ответы на вопросы к контрольной


Биологические характеристики клетки.
Фундаментальные свойства живого (самообновление, самовоспроизведение, саморегуляция).
Жизнь — активная форма существования материи, в некотором смысле высшая по сравнению с её физической и химической формами существования; самообновление. Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;
самовоспроизведение. Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;
саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм; понятие гомеостаза и виды гомеостаза.
раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования. С раздражимостью связана саморегуляция живых систем по принципу обратной связи: продукты жизнедеятельности способны оказывать тормозящее или стимулирующее воздействие на те ферменты, которые стояли в начале длинной цепи химических реакций;
поддержание гомеостаза (от гр. homoios — «подобный, одинаковый» и stasis — «неподвижность, состояние») — относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;
структурная организация — определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой — биогеоценозов;
адаптация — способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;
репродукция (воспроизведение). Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;
наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;
изменчивость — свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;
индивидуальное развитие (процесс онтогенеза) — воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;
филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе.
дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять развитие того или иного признака.
Вопрос. Структура и функции рибосом.
Рибосомы — это мельчайшие сферические гранулы диаметром 15—35 нм, являющиеся местом синтеза белка из аминокислот. Они обнаружены в клетках всех организмов, в том числе прокариотических. В отличие от других органелл цитоплазмы (пластид, митохондрий, клеточного центра и др.) рибосомы представлены в клетке огромным числом: за клеточный цикл их образуется около 10 млн. штук.
В состав рибосом входит множество молекул различных белков и несколько молекул рРНК. Полная работающая рибосома состоит из двух неравных субъединиц (рис. 1.15). Малая субъединица имеет палочковидную форму с несколькими выступами. Большая субьединица похожа на полусферу с тремя торчащими выступами. При объединении в рибосому малая субъединица ложится одним концом на один из выступов большой субъединицы. В состав малой субъединицы входит одна молекула РНК, в состав большой — три.

Рис. 1.15, Схема строения рибосомы: 1 — малая субъединица; 2 — иРНК; 3 — тРИК; 4 — аминокислота; 5 — большая субьединица; б — мембрана эндоплазматической сети; 7 — синтезируемая полипептид-ная цепь.
В цитоплазме десятки тысяч рибосом расположены свободно (поодиночке или группами) или прикреплены к нитям микротрабекулярной системы, наружной поверхности мембраны ядра и эндоплазматической сети. Они имеются также в митохондриях и хлоропластах.
В процессе синтеза белка рибосома защищает синтезируемый белок от разрушающего действия клеточных ферментов. Механизм защитного действия заключается в том, что часть вновь синтезируемого белка находится в каналоподобной структуре большой субъединицы.
12. Эндосомы, периксосомы.
Большинство эндосом, образующихся в результате эндоцитоза из плазматической мембраны, транспортируются внутрь клетки, где сливаются с существующими эндосомами либо закисляются за счёт активности протонной АТФазы (H-АТФаза). В процессе созревания эндосома проходит несколько последовательных стадий, постепенно превращаясь в лизосому. При этом часть изначального материала плазматической мембраны может вернуться обратно для повторного использования (рециркуляция).
Эндосомы - мембранные пузырьки с закисляющимся содержимым и обеспечивающие перенос молекул в клетку. Тип переноса веществ системой эндосом различный:
1. С перевариванием макромолекул ( полным)
2. С частичным их расщеплением
3. Без изменения по ходу транспорта
Процесс транспорта и последующего расшепления веществ в клетке с помощью эндосом состоит из следующих последовательных компонентов:
1. Ранняя ( периферическая ) эндосома2. Поздняя(перинуклеарная) эндосома прелизосомальный этап переваривания
3. Лизосома
Ранняя эндосома – лишенный клатрина пузырек на периферии клетки. рН среды 6,0, здесь происходит ограниченный и регулируемый процесс расщепления (лиганд отделяется от рецептора) --- возвращение рецепторов в мембрану клетки.
Поздняя ( перинуклеарная ) эндосома : а) более кислое содержимое рН 5,5
б) диаметр больший до 800 нм
в) более глубокий уровень переваривания
Это переваривание лиганд ( периферическая эндосома + перинуклеарная эндосома) --- мультивезикулярное тельце .1. Фаголизосома – она формируется при слиянии поздней эндосомы или лизосомы с фагосомой . Процесс разрушения этого материала называется гетерофагией.
2.Аутофаголизосома– она формируется при слиянии поздней эндосомы или лизосомы с аутофагосомой.
3. Мультивезикулярное тельце– крупная вакуоль ( 800 нм) , состоящая из мелких 40-80 нм пузырьков, окруженных умеренно плотным матриксом. Оно образуется в результате слияния ранней и поздней эндосом.
