компонентами этих стеклообразующих расплавов (оксидами, фторидами, фосфатами и др.) . Прозрачность (для видимого человеком спектра) не является общим свойством для всех видов существующих как в природе, так и в практике стёкол.
Природное стекло, будучи одним из первых естественных материалов, который получил очень широкое применение в быту, и как орудие труда, и как часть разных видов оружия (ножи, наконечники стрел, копий и т. д.), — для изготовления украшений и других предметов обихода.
Именно свойства стекла как аморфного вещества, с одной стороны, наделяющего его хрупкостью, в чём его недостаток и неприменимость для изготовления, например, инструментов, к которым предъявляются требования повышенной прочности, с другой стороны, это отсутствие кристаллической решётки дало ему и преимущество, которое является причиной того, что с первыми в истории медицинскими, хирургическими инструментами по их остроте, возможностям заточки, до сих пор не может сравниться ни один металлический скальпель
Различаются три главных вида стекла:
Содово-известковое стекло (1Na2O : 1CaO : 6SiO2)
Калийно-известковое стекло (1K2O : 1CaO : 6SiO2)
Калийно-свинцовое стекло (1K2O : 1PbO : 6SiO2)
Один из самых главных недостатков стекол это хрупкость. Достоинства: высокая электроизоляционная , химическая и термическая стойкость
30. ЭЛЕКТРОТЕХНИ́ЧЕСКАЯ КЕРА́МИКА, обширная группа используемых в промышленности керамических материалов (стеатитовая керамика (см. СТЕАТИТОВАЯ КЕРАМИКА), титановая керамика (см. ТИТАНОВАЯ КЕРАМИКА), сегнето- и пьезоэлектрическая керамика, электрофарфор (см. ЭЛЕКТРОФАРФОР)), обладающих прочностью и необходимыми электротехническими свойствами (большим удельным электрическим сопротивлением — объемным и поверхностным, высокой электрической прочностью, сравнительно небольшим тангенсом угла диэлектрических потерь). В производстве электрокерамики используются минеральное сырье и другие исходные материалы высокого качества. Спекание производится в туннельных и конвейерных печах с автоматическим регулированием режима обжига. На электрические свойства керамики влияют фазовый состав и технология изготовления керамики. Диэлектрическая проницаемость полученного материала обусловлена в основном процессами, протекающими в кристаллических зернах, электропроводность — в аморфной фазе, диэлектрические потери — как в кристаллических зернах, так и в аморфной фазе. Электрическая и механическая прочность зависят от размера пор, химического состава и размера кристаллических зерен. Кристаллическая фаза влияет на величину температурного коэффициента линейного расширения. Широкое применение в качестве электроизоляционного материала находит электротехнический фарфор, который является основным керамическим материалом, используемым в производстве широкого ассортимента низковольтных и высоковольтных изоляторов и других изоляционных элементов с рабочим напряжением до 1150 кВ переменного и до 1500 кВ постоянного тока. Преимущества электрофарфора перед другими электроизоляционными материалами состоят в том, что из него можно изготовлять изоляторы сложной конфигурации с хорошими прочностными характеристиками, сырьевые материалы доступны, технология изготовления изделий относительно проста. К электротехнической низкочастотной установочной керамике относится также разновидность стеатитовой керамики — высоковольтная стеатитовая керамика, изготовленная на основе талька (70—85%), глинистых веществ (до10%) и оксида бария (до15%), Высоковольтная стеатитовая керамика по сравнению с электрофарфором имеет повышенные механические и электротехнические свойства. Поэтому она применяется там, где необходима повышенная механическая прочность. Технология изготовления изделий из стеатитовой керамики сложнее и требует более высокой температуры обжига, чем из электрофарфора. Однако усадка этих изделий меньше. Термо- и дугостойкой керамикой, используемой для изготовления специальных изоляторов электронагревательных устройств, дугогасительных камер, высоковольтных выключателей, пирометрических защитных трубок и пр., является кордиеритовая керамика, изготовленная на основе кордиерита (см. КОРДИЕРИТ) (до 60%).
31. Слюда является основой большой группы электроизоляционных изделий. Главное достоинство слюды - высокая термостойкость наряду с достаточно высокими электроизоляционными характеристиками. Слюда является природным минералом сложного состава. В электротехнике используют два вида слюд: мусковит КАl2(АlSi3О10)(ОН)2 и флогопит КMg3(АlSi3О10(ОН)2. Высокие электроизоляционные характеристики слюды обязаны ее необычному строению, а именно - слоистости. Слюдяные пластинки можно расщеплять на плоские пластинки вплоть до субмикронных размеров. Разрушающие напряжения при отрыве одного слоя от другого слоя составляют примерно 0.1 МПа, тогда как при растяжении вдоль слоя - 200-300 МПа. Из других свойств слюды отметим невысокий tg , менее чем 10-2; высокое удельное сопротивление, более 1012 Ом·м; достаточно высокую электрическую прочность, более 100 кВ/мм; термостойкость, температура плавления более 1200° С.
Слюда используется в качестве электрической изоляции, как в виде щипаных тонких пластинок, в.т.ч. склееных между собой (миканиты), так и в виде слюдяных бумаг, в.т.ч. пропитанных различными связующими (слюдиниты или слюдопласты). Слюдяная бумага производится по технологии, близкой к технологии обычной бумаги. Слюду размельчают, готовят пульпу, на бумагоделательных машинах раскатывают листы бумаги.
Миканиты обладают лучшими механическими характеристиками и влагостойкостью, но они более дороги и менее технологичны. Применение - пазовая и витковая изоляция электрических машин.
Слюдиниты - листовые материалы, изготовленные из слюдяной бумаги на основе мусковита. Иногда их комбинируют с подложкой из стеклоткани (стеклослюдинит), или полимерной пленки (пленкослюдинит). Бумаги, пропитанные лаком, или другим связующим, обладают лучшими механическими и электрофизическими характеристиками, чем непропитанные бумаги, но их термостойкость обычно ниже, т.к. она определяется свойствами пропитывающего связующего.
Слюдопласты - листовые материалы, изготовленные из слюдяной бумаги на основе флогопита и пропитанные связующими. Как и слюдиниты, они также комбинируются с другими материалами. По сравнению со слюдинитами они обладают несколько худшими электрофизическими характеристиками, но обладают меньшей стоимостью. Применение слюдинитов и слюдопластов - изоляция электрических машин, нагревостойкая изоляция электрических приборов.
  33, Кристаллическая решетка, в которой отсутствуют нарушения сплошности и все узлы заполнены однородными атомами называется идеальной кристаллической решеткой металла.
    В решетке реального металла могут находиться различные дефекты.
    Все дефекты кристаллической решетки принято делить на точечные, линейные, поверхностные и объемные.
    Точечные дефекты соизмеримы с размерами атомов. К ним относятся вакансии, т. е. незаполненные узлы решетки, межузельные атомы данного металла (рис 1.8), примесные атомы замещения, т. е. атомы, по диаметру соизмеримые с атомами данного металла и примесные атомы внедрения, имеющие очень малые размеры и поэтому находящиеся в междоузлиях (рис 1.9). Влияние этих дефектов на прочность металла может быть различным в зависимости от их количества в единице объема и характера.
 
    Линейные дефекты имеют длину, значительно превышающую их поперечные размеры. К ним относятся дислокации, т. е. дефекты, образующиеся в решетке в результате смещений кристаллографических плоскостей.
 
    Дислокации бывают двух видов.
    Наиболее характерной является краевая дислокация (рис. 1.10). Она образуется в результате возникновения в решетке так называемой полуплоскости или экстраплоскости.
    Нижний ряд экстраплоскости собственно и принято называть дислокацией.
    Другим типом дислокации является винтовая дислокация, которая представляет собой некоторую условную ось внутри кристалла, вокруг которой закручены атомные плоскости (рис.1.11).
    В винтовой дислокации, так же как в краевой, существенные искажения кристаллической решетки наблюдаются только вблизи оси, поэтому такой дефект может быть отнесен к линейным.
    Дислокации обладают высокой подвижностью, поэтому существенно уменьшают прочность металла, так как облегчают образование сдвигов в зернах-кристаллитах под действием приложенных напряжений.
    Дислокационный механизм сдвиговой пластической деформации внутри кристаллов может привести к разрушению изделия. Таким образом, дислокации непосредственно влияют на прочностные характеристики металла.
    Для оценки этого влияния используется плотность дислокаций, под которой принято понимать отношение суммарной длины дислокаций к объему содержащего их металла. Плотности дислокаций измеряется в см-2 илим-2.
    На рис. 1.12 в виде кривой ABC схематически показана зависимость прочности металла от плотности дислокаций. Точка А соответствует теоретической прочности металла, обусловленной необходимостью одновременного разрыва всех межатомных связей, проходящих через плоскость сдвига, в случае отсутствия дислокаций.
    При увеличении количества дислокаций (см. участок АВ) прочность резко снижается, так как на несколько порядков уменьшаются усилия, необходимые для осуществления сдвигов в зернах металла при его деформировании и разрушении.
При плотности дислокаций 106-107 см-2 (точка В на кривой), прочности минимальна, и на участке ВС происходит ее рост. Это объясняется тем, что с ростом плотности дислокаций их передвижение происходит не только по параллельным, но и по пересекающимся плоскостям, что существенно затрудняет процесс деформирования зерен.
Поэтому начиная с точки В прочность металла возрастает.
    Максимальная плотность дислокаций, может составить 1013 см-2. При дальнейшем росте плотности дислокаций происходит разрушение металла.
    Поверхностные дефекты включают в себя главным образом границы зерен (рис.1.13). На границах кристаллическая решетка сильно искажена. В них скапливаются перемещающиеся изнутри зерен дислокации.
    Из практики известно, что мелкозернистый металл прочнее крупнозернистого. Так как у последнего меньше суммарная протяженность (площадь) границ. То можно сделать вывод, что поверхностные дефекты способствуют повышению прочности металла. Поэтому создано несколько технологических способов получения мелкозернистых сплавов.
    Объемные дефекты кристаллической решетки включают трещины и поры. Наличие данных дефектов, уменьшая плотность металла, снижает его прочность.
    Кроме того, трещины являются сильными концентраторами напряжений, в десятки и более раз повышающими напряжения создаваемые в металле рабочими нагрузками. Последнее обстоятельство наиболее существенно влияет на прочность металла
34. Сплавы металлов, металлические сплавы, твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов, а также металлов с различными неметаллами. Термин "С." первоначально относился к материалам с металлическими свойствами. Однако с середины 20 в. в связи с бурным развитием физики и техники полупроводников и полупроводниковых материалов понятие С. расширилось и распространилось на С. элементарных полупроводников и полупроводниковых соединений. С. даже при сравнительно простой кристаллической структуре часто обладают более высокими механическими и физическими свойствами, чем составляющие их чистые металлы, например твёрдые растворы Cu—Sn (бронза) или Fe—C (чугун, сталь). Два больших периода истории материальной культуры — бронзовый век и железный век — названы по тем металлам и С., из которых изготовлялись орудия труда, предметы вооружения и пр. Издавна было известно, что свойства С. зависят не только от их состава, но и от тепловой (например, закалка) и механической (например, ковка) обработки, Переход от поиска практически важных С. с помощью "проб и ошибок" к научным основам создания промышленных С. произошёл только в конце 19 — начале 20 вв., когда под влиянием быстро растущих запросов техники и идей физической химии возникло учение о зависимости между свойствами металлов и свойствами образованных из них С., а также о влиянии на них механических, тепловых, химических и др. воздействий (см. Металловедение, Металлография, Металлофизика, физико-химический анализ). Были построены диаграммы состояния и диаграммы состав — свойство для всевозможных комбинаций металлических систем, как двойных, так и многокомпонентных. Раскрываемый диаграммой состояния характер взаимодействия компонентов системы (образование твёрдых растворов, химических соединений, механических смесей, наличие фазовых превращений в твёрдом состоянии) позволяет предвидеть тип диаграмм состав — твёрдость, состав — электропроводность и др., получить представление о макроструктуре С. Во второй половине 20 в. внимание учёных в СССР и за рубежом всё больше сосредоточивается на проблеме предсказания характера взаимодействия элементов и свойств их С. При этом используются закономерности, вскрытые периодической системой элементов, успехи теориихимической связи, достижения физики твёрдого тела и вычислительной техники. Разработка теории С. создала новые возможности развития промышленности, а также ряда отраслей новой техники. Современные промышленные С. — основная часть конструкционных материалов. При этом 95% мировой металлопродукции составляют С. на основе железа — самого дешёвого и доступного металла (сталь, чугун, ферросплавы). Всё больше элементов периодической системы Менделеева, до недавнего времени представлявших чисто научный интерес, находит практическое применение для легирования известных и создания новых С. с целью расширения диапазона свойств и областей применения.
Большое число всевозможных С. требует их классификации. Для неё существует теоретический и практический подход. В первом случае с точки зрения термодинамики химической (и фаз правила) С. классифицируют: а) по числу компонентов — на двойные, тройные и т. д.; б) по числу фаз — на однофазные (твёрдый раствор или интерметаллид) и многофазные (гетерофазные), состоящие из двух и более фаз. Этими фазами могут быть чистые компоненты, твёрдые растворы, фазы со структурой a-, b-, g-, e-латуни, b-вольфрама, типа Cu5Ca, NiAs, CaF2, сигма-фазы, фазы Лавеса (названы по имени нем. учёного Ф. Лавеса), фазы внедрения и др. Особенно ценны С. с очень тонкой гетерогенностью (см.  HYPERLINK "http://slovari.yandex.ru/~%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%BD%D0%BE%D1%83%D0%BF%D1%80%D0%BE%D1%87%D0%BD%D1%91%D0%BD%D0%BD%D1%8B%D0%B5%20%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D1%8B/" Дисперсноупрочнённые материалы, Старение металлов); можно считать, что они лежат на границе между твёрдыми растворами и многофазными С. По практическому получению и применению принята следующая классификация С.: а) по металлам — либо являющимся основой С. (С. чёрных металлов и С. цветных металлов, а также алюминиевые сплавы, железные сплавы, никелевые сплавы и т. п.), либо по добавленным в небольших количествах и придающим особо ценные свойства легирующим компонентам (бериллиевая бронза, ванадиевая, вольфрамовая и др. стали); б) по применению (для изготовления конструкций или инструментов) и свойствам — антифрикционные, жаропрочные, жаростойкие, износостойкие, лёгкие и сверхлёгкие, легкоплавкие, химически стойкие и многие другие, а также С. с особыми физическими свойствами — тепловыми, магнитными, электрическими (см. Прецизионные сплавы); в) по технологии изготовления изделий — на литейные (отливка жидких С. в формы); деформируемые (в холодном или горячем состоянии путём ковки, прокатки, волочения, прессования, штамповки); полученные методами порошковой металлургии (см. Спечённые материалы).Для обозначения качественного состава выпускаемые в СССР С. маркируются (см. на примере медных сплавов, легированных сталей). Кроме того, многие С. имеют названия, связанные с различными их признаками: составом (например, нихром), особыми свойствами (например, инвар, константан). С. называют и по фамилиям изобретателей (Вуда сплав, мельхиор,  HYPERLINK "http://slovari.yandex.ru/~%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%9C%D0%BE%D0%BD%D0%B5%D0%BB%D1%8C-%D0%BC%D0%B5%D1%82%D0%B0%D0%BB%D0%BB/" монель-металл), названиям фирм ( HYPERLINK "http://slovari.yandex.ru/~%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%90%D0%A0%D0%9C%D0%9A%D0%9E-%D0%B6%D0%B5%D0%BB%D0%B5%D0%B7%D0%BE/" армко-железо) и др.
Свойства большинства С. определяются как составом, так и структурой С., зависящей от условийкристаллизации и охлаждения, термической и механической обработки. При нагреве и охлаждении изменяется структура С. (см. Макроструктура, Микроструктура), что обусловливает изменение механических, физических и химических свойств и влияет на поведение С. при обработке и эксплуатации. Выяснение (с помощью диаграмм состояния) возможных фазовых превращений в С. даёт исходные данные для анализа важнейших видов термической обработки (закалки, отпуска металлов, отжига, старения). Например, перед отжигом углеродистых сталей исходной структурой чаще всего является феррито-карбидная смесь; основное превращение, происходящее при нагревании, — это переход перлита в аустенит при температуре выше 727 °С ("точка A1"); закалка позволяет сохранить аустенитную структуру (т. н. закалка без полиморфного превращения, при которой происходит повышение прочности при сохранении пластичности С.). Типичный пример подобного поведения для алюминиевых С. — закаленный дуралюмин Д16. Реже встречаются С., у которых при закалке снижается прочность и сильно возрастает пластичность по сравнению с отожжённым состоянием. Типичный пример — бериллиевая бронза Бр. Б2 или нержавеющая хромоникелевая сталь X18H9. Для любых металлов или С., в которых при изменении температуры происходит полиморфное превращение основного компонента, при быстром охлаждении возможна закалка с бездиффузионным полиморфным превращением, которую обычно называют "закалкой на мартенсит". Мартенситное превращение, открытое при изучении закалки углеродистых и легированных сталей, как выяснилось впоследствии, является одним из фундаментальных способов перестройки кристаллической решётки, свойственным как чистым металлам, так и самым различным классам С.: безуглеродистым С. на основе железа, сплавам цветных металлов, полупроводниковым соединениям и др. Современная термическая обработка металлов и С. включает не только собственно термическую, но итермомеханическую обработку, химико-механическую обработку и химико-термическую обработку. В процессе таких технологических операций, как литьё, сварка, горячая обработка давлением, С. могут побочно также подвергаться отдельным видам термического воздействия и изменять свои свойства.
Для установления и проверки свойств С. применяют различные методы контроля, в т. ч. разрушающего — испытания на механическую прочность и пластичность, жаропрочность (см. Механические свойства материалов), а также испытания на стойкость против коррозии(см. Коррозия металлов, Жаростойкость и др.), и неразрушающего (измерения твёрдости, электрических, оптических, магнитных и др. свойств). Состав С. определяется химико-аналитическими методами (см. Качественный анализ, Количественный анализ), с помощью спектрального анализа, рентгеноспектрального анализа и др. методов. Весьма эффективны для практического применения методы быстрого ("экспрессного") химического анализа, используемые при производстве С., полуфабрикатов и изделий из С. Для исследования как самой структуры С., так и её дефектов используются методы физического металловедения. Различают макроскопические и микроскопические дефекты С. (см. Дефекты в кристаллах, Дефекты металлов).
Подавляющее большинство промышленных С. существует в мелкозернистом (в виде поликристаллов) состоянии; свойства таких С. практически изотропны (см. Изотропия). Получение С. в виде  HYPERLINK "http://slovari.yandex.ru/~%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%9C%D0%BE%D0%BD%D0%BE%D0%BA%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB/" монокристалловпредставляло чисто научный интерес. Лишь со 2-й половины 20 в. появилась необходимость в промышленном производстве С. в виде монокристаллов, т. к. в ряде областей новой техники могут быть использованы только монокристаллы (см. Полупроводниковые материалы).
Современные успехи науки о С. в значительной мере связаны с совершенствованием классических и разработкой новых физических методов исследования твёрдого тела (см. Рентгеновский структурный анализ,Электронная микроскопия, Нейтронография, Электронография и др. методы).Подробнее о методах получения С., их свойствах, значении и применении см. также статьи о различных С.
35. Железоуглеродистые сплавы, сплавы железа с углеродом на основе железа. Варьируя состав и структуру, получают Ж. с. с разнообразными свойствами, что делает их универсальными материалами. Различают чистые Ж. с. (со следами примесей), получаемые в небольших количествах для исследовательских целей, и технические Ж. с. — стали (до 2%С) и чугуны (св. 2% С), мировое производство которых измеряется сотнями млн. т.Технические Ж. с. содержат примеси. Их делят на обычные (фосфор Р, сера S, марганец Mn, кремний Si, водород Н, азот N, кислород О), легирующие (хром Cr, никель Ni, молибден Mo, вольфрам W, ванадий V, титан Ti, кобальт Со, медь Cu и др.) и модифицирующие (магний Mg, церий Ce, кальций Ca и др.). В большинстве случаев основой, определяющей строение и свойства сталей и чугунов, является система Fe — С. Начало научному изучению этой системы положили русские металлурги П. П. Аносов (1831) и Д. К. Чернов (1868). Аносов впервые применил микроскоп при исследовании Ж. с., а Чернов установил их кристаллическую природу, обнаружил дендритную кристаллизацию и открыл в них превращения в твёрдом состоянии. Из зарубежных учёных, способствовавших созданию диаграммы состояния Fe — С сплавов, следует отметить Ф. Осмонда (Франция), У. Ч. Робертса-Остена (Англия), Б. Розебома (Голландия) и П. Геренса (Германия).
Фазовые состояния Ж. с. при разных составах и температурах описываются диаграммами стабильного (рис. 1, а) и метастабильного (рис. 1, б) равновесий. В стабильном состоянии в Ж. с. встречаются жидкий раствор углерода в железе (Ж), три твёрдых раствора углерода в полиморфных модификациях железа (табл. 1)
Табл. 1.— Кристаллические фазы железоуглеродистых сплавов
Название
фазы Природа фазы Структура
a-феррит Твердый раствор внедрения углерода в a-FeОбъемноцентрированная кубическая
Аустенит Твердый раствор внедрения углерода в g-FeГранецентрированная кубическая
d-феррит Твердый раствор внедрения углерода в d-FeОбъемноцентрированная кубическая
Графит Полиморфная модификация углерода Гексогональная слоистая
Цементит Карбид железа Fe2C Ромбическая
a-раствор (a-феррит), g-раствор (аустенит) и d-раствор (d-феррит), и графит (Г). В метастабильном состоянии в Ж. с. встречаются Ж, a-, g-, d-растворы и карбид железа Fe3C — цементит (Ц). Области устойчивости Ж. с. в однофазных и двухфазных состояниях указаны на диаграммах. При некоторых условиях в Ж. с. могут существовать в равновесии и три фазы. При температурах НВ возможно перитектич. равновесие d + g + Ж,E’C’F’ — эвтектическое стабильное равновесие g + Ж + Г; при ECF — эвтектическое метастабильное равновесие g + Ж + Ц; при P'S'K' — эвтектоидное стабильное равновесие a + g + Г', при PSK — эвтектоидное метастабильное равновесие a + g+ Ц. Диаграммы а и б вычерчиваю и в одной координатной системе (рис. 1, в). Такая сдвоенная диаграмма наглядно характеризует относительное смещение однотипных линий равновесия и облегчает анализ Ж. с., содержащих стабильные и метастабильные фазы одновременно.Основной причиной появления в Ж. с. высокоуглеродистой метастабильной фазы в виде цементита являются трудности формирования графита. Образование графита в жидком растворе Ж и твёрдых растворах a и g связано с практически полным удалением атомов железа из участков сплава, где зарождается и растет графит. Оно требует значительных атомных передвижений. Если Ж. с. охлаждаются медленно или длительно выдерживаются при повышенных температурах, атомы железа успевают удалиться из мест, где формируется графит, и тогда возникают стабильные состояния. При ускоренном охлаждении и недостаточных выдержках удаление малоподвижных атомов железа задерживается, почти все они остаются на месте, и тогда в жидких и твёрдых растворах зарождается и растет цементит. Необходимая для этого диффузия легкоподвижных при повышенных температурах атомов углерода, не требующая больших выдержек, успевает происходить и при ускоренном охлаждении. Помимо основных фаз, указанных на диаграммах, в технических Ж. с. встречаются небольшие количества и др. фаз, появление которых обусловлено наличием примесей. Часто встречаются сульфиды (FeS, MnS), фосфиды (Fe3P), окислы железа и примесей (FeO, MnO, Al2O3, Cr2O3, TiO2 и др.), нитриды (FeN, AlN) и др. неметаллические фазы. Точечными линиями на диаграммах отмечены точки Кюри, наблюдающиеся в Ж. с. в связи с магнитными превращениями феррита (768°С) и цементита (210°С).