4. Остаточные тельца- это непереваренный материал. Самым известным компонентом этого типа являются липофусциновые гранулы – пузырьки диам. 0,3 – 3 мкм, содержащие пигмент липофусцин.
ПериксисомыПо строению пероксисомы сходны с лизосомами. Это умеренно плотные овальные тельца, окруженные одиночной мембраной. Они, как митохондрии, потребляют молекулярный кислород, но в гораздо меньшем количестве. Кислород используется не для запасания энергии, а вступает в реакцию с отщеплением водорода от различных органических молекул, включая липиды, спирт и потенциально токсичные продукты, попавшие внутрь пищеварительного тракта. Одним из продуктов реакции является перекись водорода (Н202), от которой происходит название органеллы. Высокие концентрации перекиси водорода токсичны для клетки, по сами пероксисомы ее разрушают и тем самым предотвращают токсический эффект. Предполагают, что эти органеллы возникли, когда в атмосфере стал повышаться уровень кислорода, чтобы защитить клетки от его потенциально токсического действия.
Пероксисома (лат. peroxysoma) — обязательная органелла эукариотической клетки, ограниченная мембраной, содержащая большое количество ферментов, катализирующих окислительно-восстановительные реакции (оксидазы D-аминокислот, уратоксидазы и каталазы). Наряду с митохондриями пероксисомы являются главными потребителями O2 в клетке.
В пероксисоме обычно присутствуют ферменты, использующие молекулярный кислород для отщепления атомов водорода от некоторых органических субстратов () с образованием перекиси водорода ():
Длительность жизни пероксисом незначительная — всего 5-6 суток. Новые органоиды образуются чаще всего в результате деления предшествующих, как митохондрии и хлоропласты.
Все ферменты, находящиеся в пероксисоме, должны быть синтезированы на рибосомах вне её. Для их переноса из цитозоля внутрь органеллы мембраны пероксисом имеют систему избирательного транспорта. Открыты бельгийским цитологом Кристианом де Дювом в 1965.
13.Цитоскелет: микротрубочки.
Цитоскеле́т — это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Цитоскелет — динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.
Цитоскелет образован белками, выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).
Микротрубочки представляют собой полые цилиндры порядка 25 нм диаметром, стенки которых составлены из 13 протофиламентов, каждый из которых представляет линейный полимер из димера белка тубулина. Димер состоит из двух субъединиц — альфа- и бета- формы тубулина. Микротрубочки — крайне динамичные структуры, потребляющие ГТФ в процессе полимеризации. Они играют ключевую роль во внутриклеточном транспорте (служат «рельсами», по которым перемещаются молекулярные моторы — кинезин и динеин), образуют основуаксонемы ундилиподий и веретено деления при митозе и мейозе.
Цитоскелет: промежуточные микрофиламентыАктиновые филаменты (микрофиламенты)
Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина, закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином — в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт.
Промежуточные филаментыДиаметр промежуточных филаментов составляет от 8 до 11 нанометров. Они состоят из разного рода субъединиц и являются наименее динамичной частью цитоскелета.
Цитоскелет: центриоли
ЦЕНТРИОЛЬ, органоид животных и некоторых растительных клеток, участвующий в их делении. Представляет собой цилиндрическое тельце, состоящее из девяти пучков микротрубочек. Две центриоли, расположенные под прямым углом друг к другу, образуют клеточный центр. Центриоли – самовоспроизводящиеся органоиды: перед началом митоза происходит их удвоение. В профазе митоза две пары центриолей расходятся к полюсам клетки. От них начинает формироваться веретено деления, которое в анафазе митоза растаскивает удвоившиеся хромосомы к разным полюсам.
Центриоли представляют собой полые цилиндры длиной не более 0,5 мкм. Они располагаются парами перпендикулярно одна к другой. Каждая центриоль построена из девяти триплетов микротрубочек.
Основная функция центриолей — организация микротрубочек веретена деления клетки.
Центриолям по структуре идентичны базальные тельца, которые всегда обнаруживаются в основании жгутиков и ресничек. По всей вероятности, базальные тельца образуются путем удвоения центриолей. Базальные тельца, как и центриоли, являются центрами организации микротрубочек, входящих в состав жгутиков и ресничек.
Цитоскелет: аксонема, реснички, жгутики, базальное тельце
Формируется путем самосборки. Матрицей для сборки служит центриоль или базальное тельце. Аксонема состоит из 9 периферических пар микротрубочек и двух расположенных центрально одиночных микротрубочек. В каждой периферической паре различают субфибриллу А, содержащую 10-11 тубулиновых протофиламентов, и субфибриллу В, содержащую 13 протофиламентов. С субфибриллой А связаны наружные и внутренние ручки. В их состав входит белок динеин, сдержащий 2-3 глобулярные головки, соединенные с гибкой фибриллярной частью молекулы. Основание фибриллярной части вплетено в микротрубочку (А-субфибрилла). Глобулярная головка обладает АТФ-азной активностью. При расщеплении АТФ она скользит по поверхности микротрубочки (В-субфибрилла) соседней пары по направлению к ее (-)-концу. Этот механизм аналогичен скольжению элементов актомиозинового хемомеханического преобразователя в мышце. Аксонема – основной структурный элемент реснички и жгутика.