Строение Ж. с. определяется составом, условиями затвердевания и структурными изменениями в твёрдом состоянии. В зависимости от содержания углерода Ж. с. делят на стали и чугуны. Стали с концентрацией углерода, меньшей чем эвтектоидная S' и S (табл. 2), называют доэвтектоидными, а более высокоуглеродистые — заэвтектоидными. Чугуны с концентрацией углерода, меньшей чем эвтектическая C1 и С, называют доэвтектическими, а более высокоуглеродистые — заэвтектическими.
Табл. 2.— Координаты точек диаграмм Fe — СТочка Температура, °СКонцентрация углерода, %
A 1539 0,000  
B 1494 0,50  
С' 1152 4,26  
С 1145 4,30  
N 1400 0,000  
Н 1494 0,10  
J 1494 0,16  
G 910 0,000  
E' 1152 2,01  
E 1145 2,03  
S' 738 0,68  
S 723 0,80  
P' 738 0,023  
P 723 0,025  
Затвердевание сталей, содержащих до 0,5% С, начинается с выпадения кристаллов 8-раствора обычно в виде дендритов. При концентрациях углерода до 0,1% кристаллизация заканчивается образованием однофазной структуры d-раствора. Стали с 0,1—0,5% С после выделения некоторого количества 8-раствора испытывают перитектическое превращение Ж + d —> g. В интервале концентраций 0,10—0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается при охлаждении до температуры линии IE. В Ж. с. с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая однофазную аустенитную структуру. Затвердевание же чугунов, начинаясь с выделения избыточного (первичного) g- раствора, заканчивается эвтектическим распадом остатка жидкости по одному из трёх возможных вариантов: Ж ® g + Г, Ж ®g + Ц или Ж ®(+ Г + Ц. В первом случае получаются т. н. серые чугуны, во втором — белые, в третьем — половинчатые. В зависимости от условий кристаллизации графит выделяется в виде разветвленных (рис. 2, ж) или шаровидных (рис. 2, з) включений, а цементит — в виде монолитных пластин (рис. 2, и) или проросших разветвленным аустенитом (т. н. ледебурит, рис. 2, к). В Ж. с., содержащих более 4,26—4,3% С, кристаллизация переохлажденного ниже линии D1C1 расплава в условиях медленного охлаждения начинается с образования первичного графита разветвленной или шаровидной формы. В условиях ускоренного охлаждения (при переохлаждениях ниже линии DC) образуются пластины первичного цементита (рис. 2, л). При промежуточных скоростях охлаждения выделяются и графит, и цементит. Кристаллизация заэвтектических чугунов, так же как и доэвтектических, завершается распадом остатка жидкости на смесь g- раствора с высокоуглеродистыми фазами.
Строение затвердевших Ж. с. существенно изменяется при дальнейшем охлаждении. Эти изменения обусловлены полиморфными превращениями железа, уменьшением растворимости в нём углерода, графитизацией цементита. Структура может изменяться в твёрдом состоянии в результате процессов рекристаллизации твёрдых растворов, сфероидизации кристаллов (из неравноосных становятся равноосными), коалесценции (одни кристаллы цементита укрупняются за счёт других) высокоуглеродистых фаз.
Полиморфные превращения Ж. с. связаны с перестройками гранецентрированной кубической (ГЦК) решётки g-Fe и объёмноцентрированной решётки (ОЦК) a- и d-Fe
В зависимости от условий охлаждения и нагревания полиморфные превращения твёрдых растворов происходят разными путями. При небольших переохлаждениях (и перегревах) имеет место т. н. нормальная перестройка решёток железа, осуществляющаяся в результате неупорядоченных индивидуальных переходов атомов от исходной фазы к образующейся; она сопровождается диффузионным перераспределением углерода между фазами. При больших скоростях охлаждения или нагревания полиморфные превращения твёрдых растворов происходят бездиффузионным (мартенситным) путём. Решётка железа перестраивается быстрым сдвиговым механизмом в результате упорядоченных коллективных смещений атомов без диффузионного перераспределения углерода между фазами. Например, при закалке Ж. с. в воде g- раствор переходит в a- раствор того же состава. Этот пересыщенный углеродом a- раствор называют мартенситом (рис. 2, е). Превращения при промежуточных условиях могут совмещать в себе сдвиговую перестройку решётки железа с диффузионным перераспределением углерода (бейнитное превращение). Формирующиеся при этом структуры существенно различны. В первом случае образуются равноосные с малым числом дефектов кристаллы твёрдого раствора (рис. 2, а). Во втором и третьем — игольчатые и пластинчатые кристаллы (рис. 2, е) с многочисленными двойниками и линиями скольжения. Структура Ж. с. изменяется также и в связи с изменением растворимости углерода в a- и g-железе при охлаждении и нагревании. При охлаждении растворы пересыщаются углеродом и выделяются кристаллы высокоуглеродистых фаз (цементита и графита). При нагревании имеющиеся высокоуглеродистые фазы растворяются в a- и g-фазах.
Зарождение и рост кристаллов цементита в пересыщенных растворах происходит обычно с большей скоростью, чем образование графита, и поэтому Ж. с. часто метастабильны. В зависимости от переохлаждения цементит, выделяющийся из твёрдого раствора, может иметь вид равноосных кристаллов, пограничной сетки, пластин и игл (рис. 2, г, д). При высокотемпературных выдержках кристаллы цементита сфероидизируются; может происходить и процесс коалесценции. Если Ж. с., содержащие цементит, длительно выдерживать при повышенных температурах, происходит графитизация — зарождается и растет графит, а цементит растворяется, Этот процесс используется при производстве изделий из графитизированной стали и ковкого чугуна (рис. 2, м). Важную роль при формировании структуры Ж. с. в твёрдом состоянии играет эвтектоидный распад т-раствора на a-раствор и высокоуглеродистую фазу. При очень малых переохлаждениях образуются феррит и графит (рис. 2, м), при небольшом увеличении переохлаждения — феррит и сфероидизированный цементит (рис. 2, г), затем (рис. 2, в) смесь феррита и цементита приобретает пластинчатое строение перлита, тем более тонкое, чем больше переохлаждение. При персохлаждениях, измеряемых сотнями градусов, эвтектоидный распад подавляется, и g- раствор превращается в мартенсит (рис. 2, е). Строение Ж. с. можно изменять в широких пределах. Основными методами управления структурой Ж. с. являются изменения химического состава, условий затвердевания, пластической деформации, термической и термомеханической обработок. Меняя фазовый состав, величину, форму, распределение и дефектность кристаллов, можно широко варьировать и свойства Ж. с. Например, важнейшие при эксплуатации Ж. с. механические свойства изменяются в следующих пределах: твёрдость от 60 до 800 HB; предел прочности 2·104—3,5·106 н/см2 (2·103—3,5·105 кгс/см2);относительное удлинение от 0 до 70%.
36.Сталь - сплав железа с углеродом (до 2%). По химическому составу сталь разделяют на:
углеродистую,
легированную.
По составу сталь разделяют на:
сталь обыкновенного качества,
качественную,
повышенного качества,
высококачественную.
Сталь  углеродистую обыкновенного качества подразделяют на три группы:
А - поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
Б - поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а их уровень, кроме условий обработки, определяется химическим составом (БСт0, БСт1 и др.);
В - поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).
Сталь углеродистую обыкновенного качества изготовляют следующих марок: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Ст6пс, Ст6сп. Буквы Ст обозначают "Сталь", цифры - условный номер марки в зависимости от химического состава, буквы "кп", "пс", "сп" - степень раскисления ("кп" - кипящая, "пс" - полуспокойная, "сп" - спокойная).
Сталь углеродистая качественная конструкционная по видам обработки при поставке делится на: горячекатаную и кованую, калиброванную, круглую со специальной отделкой поверхности - серебрянку.
Таблица 1. Категория стали
категории требования к испытанию механических свойств виды стали
1 Без испытания механических свойств на растяжение и ударную вязкость. Горячекатаная, кованая, калиброванная, серебрянка
2 С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из нормализованных заготовок размером 25мм (диаметр или сторона квадрата). Горячекатаная, кованая, калиброванная, серебрянка
3 С испытанием механических свойств на растяжение на образцах, изготовленных из нормализованных заготовок указанного в заказе размера, но не более 100мм. Горячекатаная, кованая, калиброванная
4 С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из термически обработанных (закалка + отпуск) заготовок указанного в заказе размера, но не более 100мм. Горячекатаная, кованая, калиброванная
5 С испытанием механических свойств на растяжение на образцах, изготовленных из сталей в нагартованном или термически обработанном состоянии (отожженной или высокоотпущенной). Калиброванная
Легированную сталь по степени легирования разделяют на:
низколегированную (легирующих элементов до 2,5%;
среднелегированную (от 2,5 до 10%);
высоколегированную ( от 10 до 50%).
В зависимости от основных легирующих элементов различают 14 групп сталей. К высоколегированным относят:
коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;
жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 500С, работающие в ненагруженном и слабонагруженном состоянии;
жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течении определенного времени и обладающие при этом достаточной жаростойкостью.
Электротехническую тонколистовую сталь разделяют:
а) по структурному состоянию и виду прокатки на классы:
1 - горячекатаная изотропная;
2 - холоднокатаная изотропная;
3 - холоднокатаная анизотропная с ребровой текстурой;
б) по содержанию кремния:
0 - до 0,4%;
1 - св. 0,4 до 0,8%;
2 - св. 0,8 до 1,8%;
3 - св. 1,8 до 2,8%;
4 - св. 2,8 до 3,8%;
5 - св. 3,8 до 4,8%;
химический состав стали не нормируется;
в) по основной нормируемой характеристике на группы:
0 - удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц (Р1,7/50);
1 - удельные потери при магнитной индукции 1,5 Тл и частоте 50 Гц (Р1,5/50);
2 - удельные потери при магнитной индукции 1,0 Тл и частоте 400 Гц (Р1,0/400);
6 - магнитная индукция в слабых магнитных полях при напряженности поля 0,4 А/м (В 0 4);
7 - магнитная индукция в средних магнитных полях при напряженности поля 10 А/м (В 10).
Сталь легированную конструкционную в зависимости от химического состава и свойств делят на три типа:
качественная;
высококачественная А;
особовысококачественная Ш (электрошлакового переплава).
По видам обработки сталь поставляется:
горячекатаная;
кованая;
калиброванная;
серебрянка.
По назначению изготовляют прокат:
для горячей обработки давлением и холодного волочения (подкат);
для холодной механической обработки.   Чугун
37. Чугун - это железоуглеродистый сплав, содержащий более 2,14% углерода. Однако указанная граница (2,14% C) относится только к двойным железоуглеродистым сплавам или сплавам, содержащим сравнительно небольшое число примесей. Вопрос о границе между сталями и чугунами в высоколегированных железоуглеродистых сплавах, т.е. содержащих ещё большее количество других элементов, кроме железа и углерода, является спорным. Железоуглеродистые сплавы затвердевают с образованием эвтектики.
Чугун - важнейший первичный продукт черной металлургии. Чугун вторичной плавки - один из основных конструкционных материалов, используемый как литейный сплав.
Чугун отличается от стали по составу - более высоким содержанием углерода, по технологическим свойствам - лучшими литейными качествами, малой способностью к пластической деформации (в обычных условиях не поддаётся ковке). Чугун дешевле стали.
Классификация чугунов
Принято несколько способов классификации чугунов: чугуны группируют по самым разным общим признакам (мы рассмотрим их позднее). Пока приведём классический пример классификации чугунов [1].
В зависимости от состояния углерода в чугуне различают:
белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида;
серый чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в форме пластинчатого графита;
высокопрочный чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в форме шаровидного графита.
ковкий чугун, получающийся в результате отжига отливок из белого чугуна. В ковком чугуне весь углерод или значительная часть его находится в свободном состоянии в форме хлопьевидного графита (углерода отжига).
Таким образом, чугун (кроме белого) отличается от стали наличием в структуре графитовых включений, а между собой чугуны различаются формой этих включений.
Естественно, что важнейший вопрос теории чугуна - выяснение условий образования графита, так называемой графитизации.
Цветные металлы, их свойства и сплавы
38.К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение.
Выражение «цветной металл» объясняется цветом некоторых тяжёлых металлов: так, например, медь имеет красный цвет.
Если металлы соответствующим образом смешать (в расплавленном состоянии), то получаются сплавы. Сплавы обладают лучшими свойствами, чем металлы, из которых они состоят. Сплавы, в свою очередь, подразделяются на сплавы тяжёлых металлов, сплавы лёгких металлов и т.д.
Цветные металлы по ряду признаков разделяют на следующие группы:
- тяжёлые металлы — медь, никель, цинк, свинец, олово;
- лёгкие металлы — алюминий, магний, титан, бериллий, кальций,стронций, барий, литий, натрий, калий, рубидий, цезий;- благородные металлы — золото, серебро, платина, осмий, рутений,родий, палладий;
- малые металлы — кобальт, кадмий, сурьма, висмут, ртуть, мышьяк;
- тугоплавкие металлы — вольфрам, молибден, ванадий, тантал, ниобий,хром, марганец, цирконий;
- редкоземельные металлы — лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, иттербий, диспрозий, гольмий, эрбий, тулий, лютеций, прометий, скандий, иттрий;- рассеянные металлы — индий, германий, таллий, таллий, рений, гафний, селен, теллур;
- радиоактивные металлы — уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий.Чаще всего цветные металлы применяют в технике и промышленности в виде различных сплавов, что позволяет изменять их физические, механические   и химические свойства в очень широких пределах. Кроме того, свойства цветных металлов изменяют путём термической обработки, нагартовки, эа счёт искусственного и естественного старения и т. д.
Цветные металлы подвергают всем видам механической обработки и обработки давлением — ковке, штамповке, прокатке, прессованию, а также резанию, сварке, пайке.
Из цветных металлов изготовляют литые детали, а также различные полуфабрикаты в виде проволоки, профильного металла, круглых, квадратных и шестигранных прутков, полосы, ленты, листов и фольги. Значительную часть цветных металлов используют в виде порошков для изготовления изделий методом порошковой металлургии, а также для изготовления различных красок и в качестве антикоррозионных покрытий.
39. Виды термической обработки металлов. 
Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.
Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П.
Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура – время, см. рис. 12.1 ).

Рис.12.1. Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)
 
Различают следующие виды термической обработки:
1. Отжиг 1 рода – возможен для любых металлов и сплавов.
Его проведение не обусловлено фазовыми превращениями в твердом состоянии.
Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.
Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение
Разновидностями отжига первого рода являются:
диффузионный;
рекристаллизационный;
отжиг для снятия напряжения после ковки, сварки, литья.
2. Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.
Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.
Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.
Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)).
3. Закалка – проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).
Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)).
4. Отпуск – проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.
Характеризуется нагревом до температуры ниже критической А (рис. 12.1 (3)). Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.
Термическую обработку подразделяют на предварительную и окончательную.
Предварительная – применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием).
Окончательная – формирует свойство готового изделия.
К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение.
Выражение «цветной металл» объясняется цветом некоторых тяжёлых металлов: так, например, медь имеет красный цвет.
Если металлы соответствующим образом смешать (в расплавленном состоянии), то получаются сплавы. Сплавы обладают лучшими свойствами, чем металлы, из которых они состоят. Сплавы, в свою очередь, подразделяются на сплавы тяжёлых металлов, сплавы лёгких металлов и т.д.
Цветные металлы по ряду признаков разделяют на следующие группы:
- тяжёлые металлы — медь, никель, цинк, свинец, олово;
- лёгкие металлы — алюминий, магний, титан, бериллий, кальций,стронций, барий, литий, натрий, калий, рубидий, цезий;- благородные металлы — золото, серебро, платина, осмий, рутений,родий, палладий;
- малые металлы — кобальт, кадмий, сурьма, висмут, ртуть, мышьяк;
- тугоплавкие металлы — вольфрам, молибден, ванадий, тантал, ниобий,хром, марганец, цирконий;
- редкоземельные металлы — лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, иттербий, диспрозий, гольмий, эрбий, тулий, лютеций, прометий, скандий, иттрий;- рассеянные металлы — индий, германий, таллий, таллий, рений, гафний, селен, теллур;
- радиоактивные металлы — уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий.Чаще всего цветные металлы применяют в технике и промышленности в виде различных сплавов, что позволяет изменять их физические, механические   и химические свойства в очень широких пределах. Кроме того, свойства цветных металлов изменяют путём термической обработки, нагартовки, эа счёт искусственного и естественного старения и т. д.
Цветные металлы подвергают всем видам механической обработки и обработки давлением — ковке, штамповке, прокатке, прессованию, а также резанию, сварке, пайке.
Из цветных металлов изготовляют литые детали, а также различные полуфабрикаты в виде проволоки, профильного металла, круглых, квадратных и шестигранных прутков, полосы, ленты, листов и фольги. Значительную часть цветных металлов используют в виде порошков для изготовления изделий методом порошковой металлургии, а также для изготовления различных красок и в качестве антикоррозионных покрытий
40.Химико-термическая обработка металлов, совокупность технологических процессов, приводящих к изменению  HYPERLINK "http://atomistry.com/" химическогосостава, структуры и свойств поверхности металла без изменения состава, структуры и свойств его сердцевидных зон. Осуществляется с помощью диффузионного насыщения поверхности различными элементами при повышенных температурах. Выбор элемента (или комплекса элементов) определяется требуемыми свойствами поверхности детали. Насыщение производят углеродом(цементация), азотом (азотирование), азотом и углеродом (нитроцементация, цианирование), металлами (см. Диффузионная металлизация), бором ( HYPERLINK "http://bse.sci-lib.com/article128913.html" \o "борирование" борирование), кремнием ( HYPERLINK "http://bse.sci-lib.com/article102100.html" \o "силицирование" силицирование) и т.д.  В зависимости от физико-химического состояния среды, содержащей диффундирующий элемент, различают Х.-т. о. из газовой, жидкой, твёрдой или паровой фазы (чаще применяются первые 2 метода). Х.-т. о. проводится в газовых, вакуумных или в ванных печах. Х.-т. о. подвергаются изделия из стали, чугуна, чистых металлов, сплавов на основе никеля, молибдена, вольфрама,кобальта, ниобия, меди, алюминия и др.  Физико-химические процессы, происходящие вблизи поверхности при Х.-т. о., заключаются в образовании диффундирующего элемента в атомарном состоянии вследствие химических реакций в насыщающей среде или на границе раздела среды с поверхностью металла (при насыщении из газовой или жидкой фазы), сублимации диффундирующего элемента (насыщение из паровой фазы), последующей сорбции атомов элемента поверхностью металла и их диффузии в поверхностные слои металла. Концентрация диффундирующего элемента на поверхности металла, а также структура и свойства диффузионного слоя зависят от метода Х.-т. о. Глубина диффузии элемента возрастает с повышением температуры (по экспоненциальному закону) и с увеличением продолжительности процесса (по параболическому закону). Диффузионный слой, образующийся при Х.-т. о. деталей, изменяя структурно-энергетическое состояние поверхности, оказывает положительное влияние не только на физико-химические свойства поверхности, но и на объёмные свойства деталей. Х.-т. о. позволяет сообщить изделиям повышенную износостойкость, жаростойкость, коррозионную стойкость, усталостную прочность и т.д. (см. статьи о конкретных процессах Х.-т. о.).
41. Процессы обработки металлов давлением по назначению подразделяют на два вида:
для получения заготовок постоянного поперечного сечения по длине (прутков, проволоки, лент, листов), применяемых в строительных конструкциях или в качестве заготовок для последующего изготовления из них деталей — только обработкой резанием или с использованием предварительного пластического формоизменения, основными разновидностями таких процессов являются прокатка, прессование и волочение;
для получения деталей или заготовок (полуфабрикатов), имеющих приближённо формы и размеры готовых деталей и требующих обработки резанием лишь для придания им окончательных размеров и получения поверхности заданного качества; основными разновидностями таких процессов являются ковка и штамповка.
Прокатка
Прокатка - процесс пластического деформирования тел, между вращающимися приводными валками.
Прессование
Прессование заключается в продавливании заготовки, находящейся в замкнутой форме, через отверстие матрицы, причём форма и размеры поперечного сечения выдавленной части заготовки соответствуют форме и размерам отверстия матрицы.
Волочение
Волочение заключается в протягивании заготовки через сужающуюся полость матрицы; площадь поперечного сечения заготовки уменьшается и получает форму поперечного сечения отверстия матрицы.
Ковка
Ковкой изменяют форму и размеры заготовки путём последовательного воздействия универсальным инструментом (бойками) на отдельные участки нагретой заготовки.
Штамповка
Штамповочный пресс
Штамповкой изменяют форму и размеры заготовки с помощью специализированного инструмента — штампа (для каждой детали изготовляют свой штамп), который состоит из матрицы, пуансона и дополнительных частей. Различают объёмную и листовую штамповку. При объёмной штамповке в качестве заготовки используют сортовой металл, разрезаемый на заготовки. На заготовку в процессе объемной штамповки воздействуют специализированным инструментом — пуансоном, при этом металл заполняет полость матрицы, приобретая её форму и размеры.
Листовая штамповка
Листовой штамповкой получают плоские и пространственные полые детали из заготовок, у которых толщина значительно меньше размеров в плане (лист, лента, полоса). Обычно заготовка деформируется с помощью пуансона и матрицы.