Строение аксонемыАксонема проходит по оси реснички или жгутика (отсюда и термин «аксонема» — осевая нить). Она образована микротрубочками по схеме: (9x2) + 2.Это значит, что по окружности расположены 9 периферических дуплетов МТ, а еще пара МТ — центральный дуплет — идет вдоль оси аксонемы и заключена в центральный футляр.От каждого периферического дуплета на разных его уровнях отходят по направлению к соседнему дуплету две т.н. ручки из белка динеина, а по направлению к центральному дуплету — радиальные мостики.При замыкании и размыкании динеиновых мостиков соседние дуплеты несколько перемещаются друг относительно друга, что приводит к изгибу (биению) аксонемы.С поверхности аксонема реснички покрыта плазмолеммой, а между ее МТ находится гиалоплазма.Строение жгутика несколько сложнее: вокруг аксонемы расположен еще ряд структур
Базальное тело - своим основанием аксонема прикреплена к структуре, тоже состоящей из МТ: в жгутике это одна из центриолей сперматозоида, а в ресничке — базальное тело, находящееся в поверхностных слоях цитоплазмы.
По строению базальное тело похоже на центриоль, т. е. состоит из 9 периферических триплетов. При этом по две микротрубочки каждого триплета переходят в дуплет аксонемы. В составе базального тела, как и в клеточном центре, имеются сателлитные частицы.
Ресничка – вырост клетки длиной 5-10 мкм и шириной 0,2 мкм, содержащий аксонему. Реснички присутствуют в эпителиальных клетках воздухопроводящих и половых путей, перемещают слизь с инородными частицами и остатками отмерших клеток и создают ток жидкости около клеточной поверхности.
Жгутик – как правило, не встречается в количестве более двух на клетку. В сперматозоиде человека имеет длину 50-55 мкм и толщину 0,2-0,5 мкм, содержит аксонему.
Нарушение организации аксонемы. Дефекты ресничек и жгутиков проявляются отсутствием в аксонеме динеиновых ручек, центральной капсулы или центральных микротрубочек. Эти дефекты проявляются при синдроме неподвижных ресничек, возможно развитие рецидивирующего хронического бронхита. Более половины больных с подобным синдромом имеет транспозицию внутренних органов.

Динеиновые ручки
Так называемые динеиновые ручки образованы двигательным белком динеином. Они крепятся к A-микротрубочкам периферических дублетов и направлены к B-микротрубочкам. Молекулы динеина способны к обратимому изменению конформации при гидролизе АТФ. За счет этих изменений обращенный к B-микротрубочке конец ручки может перемещаться, обеспечивая скользящее движение периферических дублетов аксонемы друг относительно друга.
Радиальные спицы и нексиныРадиальные спицы, отходящие от периферических микротрубочек к центральной паре, представляют собой Т-образные структуры, крепящиеся к А-микротрубочкам периферических дублетов и обращенные расширенным концом к центру аксонемы. Строение и функции радиальных спиц изучены недостаточно. Известно, что они состоят из большого количества белков. На 1981 г. было известно не менее 17 различных белков, пять из которых образовывали головку и, по меньшей мере, двенадцать — «ножку» спицы. На 2006 г. выделено уже 23 белка, из которых для 18 известна структура молекулы. Состав радиальных спиц высококонсервативен: для 12 из 18 белков радиальных спиц аксонемы жгутиков хламидомонад найдены гомологи в аксонемах жгутиковых структур человека. Несократимые мостики, связывающие между собой периферические дублеты, и капсула вокруг центральной пары микротрубочек образованы белками, получившими название нексинов.
Интерфаза, её периоды. Точки рестрикции.