Комбинации
Существуют так же процессы, при которых используется комбинации из нескольких методов. Например, метод прокатка-волочение.
42. Дефекты металлов, несовершенства строения металлов и сплавов. Дефекты металлов ухудшают их физико-механические свойства (например, электропроводность, магнитную проницаемость, прочность, плотность, пластичность). Различают Дефекты металлов тонкой структуры (атомарного масштаба), например дислокации, вакансии и др. (см. Дефекты в кристаллах), более грубые - субмикроскопические трещины, образующиеся по границам блоков кристалла и на его поверхности. Ещё более грубые Дефекты металлов - микро- и макроскопические дефекты, представляющие собой нарушения сплошности или однородности, образующиеся в металле вследствие несовершенства технологии и низкой технологичности многокомпонентных сплавов, требующих особенно точного соблюдения режимов на каждом этапе их изготовления и обработки.  Встречающиеся в металлических изделиях и полуфабрикатах дефекты различаются по размерам и расположению, а также по своей природе и происхождению. Они образуются при плавлении металла и получении отливок (неметаллические и шлаковые включения, усадочные раковины, рыхлоты, газовая пористость, плёны и т.д.), при обработке давлением (расслоения, заковы, закаты, волосовины, плёны, флокены), в результате термической, химико-термической, электрохимической и механической обработки (трещины, прижоги, обезуглероживание и т.д.), в процессе соединения металлов - при сварке, пайке, склёпывании и т.д. (непровар, непропай, трещины, коррозия и т.д.). Кроме того, дефекты в полуфабрикатах и готовых изделиях могут возникать при их хранении, транспортировке и эксплуатации (коррозионные поражения и др.).  По характеру дефекты могут быть: местными (различные нарушения сплошности - поры, раковины, трещины, расслоения, флокены, заковы, закаты и др.); распределёнными в ограниченных зонах (ликвационные скопления, зоны неполной закалки, зоны коррозионного поражения, местный наклёп); распределёнными по всему объёму изделия или по его поверхности (несоответствие химического состава, структуры, качества механической обработки).  Местные дефекты, локализованные в ограниченном объёме, могут быть точечными, линейными, плоскостными и объёмными. По расположению они разделяются на наружные (поверхностные и подповерхностные) и внутренние (глубинные).
43. Проводники́ — это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этих тел. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод (в видеугля и графита). Пример проводящих жидкостей при нормальных условиях — ртуть, электролиты, при высоких температурах — расплавы металлов. Пример проводящих газов — ионизированный газ (плазма). Некоторые вещества, при нормальных условиях являющиеся изоляторами, при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.
Свойства проводников:
К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся:
1)        удельная проводимость g или обратная ей величина — удельное сопротивление r,
2)        температурный коэффициент удельного сопротивления ТКr или ar,
3)        коэффициент теплопроводности gт,
4)        контактная разность потенциалов и термоэлектродвижущая сила (термо-ЭДС),
5)        работа выхода электронов из металла,
6)        предел прочности при растяжении sр и относительное удлинение перед разрывом Dl/l.
 Классификация проводников.
классические новые (ХХ век)
металлы электролиты плазма сверхпроводники полупроводники
электроны положительные иотрицательные ионы электроны,положительные иотрицательные ионы электронныекуперовскиепары электроныи дырки

Мы относим сверхпроводники и полупроводники к проводникам, хотя это вопрос весьма спорный, так как они обладают особыми свойствами. Однако общим свойством для всех проводников является то, что в них имеются свободные носители заряда, поэтому заряды, возникающие во внешнем электростатическом поле, могут быть легко отделены друг от друга и перемещаться внутри проводника.
44. К проводниковым материалам с высокой проводимостью относятся медь, алюминий и некоторые сплавы (латунь, фосфористая бронза и др.). Они широко используются для изготовления катушек электрических машин, аппаратов и приборов. К таким материалам предъявляются требования возможно меньшего удельного сопротивления и возможно большей механической прочности. Для различных случаев применения эти требования в той или иной степени уточняются. Например, для катушек машин и аппаратов выгоднее иметь меньшее удельное сопротивление даже за счет некоторого снижения механической прочности. Для воздушных же проводов контактной сети и линий электропередачи важно иметь определенную механическую прочность на разрыв.
Наименьшим удельным сопротивлением обладает чистый металл. Любые примеси повышают удельное сопротивление. Примесь другого металла, имеющего меньшее удельное сопротивление, чем основной, повышает его сопротивление. Это объясняется искажением кристаллической решетки основного металла даже небольшим количеством примеси. Кристаллическая решетка металлов искажается не только введением примесей, но и в результате механических деформаций. В связи с этим обработка металла, приводящая к пластической деформации, вызывает увеличение его удельного сопротивления. В частности, это имеет место в процессе изготовления проводов при прокатке и волочении.
Медь и латунь применяют для изготовления проводов и различных токопроводящих деталей электрических машин и аппаратов. Медные провода и шины получают прокаткой и протяжкой, при этом медь приобретает высокую механическую прочность и твердость (медь марки МП). Такую твердотянутую медь используют для изготовления коллекторных пластин, неизолированных проводов, распределительных шин и пр. При термической обработке твердотянутой меди (отжиге при температуре 330—350 °С) получают мягкую медь марки ММ, обладающую большой гибкостью и способностью сильно вытягиваться; электропроводность ее также увеличивается. Мягкую медь используют для изготовления изолированных проводов, кабелей и пр.
В качестве проводниковых материалов применяют также различные бронзы, представляющие собой сплавы меди с другими металлами. Все бронзы имеют не только более высокую механическую прочность, чем медь, но и большее удельное сопротивление. Для изготовления контактных проводов и коллекторных пластин применяют преимущественно кадмиевые бронзы, для пружин, щеткодержателей, скользящих контактов, ножей рубильников — бериллиевые бронзы. Латунь (сплав меди с цинком) имеет также по сравнению с медью высокую механическую прочность, прочность против истирания, но вместе с тем и значительно более высокое удельное сопротивление. Латунь хорошо штампуется, вытягивается, паяется и сваривается.
Вторым по значению в электротехнике проводниковым материалом является алюминий. Из него изготовляют провода, некоторые детали электрических машин и аппаратов. Так же, как и медь, он при протяжке и других видах холодной обработки получается довольно твердым, а после отжига становится мягким. Плотность алюминия около 2,6 г/см3, примерно в 3,5 раза меньше меди (ее плотность 8,9 г/см ). Для увеличения прочности, и,.улучшения механических свойств к алюминию иногда прибавляют медь, магний, марганец и кремний. Таким путем получают различные алюминиевые сплавы — силумин, дюралюминий и пр.
По твердости различают две марки алюминия: AT — алюминий твердый неотожженный и AM — алюминий мягкий отожженный. Соединение алюминиевых проводов и других деталей производят обычно сваркой или заклепками, так как из-за высокой температуры плавления окиси алюминия, покрывающей поверхность алюминиевых деталей (примерно 2000 °С), и быстрого окисления зачищенной поверхности пайка алюминия обычным способом затруднена.
45. Проводниковые материалы с высоким сопротивлением бывают металлические, получившие наибольшее распространение, и неметаллические. Металлические проводниковые материалы можно разделить на три группы: 1 — для точных электроизмерительных приборов и образцовых резисторов; 2 — для резисторов и реостатов; 3 — имеющие высокую рабочую температуру и предназначенные для нагревательных приборов и нагрузочных реостатов.
Основным материалом 1-й группы является медно-марганцевый сплав — манганин. Манганин изготовляется двух марок: МНМцЗ-12 (3% Ni, 12% Mn, 85 % Си) и МНМцАЖЗ-12-0,3-0,3 (3 % Ni, 12 % Mn, 0,3 % А1, 0,3 % Fe, 84,4 % Си). Из первого сплава изготовляют твердую и мягкую (отожженную) проволоку, из второго — только мягкую.
К материалам 2-й группы относится константан (40 % Ni, 60 % Си). Удельное сопротивление мягкой константановой проволоки 0,465*10-6, а твердой 0,49*10-6 См*м. Его температурный коэффициент сопротивления близок к нулю.
К материалам 3-й группы относятся сплавы никеля, хрома и железа (нихром); хрома, алюминия и железа (фехраль). Проволока из этих сплавов делится по применению на марки Н (для нагревательных приборов) и С (для реостатов).
В электронной аппаратуре широко применяют металлопленочные резисторы МЛТ, С2-22 и др. Токопроводящим элементом этих резисторов является тонкий слой сплава с высоким удельным сопротивлением, нанесенный на поверхность керамического стержня и покрытый защитным слоем эмали.
46. Материалы для скользящих контактов (коллекторные пластины электрических машин) должны обладать низкими значениями удельного сопротивления и падения напряжения на контактах, высокими значениями минимального тока и стойкости к истиранию (износостойкостью), электрической эрозии и коррозии. Скользящие контакты, в свою очередь, можно разделить на металлические и электротехнические угольные.
Для изготовления пружинных металлических скользящих контактов (применяемые в основном в переключателях, потенциометрах, реостатах) используют специальные сорта бронз: кадмиевые, бериллиевые и хромистые (БрКд1, БрБ2 и др.), обладающие высокой упругостью, стойкостью к истиранию и низким значением удельного сопротивления. Например  сплав Сu—Cd (Cd~l%), образует твердый раствор, который в три раза более стоек к истиранию, чем медь. Для изготовления скользящих контактов применяют также латуни (например, ЛС59-1, ЛМц58-2). Металлические скользящие контакты имеют наиболее высокую стойкость к истиранию в паре с электротехническими угольными материалами.
Электротехнические угольные материалы обладают относительно высокой электро- и теплопроводностью (уступая металлам), очень низким коэффициентом трения, высокой химической стойкостью, многие из них — высокой нагревостойкостью (большей, чем у металлов). Эти материалы широко используют для изготовления угольных электродов различного применения, щеток для электрических машин и автотрансформаторов, угольных порошков для микрофонов и т.д. Щетки выпускают следующих марок: УГ (угольно-графитные), Г (графитные), ЭГ (электрографитированные), М и МГ (медно-графитные). Основным сырьем для производства электроугольных изделий являются природный графит и сажи. Для получения монолитного изделия графит и сажу смешивают со связующим веществом — каменноугольной смолой (побочный продукт коксования каменного угля) или жидким стеклом, прессуют и подвергают обжигу при температуре 2200—2500°С. Этот процесс называют графитированием. В результате графитирования увеличивается размер кристаллитов, повышается электропроводность и снижается твердость.
Природный графит — мягкое кристаллическое вещество темно-серого цвета, представляющее собой одну из двух аллотропных форм Углерода; имеет слоистое строение. В направлении слоев электропроводность носит металлический характер. Для поликристаллических образцов удельное сопротивление ρv ≈ 8 мкОм•м, ТКρ = -1•10-3К-1 . Отдельные чешуйки графита легко отделяются и скользят по его поверхности, образуя сухую смазку. Известен искусственный графит, получаемый путем термической перекристаллизации углей при температуре 2200—2500°С.
Сажи представляют собой угольный порошок высокой степени дисперсности (частицы сферической формы достигают 10—300 нм); они имеют более мелкокристаллическую структуру, чем графит (их иногда называют коллоидным углеродом). Графитовая структура в сажах еще не вполне сформирована. Сажи получают при неполном сгорании многих органических веществ.
Разрывные контакты
Для изготовления слаботочных разрывных контактов используют благородные и тугоплавкие металлы.
Из благородных металлов используют серебро, золото, платину и различные сплавы на их основе, например сплавы систем: золото-серебро (Аu—Ag), платина-рутений (Pt—Ru), платина-родий (Pt—Rh), серебро-кадмий (Ag—Cd), серебро-палладий (Ag—Pd), серебро-магний-никель (Ag—Mg—Ni) и др. Золото и платину в чистом виде используют для изготовления прецизионных контактов. Золото в основном используют в виде сплавов с серебром Ag, платиной Pt, никелем Ni, цирконием Zr; платину — в виде сплавов с иридием Ir, никелем Ni, серебром Ag и золотом Аu.
Из тугоплавких металлов применяют вольфрам W и молибден Мо. Достоинством вольфрама является его высокая стойкость к дугообразованию и практическое отсутствие свариваемости. (Дугообразование характеризуется минимальными значениями тока и напряжения, при которых возникает дуговой разряд). Однако у вольфрама сравнительно толстая оксидная пленка и поэтому требуется высокое контактное давление. Недостатком молибдена является образование оксидных пленок, которые имеют рыхлую структуру и могут внезапно полностью нарушать контактную проводимость. У вольфрама, легированного молибденом, повышены твердость и удельное сопротивление и понижены Тпл и коррозионная стойкость.
Для изготовления разрывных контактов также широко используют медь, сплавы и биметаллы на ее основе.
В производстве сильноточных разрывных контактов широко применяют композиционные материалы, представляющие собой смесь двух фаз, одна из которых обеспечивает высокую электро- и теплопроводность контактов, другая — в виде тугоплавких включений придает контактам стойкость к механическому износу, электрической эрозии и свариванию. Сильноточные разрывные контакты из композиционных материалов получают методом порошковой металлургии. В качестве контактных материалов хорошо себя зарекомендовали композиции на основе меди и серебра: серебро—оксид кадмия, серебро—оксид меди, медь—графит, серебро—никель, серебро—графит. Применяют также тройные композиции: серебро-никель—графит, серебро—вольфрам—никель. В этих композициях медная и серебряная фазы обеспечивают электро- и теплопроводность контактам, а включения из оксида кадмия и оксида меди, а также вольфрама, никеля и графита повышают износо- и термостойкость и препятствуют свариванию контактов. В качестве электроконтактных композиций в мощных высоковольтных масляных и воздушных выключателях нашли применение Сu—W, в высоковольтных масляных выключателях Сu—Мо, в вакуумных камерах Сu—Bi—В, Сr—Сu—W, Fe—Сu—Bi. Для изготовления сильноточных разрывных контактов, эксплуатируемых при повышенных напряжениях и контактных давлениях, используют также твердую медь, что существенно удешевляет электротехнические устройства.
47. К неметаллическим проводникам относятся электроугольные изделия, жидкие и твёрдые электролиты.
1. Углеродные материалы и композиции
Материалы этого типа с одной стороны относятся к неорганическим, а с другой стороны, искусственно получают их из органического сырья. Таким образом, они являются как бы переходными от органических к неорганическим материалам.
В природе углерод встречается в виде алмаза, графита и саж. Искусственно получены ещё несколько форм углерода: карбин, фуллерены, нанотрубки.
Углерод в алмазе, графите и карбине имеет различный типа гибридизации. В алмазе наблюдается sp3- гибридизация, в графите sp2-гибридизация и в карбине sp –гибридизация. Наряду с чистыми аллотропными формами углерод образует большое число промежуточных соединений, содержащих комбинации атомов с различными типами гибридизации.
Кристаллическая решётка алмаза относится к атомному типу. Элементарная ячейка представляет собой тетраэдр, в центре и четырёх вершинах которого расположены атомы углерода.
Координационное число решётки алмаза равно 4, все атомы углерода в кристаллической решётке расположены друг от друга на одинаковом расстоянии 1,54 Å. Каждый из них связан друг с другом неполярной ковалентной связью.
Любой кристалл алмаза, следовательно, можно рассматривать как гигантскую молекулу. Решётка алмаза, не имеющая искажённых валентных углов, сильно сопротивляется любым видам деформации. По этой причине алмазу свойственны высокая твёрдость (наибольшая из всех известных веществ), высокая прочность, заметная хрупкость, тугоплавкость (он возгоняется при 3700 оС). Плотность алмаза 3510 кг/м3.
В природе алмазы образовались от 1750 . 106 до 90. 106 лет тому назад на большой глубине (около 150 – 200 км) в мантии земли, где стабильные давление (Р 45 ГПа) и температура (900 – 1400 оС), а затем магмой были вынесены в земную кору.
Искусственное получение алмазов было осуществлено в 1897 году Муассеном путём насыщения расплава железа углеродом (графитом) и резким охлаждением слитка.
Такая технология имитировала природные условия образования алмазов. С 1955 года алмазы получают в промышленных масштабах из графита при ~ 3000 оС и давлениях 10 ГПа.
В настоящее время разработаны технологии синтеза не только изолированных кристаллов, но и поликристаллических блоков алмазов (алмазитов) при более мягких условиях (Р 7,5 ГПа, Т = 1500 - 2000 оС, катализатор).
Искусственные алмазы имеют небольшие размеры – 0,2 – 20 мкм и применяются как абразивный материал при изготовлении полировочных паст, отрезных дисков, режущего инструмента и т.д. Есть пути синтеза алмазов, не требующие экстремальных условий: это осаждение на поверхности затравочного кристалла из углеродсодержащего газа (например, метана), а также плазмохимический метод.
В зависимости от природы поверхности затравочного кристалла можно получать поликристаллические слои или тонкие монокристаллические плёнки. В последнем случае электрической проводимостью можно управлять, просто добавляя в плазму атомы бора, которые служат в кристалле дырками.
Графит – более устойчивая форма, чем алмаз. При нагревании до высокой температуры в отсутствии воздуха алмаз превращается в графит. Природный графит имеет вид землистой или слоистой тёмно-серой массы с металлическим блеском, холодной и жирной на ощупь. Графит имеет гексагональную кристаллическую решётку, атомы углерода расположены в параллельных слоях (базисных плоскостях).
В направлении, перпендикулярном базисным плоскостям, связь в 6 раз слабее, чем в слоях. Из-за этого отдельные слои легко скользят относительно друг друга и это свойство используется при создании антифрикционных материалов.
Другой особенностью графита является высокая электропроводность (однако, ниже, чем у металлов и сплавов), значительная теплопроводность и стойкость к воздействию неблагоприятных климатических факторов. Эти свойства обусловили применение графита в электро- и радиотехнике.
Известен ряд способов получения искусственного графита путём термической перекристаллизации углей при температуре 2200 – 2500 оС. Благодаря испарению зольных примесей искусственные графиты более чистые, чем природные.
Путём термического разложения паров углеводородов в вакууме или в среде инертного газа при температуре 900 оС получают пиролитический углерод.
По своим свойствам и структуре пиролитический углерод приближается к графиту. Расстояние между слоями с/2 несколько больше, чем у графита и достигает 3,7 Å. Наоборот, расстояния между атомами в слоях меньше, чем у графита и составляет 1,39 Å. Плёнки пиролитического углерода имеют сравнительно высокое электрическое сопротивление и применяются для получения резисторов поверхностного типа.
Сажи – это продукт неполного сгорания или термического разложения углеродсодержащих веществ. В зависимости от исходного сырья и метода получения сажи подразделяются на газовые (канальную, печную, термическую, специальную), ацетиленовую, антраценовую, форсуночную, ламповую и др.Существенной особенностью саж является их малый объёмный вес. Так, например, 1 л канальной сажи ДГ-100 весит от 50 до 150 г. Это объясняется высокой дисперсностью частиц сажи, которую обычно оценивают по величине удельной поверхности саж.
Удельной поверхностью называется общая поверхность частиц в единице веса (1г) или объёма. Для сажи ДГ-100 удельная поверхность (геометрическая) составляет 92 – 100 м2/г. Первичная частица сажи состоит из нескольких тысяч более мелких частиц, называемых кристаллитами. Структура кристаллита представляет собой деформированную, искажённую решётку графита.
Сажи применяют в качестве пигментов в лакокрасочной промышленности, для окрашивания в массе полимеров, перерабатываемых через расплав, в качестве основного усилителя резиновых смесей, в качестве проводящего компонента в композиционных резистивных материалах и для изготовления электроугольных изделий.
В 70-х годах ХХ столетия в СССР была синтезирована ещё одна аллотропная форма углерода – карбин, имеющий линейную структуру
- С С – С С - или = С = С = С = С = , в которых проявлялась высокая электропроводность за счёт перекрывания -электронов в системе сопряжения кратных связей.
В 1985 году была открыта ещё одна форма углерода – фуллерены, а в 1991 году была открыта следующая форма - нанотрубки. Фуллерены и нанотрубки – это обширные классы интереснейших наноструктур, т.е. структур, имеющих размеры порядка 10-9 м.
Фуллерены – это сферические, похожие на футбольный мяч, молекулы, образованные атомами углерода. Фуллеренов синтезировано уже очень много, от малых (С20, С28) до гигантских (С240, С1840), даже многослойных, типа шарик в шарике (луковица). Из четырёхслойных фуллеренов С60 – С240 – С540 – С960 даже получают алмазы. Уже можно составить своего рода периодическую систему фуллереновых элементов, из которых формируются многие «фуллереновые вещества».
Синтезированы фуллереновые полимеры, плёнки, кристаллы (фуллериты), допированые кристаллы (фуллериды) как с собственными структурами, так и повторяющие строение обычных кристаллов. Например, фуллерен С28 имеет ту же валентность, что и атом углерода и образует устойчивый кристалл со структурой алмаза – гипералмаз.
Стенки пятичленных циклов, образующих фуллереновые шарики, состоят из одинарных связей, а у шестичленных циклов встречаются и двойные связи.
Другой большой класс наноструктур – углеродные (и не только углеродные) однослойные и многослойные нанотрубки. Синтезировано множество разнообразных нанотрубок, существуют их ассоциаты – «жгуты», кристаллы и т.п.
Из нанотрубок получают очень интересные материалы, например, уникальной прочности нанобумагу, представляющую собой плотные плёнки из переплетённых, подобно растительным волокнам, жгутов нанотрубок. Недавно китайские специалисты научились прясть нанотрубки и получать таким образом углеродные нити. Если же фуллерен запихнуть в нанотрубку, то получится ещё один класс углеродных структур – пипоид.
В пипоидах обнаружен эффект температурного р-п перехода. При комнатной температуре пипоид – полупроводник, с понижением температуры он становится проводником.
На сегодня пипоиды – интересные и перспективные материалы для микро- и наноэлектроники, аккумуляторов водорода, высокотемпературных сверхпроводников.
К сожалению, пока синтез нанотрубок и фуллеренов – довольно сложное и дорогое дело, вес производимых фуллеренов и нанотрубок исчисляется лишь десятками килограмм.
Расходы на исследование по нанотехнологии растут опережающими темпами. Так, за 4 года, с 1998 по 2001, общие (без России) расходы на нанотехнологии возрасли с 434 млн. дол. США до 1267 млн. дол. США. Будем надеяться, что грандиозные ожидания, связанные с развитием этого нового направления науки, оправдаются.
Электроугольные изделия - щётки электрических машин, электроды для прожекторов, электроды для дуговых электрических печей и электролитических ванн, аноды гальванических элементов, угольные порошки для микрофонов, резисторы и др. изготавливают из графита, сажи и антрацита.
Щётки служат для образования скользящего контакта между неподвижной и вращающейся частями электрической машины, т.е. для подвода ил отвода тока к коллектору или контактным кольцам.
Различают щётки угольно-графитовые (УГ), графитовые (Г), электрографитированные, т.е. подвергнутые термической электрообработке – графитированию (ЭГ) и медно-графитовые – с содержание металлической меди (М и МГ), иногда дополнительно – олова и серебра. Щётки типа М и МГ обладают особенно малым электрическим сопротивлением.
Таблица 1
Типы щёток Удельное сопротивление ρ, мкОм.мДопустимая плотность тока, МА/м2Допустимая линейная скорость, м/сТ и УГ 18 – 60 6 – 8 10 - 15
Г 10 – 46 7 – 11 12 - 25
ЭГ 10 – 45 9 – 11 25 - 45
М и МГ 0,05 – 1,20 12 – 20 12 - 25
2. Ионные проводники
В ионных проводниках – проводниках 2-го рода электрические заряды переносятся не электронами, а ионами.
Их проводимость ниже, чем у проводников 1-го рода и, как правило, растёт с ростом температуры, т.е. у них ТКρ отрицательный. Электропроводность в ионных проводниках сопровождается электролизом. Различают жидкие и твёрдые ионные проводники. Это - растворы солей, кислот и оснований, расплавы солей, твёрдые соли при высоких температурах.
Вещества, растворы и расплавы которых обладают электролитической проводимостью, называют электролитами. Они используются в аккумуляторных батареях, электролитических конденсаторах, имеющих большую ёмкость благодаря наличию двойного электрического слоя на электродах, для создания некоторых приборов, аналогичных полупроводниковым (биполярные транзисторы, триоды, интеграторы и т.п.).
Это направление электроники называется хемотроника. Недостаток этих приборов – большие размеры по сравнению с полупроводниковыми приборами и низкие рабочие частоты.
В некоторых случаях требуются проводниковые материалы, способные надёжно работать при температурах 1500 – 2000 оС и даже выше. Такими свойствами обладают специальные виды керамики, в первую очередь – оксидной керамики.
Это циркониевая керамика на основе диоксида циркония ZrO2 c добавками Y2O3 , керамика на основе диоксида церия СеО2. Керамика из -Al2O3, получаемая из натриевого -глинозёма, соответствующего формуле Na2O 11Al2O3, является уникальным твёрдым электролитом и применятся в высокоэффективных химических источниках тока – аккумуляторах. Удельное сопротивление ρ высокотемпературных керамических проводников находится на уровне 10-2 – 10-3 Ом.м.
48. Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками идиэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры[1].
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например,алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.
В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойствадиэлектриков.

Свойства полупроводников
Полупроводники - широкий класс веществ, характеризующийся значениями
удельной электропроводности (, лежащей в диапазоне между удельнойэлектропроводностью металлов и хороших диэлектриков, то есть эти вещества
не могут быть отнесены как к диэлектрикам (так как не являются хорошимиизоляторами), так и к металлам (не являются хорошими проводниками
электрического тока). К полупроводникам, например, относят такие вещества
как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и
сплавы металлов.
Полупроводники долгое время не привлекали особого внимания ученых и
инженеров. Одним из первых начал систематические исследования физических
свойств полупроводников выдающийся советский физик Абрам Федорович Иоффе.
Он выяснил что полупроводники - особый класс кристаллов со многими
замечательными свойствами:
1) С повышением температуры удельное сопротивление полупроводников
уменьшается, в отличие от металлов, у которых удельное сопротивление сповышением температуры увеличивается. Причем как правило в широком
интервале температур возрастание это происходит экспоненционально:
( = (о ( exp. (-(a /
kT )где (а - так называемая энергия активации проводимости, (о - коэффициент зависящий от температуры
Удельное сопротивление полупроводниковых кристаллов может также уменьшатся
при воздействии света или сильных электронных полей.
2) Свойство односторонней проводимости контакта двух полупроводников.
Именно это свойство используется при создании разнообразныхполупроводниковых приборов: диодов, транзисторов, тиристоров и др.
3) Контакты различных полупроводников в определенных условиях при освещении
или нагревании являются источниками фото - э. д. с. или, соответственно,
термо - э. д. с.
Строение полупроводников и принцип их действия.
Как было уже сказано, полупроводники представляют собой особый класс
кристаллов. Валентные электроны образуют правильные ковалентные связи,
схематически представленные на рис.1 . Такой идеальный полупроводник
совершенно не проводит электрического тока (при отсутствии освещения ирадиационного облучения) . Так же как и в непроводниках электроны в полупроводниках связаны с
атомами, однако данная связь очень непрочная. При повышении температуры
( T>0 K) ,освещении или облучении электронные связи могут разрываться, что
приведет к отрыву электрона от атома (рис. 2). Такой электрон является
носителем тока. Чем выше температура полупроводника, тем выше концентрация
электронов проводимости, следовательно, тем меньше удельное сопротивление.
Таким образом, уменьшение сопротивления полупроводников при нагревании
обусловлено увеличением концентрации носителей тока в нем.
В отличии от проводников носителями тока в полупроводниковых веществах
могут быть не только электроны , но и «дырки» . При потере электрона одним
из атомов полупроводника на его орбите остается пустое место-«дырка» при
воздействии электрическим поле на кристалл «дырка » как положительный заряд
перемещается в сторону вектора E, что фактически происходит благодаряразрыву одних связей и восстановление других. «Дырку» условно можно считать
частицей , несущей положительный заряд.
Примесная проводимость.
Один и тот же полупроводник обладает либо электронной ,либо дырочной
проводимостью - это зависит от химического состава введенных примесей.
Примеси оказывают сильное воздействие на электропроводимость
полупроводников:
так, например , тысячные доли процентов примесей могут в сотни тысяч раз
уменьшить их сопротивление . Этот факт, с одной стороны , указывает на
возможность изменение свойств полупроводников, с другой стороны, он
свидетельствует о трудностях технологии при изготовлении полупроводниковых
материалов с заданными характеристиками.
Рассматривая механизм влияния примесей на электропроводимость
полупроводников, следует рассматривать два случая:
Электронная проводимость .Добавка в германий примесей, богатых электронами , например мышьяка или
сурьмы , позволяет получить полупроводник с электронной проводимостью или
полупроводник n - типа ( от латинского слова «негативус» -
«отрицательный»).
На рис. 3а схематично показана картина электронных связец при 0 К. Один из
валентных электронов мышьяка не участвует в связях с другими атомами. При
повышении температуры электрон может быть оторван от атома (см рис. 3б) и
тем самым создает электронную проводимость.
Примеси создающие такую электропроводимсть называют донорнями.
Дырочная проводимость
Добавка в тот же германий алюминия, галлия или индия создает в кристалле
избыток дырок. Тогда полупроводник будет обладать дырочной проводимостью -
полупроводник p - типа.
Дырочная примесная электропроводимость создется атомами имеющими меньшееколичество валентных электронов, чем основные атомы. На рис. 4 схематично
показаны электронные связи германия с примесью бора. При 0 К все связи
укомплектованны, только у бора не хватает одной связи (см рис. 4а). Однако
при повышении температуры бор может насытить свои связи за счет электронов
соседних атомов (см рис. 4б).
Подобные примеси называются акцепторными.
Жидкие полупроводники
Плавление многих кристалических полупроводников сопроводается резкимувеличением их электропроводности Q до значений типичныхдля металлов (смрис. 5а). Однако для ряда полупроводников (например HgSe, HgTe и. т. д.)
характерно сохранение или уменьшение Q при плавлении и сохранение
полупроводниками характера температурной зависимости Q (см рис. 5б).
Некоторые Жидкие полупроводники при дальнейшем повышении температуры теряют
полупроводниковые свойства и приобретают металлические (например сплавы Te- Se, ботатые Te). Сплавы же Te - Se, богатые Se ведут себя иначе, их
электропроводность имеет чисто полупроводниковый характер.
В Жидких полупроводниках роль запрещенной зоны играет область энергии
вблизи минимума плотности состояний в энергетическом спектре электронов.
При достаточно глубоком минимуме в его окрестности появляеся зона почти
локализованных состояний носителей зарядов с малой подвижностью
(псевдощель). Если при повышении температуры происходит «схлопывание»
псевдощелей, жидкий полупроводник превращается в металл.
Использование полупроводников.
Наиболее важные для техники полупроводниковые приборы - диоды, транзисторы,
тиристоры основаны на использовании замечательных материалов с электроннойили дырочной проводимостью.
Широкое применение полупроводников началось сравнительно недавно, а сейчас
они получили очень широкое применение. Они преобразуют свтовую и тепловуюэнергию в электрическую и, наоборот, с помощью электричества создают теплои холод. Полупроводниковые приборы можно встретить в обычном радиоприемнике
и в квантовом генераторе - лазере, в крошечной атомной батарее и вмикропроцессорах.
Инженеры не могут обходиться без полупровдниковых выпрямителей,
переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой
позволила в десятки раз уменьшить габариты и массу электронных устройств,
снизить потребляемую ими мощность и резко
49. Собственные и примесные полупроводники,типы носителей заряда. Собственная проводимость.
Свободными носителями заряда в полупроводниках как правило, являются электроны, возникающие в результате ионизации атомов самого полупроводника (собственная проводимость) или атома примеси (примесная проводимость). В некоторых полупроводниках носителями заряда могут быть ионы. На рисунке показана атомная модель кремния и энергетическая диаграмма собственного полупроводника, в котрором происходит процесс генерации носителей заряда. При абсолютном нуле зона проводимости пустая, как у диэлектриков, а уровни валентной зоны полностью заполнены. Под действием избыточной энергии Wo , появляющейся за счет температуры, облучения, сильных электрических полей и т.д., некоторая часть электронов валентной зоны переходит в зону проводимости. Энергия Wo в случае беспримесного полупроводника, равна ширине запрещенной зоны и называется энергией активации. В валентной зоне остается свободное энергетическое состояние, называемое дыркой, имеющей единичный положительный заряд.

При отсутствии электрического поля дырка, как и электрон, будет совершать хаотические колебания, при этом происходят и обратные переходы электронов из зоны проводимости на свободные уровни валентной зоны (рекомбинация). Эти процессы условно показаны на рисунке .Электропроводность, возникающая под действием электрического поля за счет движения электронов и в противоположном напаравлении такого же колическства дырок, называется собственной. В удельную проводимость полупроводника дают вклад носители двух типов - электроны и дырки:
 =e(n.n+p.p), где
n и n концентрация и подвижность электронов,
p и p концентрация и подвижность дырок.
Для собственного полупроводника концентрация носителей определяется шириной запрещенной зоны и значением температуры по уравнению Больцмана
n=const EXP(- Wo/2kT), 1/м3
то есть при 0< kT <Wo переброс через запрещенную зону возможен. В собственном полупроводнике концентрация электронов ni равна концентрации дырок pi, ni = pi , ni + pi = 2ni.
Подвижность носитнелей заряда представляет скорость, приобретаемую свободными электронами или ионами в электрическом поле единичной напряженности
 =V/E , м2/(В . с)
Подвижность дырок существенно меньше, чем подвижность электронов. Подвижность электронов и дырок в некоторых полупроводниках показана в таблице.
Полупроводники Подвижность электронов м2/(В.с) Подвижность дырок м2/(В.с)
Ge0.380 0.180
Si0.135 0.050
GaAs0.820 0.040
InAs3.000 0.020
InSb7.000 0.400
Наибольшая подвижность была обнаружена в антимониде индия InSb и в арсениде индия InAs.
Примесная проводимость. Поставка электронов в зону проводимости и дырок в валентную зону может быть за счет примесей, котроые могут ионизоваться уже принизкой температуре. Энергия их активации значительно меньше энергии, необходимой для ионизации основных атомов вещества. Примеси, поставляющие электроны в зону проводимости, занимают уровни в запретной зоне вблизи дна зоны проводимости. Они называются донорными. Приммеси, захватывающие электроны из зоны проводимости, располагаются на уровнях в запретной зоне вблизи потолка валентной зоны и называются акцепторными. На рисунке показаны энергетические диаграммы полупроводника, содержащего донорные и акцепторные примеси.
Примеси с энергией Wo<0.1 эВ являются оптимальными. Их относят к "мелким" примесям. Мелкие уровни определяют электропроводность полупроводников в диапазоне температур 200-400 К, "глубокие" примеси ионизуются при повышенных температурах. Глубокие примеси, влияя на процессы рекомбинации, определяют фотоэлектрические свойства полупроводников. С помощью глубоких примесей можно компенсировать мелкие 
и получить материал с высоким удельным сопротивлением. Например, глубокими акцепторами можно полностью компенсировать влияние мелких донорных примесей.
В примесном полупроводнике взаимосвязь между количеством электронов и дырок подчиняется закону действующих масс n . p=ni2, где ni собственная концентрация. Таким образом, чем больше вводится электронов, тем меньше концентрация дырок. На рисунке на энергетической диаграмме (по Ш.Я.Коровскому) показаны донорные и акцепторные уровни различных примесей в германии и кремнии.

Электротехнические материалы Лекции Теория конструктивных материалов Электрические цепи в постоянного и переменного токаПо строению молекул диэлектрики делят на неполярные (нейтральные) и полярные. Нейтральные диэлектрики состоят из электрически нейтральных атомов и молекул, которые до воздействия на них электрического поля не обладают электрическими свойствами. Нейтральными диэлектриками являются: полиэтилен, фторопласт-4 и др. Среди нейтральных выделяют ионные кристаллические диэлектрики (слюда, кварц и др.), в которых каждая пара ионов составляет электрически нейтральную частицу
51.Материалы, обладающие свойствами полупроводников(бинарные соединения)SiC-карбин кремния(примен. для изготовлен. полупровод-х приборов работающих при температуре >700 градусов,примен. для ихготовлен. вентильных приборов)GaAs-арсенид галлия(отличается большой запрещенной зоной,что разв. его исп-ть при высоких температурах и высокой частоты)Тпл=1237 градусов цельсиядельта Е=1,43 эВμn=0,85 м2/В*сμр=0,043 м2/В*сInSb-антимонид индия(примен. для изготовлен. термоэл. генераторов в холодильниках, оптических фильтров, высокочувствительных фотоэлементов)Тпл=525 градусов цельсиядельта Е=0,17 эВμn=3,3 м2/В*сμр=0,046 м2/В*сGaP-фафид галлия (примен. для иготовлен. светодиодов высокой чувствительности)Тпл=1500 градусов цельсиядельта Е=2,25 эВμn=0,011 м2/В*сμр=0,0075 м2/В*с
52.Методы определения типа электропороводности полупроводников.Метод Холла.
Среди халькогенидов цинка,свинца наиболее часто применяются селениды,телуриды, сульфиды. Имеют высокую температуру плавления. Получают путем кристаллизации. Применяются для изготовления фоторез., ламинофоров., высокочувствительных датчиков Холла.Халькогениды свинца (PbS, PbTe, PbSe) получают охлаждением монокристала из газовой фазы или выращиванием из расплава, применяется для изготовления териогенераторов, инфракрасных лазеров, фоторезисторов.В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через металлический брус в слабом магнитном поле течёт электрический ток под действием напряжённости . Магнитное поле будет отклонять носители заряда (для определённости электроны) от их движения вдоль или против электрического поля к одной из граней бруса. При этом критерием малости[1] будет служить условие, что при этом электрон не начнёт двигаться по циклоиде.
53.Термоэлектрическое явление в полупроводниках.
Эффект Зеебека.Сущность этого явления состоит в том, что в цепи состоящей из 2 разнородных полупроводников, возникает ЭДС, если между сталями этих полупроводников сущ. градиетн температур.

Свобоные носители заряда у горячего спая имеют более высокие энергии и скорости,чем у холодного. У горячего спая скажав-се больше носителей, поэтому поток от горячего сплава к холодному концу больше.
Если концентрат свбодных носителей у горячего и холодного спая одинаковы, то в этом случае спая противоположных заряжается.
Обратнвй эффект Зеебека называется обратным эффектом Пельтье.Он состоит в том,что при прохождении тока через носители 2-х разнородных полупров. или полупров. и провод-х происходит выделение и поглащение теплоты в зависимости от напрвления тока.Q=ItP; I-ток,t-времяпрохожден. тока, Р-коэффициент зависимости от материала полупров-в
Эффект Томпсона: состоит в том, что происходит выделение и поглащение теплоты при прохождении тока в однородном материале, в котором сущ. градиенты температур и теплота Тампе: QT= τ(T2-T1)tI54. Гальваномагнитные эффекты в полупровониках.Гальваномагнитные эффекты — совокупность эффектов, связанных с воздействием магнитного поля на электрические свойства проводников (металлов и полупроводников), по которым течёт ток. Наиболее существенны гальваномагнитные эффекты в магнитном поле, которое направленно перпендикулярно току.К гальваномагнитным эффектам относятся:
Эффект Холла
Магнетосопротивление
Эффект ЭттингсгаузенаЭффект Нернста — ЭттингсгаузенаГигантское магнитное сопротивление
Эффект Риги — ЛедюкаЭффект Эттингсгаузена — Краткое объяснение эффекта заключается в следующем. В среднем действие силы Лоренца и поля Холла компенсируют друг друга, однако, вследствие разброса скоростей носителей заряда, отклонение «более горячих» и «более холодных» происходит по-разному — они отклоняются к противоположным граням проводника.Электроны, сталкиваясь с решёткой, приходят с ней в термодинамическое равновесие. Если они при этом отдают энергию, то проводник нагревается; если они поглощают энергию решетки, то проводник охлаждается, в результате чего возникает градиент температуры в направлении, перпендикулярном полю и току .
55. Классификация магнитных материалов
подразделяют на две основные группы: магнитотвердые и магнитомягкие. В отдельную группу выделяют материалы специального назначения.
К магнитотвердым относят материалы с большой коэрцитивной силой Нс. Они перемагничиваются лишь в очень сильных магнитных полях и служат для изготовления постоянных магнитов.
К магнитомягким относят материалы с малой коэрцитивной силой и высокой магнитной проницаемостью. Они обладают способностью намагничиваться до насыщения в слабых магнитных полях, характеризуются узкой петлей гистерезиса и малыми потерями на перемагничивание. Магнитомягкие материалы используются в основном в качестве различных магнитопроводов: сердечников дросселей, трансформаторов, электромагнитов, магнитных систем электроизмерительных приборов и т. п.
Свойства магнитных материалов определяются формой кривой намагничивания и петли гистерезиса. Магнитомягкие материалы применяются для получения больших значений магнитного потока.
В зависимости от исходного сырья и технологии производства магнитомягкие материалы делятся на три группы: монолитные металлические материалы, порошковые металлические материалы (магнитодиэлектрические) и оксидные магнитные материалы, кратко называемые ферритами.
56. Основная кривая намагничивания
Это важнейшая характеристика магнитных материалов, она показывает зависимость намагниченности или магнитной индукции материала от напряженности внешнего поля Н.
Если в процессе намагничивания довести напряженность поля до некоторого значения, а затем начать уменьшать, то уменьшение индукции будет происходить медленнее, чем при намагничивании и новая кривая будет отличаться от первоначальной. Кривая изменения индукции при увеличении напряженности поля для предварительно полностью размагниченного вещества называется начальной кривой намагничивания. На рисунке 1 она показана утолщенной линией. Основная кривая намагничивания имеет ряд характерных участков, которые можно условно выделить при намагничивании монокристалла ферромагнетика. Первый участок кривой намагничивания соответствует процессу смещения границ менее благоприятно ориентированных доменов. На втором участке происходит поворот векторов намагниченности доменов в направлении внешнего магнитного поля. Третий участок соответствует парапроцессу, т.е. завершающему этапу процесса намагничивания, когда сильное магнитное поле поворачивает в направлении своего действия не сориентированные магнитные моменты доменов ферромагнетика.

Петля гистерезиса.
После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B=f(H) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса. Гистерезисом называют отставание изменения индукции от напряженности магнитного поля. Явление гистерезиса характерно вообще для всех процессов, в которых наблюдается зависимость какой-либо величины от значения другой не только в текущем, но и в предыдущем состоянии, т.е. =f(, ) - где и - соответственно текущее и предыдущее значения напряженности.
Петли гистерезиса можно получить при различных значениях максимальной напряженности внешнего поля (рисунок 2). Геометрическое место точек вершин симметричных циклов гистерезиса называется основной кривой намагничивания. Основная кривая намагничивания практически совпадает с начальной кривой.
Симметричная петля гистерезиса, полученная при максимальной напряженности поля (рисунок 2), соответствующей насыщению ферромагнетика , называется предельным циклом.
Для предельного цикла устанавливают также значения индукции при H = 0, которое называется остаточной индукцией, и значение при B = 0, называемое коэрцитивной силой. Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.
Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса (кривая 1 рис. 2) называются магнитнотвердыми. Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рисунке 2) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.

Рисунок 2 – Петли гистерезиса
Площадь гистерезисных петель в промежуточных и предельном состояниях характеризует рассеивание электрической энергии в процессе перемагничивания материала, т.е. потери на гистерезис. Площадь гистерезисной петли зависит от свойств материала, его геометрических размеров и частоты перемагничивания.
57)процессы, происходящие при перемагничивании.
При перемагничивании ферромагнетика в переменных магнитных полях всегда наблюдаются тепловые потери энергии, то есть материал нагревается. Эти потери обусловлены потерями на гистерезис и потерями на вихревые токи. Потери на гистерезис пропорциональны площади петли гистерезиса. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше сопротивление – тем меньше потери на вихревые токи.
58,59,60)
Классификация магнитных материалов:
Магнитные материалы подразделяют на магнитомягкие, магнитотвердые и материалы специализированного назначения.
К магнитомягким относят материалы с малой коэрцетивной силой (Нс < 800 А/м) и высокой магнитной проницаемостью. Они намагничиваются до насыщения в любых магнитных полях, обладают узкой петлей гистерезиса и малыми потерями на перемагничивание. Их используют в качестве сердечников дросселей, трансформаторов, электромагнитов и т.п.
К магнитотвердым относят материалы с большой коэрцитивной силой (Нс > 4кА/м). Они перемагничиваются в очень сильных магнитных полях и служат в основном для изготовления постоянных магнитов.
Среди материалов специализированного назначения в радиоэлектронике применяются материалы с прямоугольной петлей гистерезиса (ППГ), ферриты для устройств сверхвысокочастотного диапазона и магнитострикционные материалы.

Приложенные файлы

  • docx 8957930
    Размер файла: 336 kB Загрузок: 0

Добавить комментарий