Основное требование к клетке, вступающей в S-фазу - интактность ДНК, так как репликация поврежденной ДНК приведет к передаче генетических аномалий потомству. Поэтому клетки, подвергшиеся мутагенным воздействиям, вызывающим  HYPERLINK "http://humbio.ru/humbio/oncogenetics/x00ed287.htm" разрывы ДНК (УФ- и g-облучение, алкилирующие соединения и др.), останавливаются в G1 и не входят в S-фазу. Остановка в G1 наблюдается не только после ДНК-повреждающих воздействий, но и при других состояниях, в том числе приводящих к  HYPERLINK "http://humbio.ru/humbio/har/0064e6fc.htm" нарушениям числа хромосом - при незавершенности предыдущего клеточного цикла митозом (расхождением хромосом), при  HYPERLINK "http://humbio.ru/humbio/01122001/canc_sv/x0002557.htm" неправильной сегрегации хромосом во время  HYPERLINK "http://humbio.ru/humbio/env_fact/000127b7.htm" митоза , приведшей к образованию микроядер, а также при разрушении микротрубочек , которое впоследствии может вызвать нарушения митоза . Остановка в G1 может быть необратимой, как это наблюдается в случае g-облучения или обратимой, прекращающейся с окончанием действия фактора, ее вызвавшего, например, при восстановлении нормального пула нуклеотидов или при реставрации системы микротрубочек.
До начала клеточного цикла  HYPERLINK "http://humbio.ru/humbio/genexp/x0030241.htm" белок p27 , находясь в высокой концентрации, предотвращает активацию протеинкиназ CDK4 или CDK6 HYPERLINK "http://humbio.ru/humbio/har/00666b4a.htm"  циклинами D1 ,  HYPERLINK "http://humbio.ru/humbio/proteins/0011b76e.htm" D2 или  HYPERLINK "http://humbio.ru/humbio/proteins/0011b7a7.htm" D3 . В таких условиях клетка остается в  HYPERLINK "http://humbio.ru/humbio/genexp/000806d6.htm" фазе G0 или  HYPERLINK "http://humbio.ru/humbio/har/002cdbae.htm" ранней фазе G1 до получения митогенного стимула. После адекватной стимуляции происходит уменьшение концентрации ингибитора p27 на фоне возрастания внутриклеточного содержания циклинов D. Это сопровождается активацией CDK и, в конечном счете, фосфорилированием белка pRb , освобождением связанного с ним  HYPERLINK "http://humbio.ru/humbio/cytology/0030d5da.htm" фактора транскрипции E2F и активацией транскрипции соответствующих генов.
На этих ранних стадиях фазы G1 клеточного цикла концентрация белка p27 все еще остается довольно высокой. Поэтому после прекращения митогенной стимуляции клеток содержание этого белка быстро восстанавливается до критического уровня и дальнейшее прохождение клеток через клеточный цикл блокируется на соответствующем этапе G1. Эта обратимость возможна до тех пор, пока фаза G1 в своем развитии не достигает определенной стадии, называемой  HYPERLINK "http://humbio.ru/humbio/genexp/x007e4fd.htm" точкой перехода , после прохождения которой клетка становится коммитированной к делению, и удаление факторов роста из окружающей среды не сопровождается ингибированием клеточного цикла. Хотя с этого момента клетки становятся независимыми от внешних сигналов к делению, они сохраняют способность к самоконтролю клеточного цикла.
Ингибиторы CDK семейства INK4 ( HYPERLINK "http://humbio.ru/humbio/genexp/x00c528f.htm"  p15 ,  HYPERLINK "http://humbio.ru/humbio/genexp/0017706f.htm" p16 ,  HYPERLINK "http://humbio.ru/humbio/genexp/x006f843.htm" p18 и  HYPERLINK "http://humbio.ru/humbio/parp/00003f5a.htm" p19 ) специфически взаимодействуют с HYPERLINK "http://humbio.ru/humbio/genexp/x00eb71c.htm" киназами CDK4 и  HYPERLINK "http://humbio.ru/humbio/genexp/x014e76a.htm" CDK6 . Белки p15 и p16 идентифицированы как супрессоры опухолевого роста, и их синтез регулируется белком pRb . Все четыре белка блокируют активацию CDK4 и CDK6, либо ослабляя их взаимодействие с циклинами, либо вытесняя их из комплекса. Хотя оба белка p16 и p27 обладают способностью ингибировать активность CDK4 и CDK6, первый имеет большее сродство к этим протеинкиназам. Если концентрация p16 повышается до уровня, при котором он полностью подавляет активность киназ CDK4/6, белок p27 становится основным ингибитором киназы CDK2 .
На ранних стадиях клеточного цикла здоровые клетки могут распознавать повреждения ДНК и реагировать на них задержкой прохождения клеточного цикла в фазе G1 до репарации повреждений. Например, в ответ на повреждения ДНК, вызванные ультрафиолетовым светом или ионизирующей радиацией,  HYPERLINK "http://humbio.ru/humbio/cytology/002e2375.htm" белок p53 индуцирует транскрипцию  HYPERLINK "http://humbio.ru/humbio/cytology/002e40de.htm" гена белка p21 . Повышение его внутриклеточной концентрации блокирует активацию CDK2  HYPERLINK "http://humbio.ru/humbio/genexp/0018fd1b.htm" циклинами E или  HYPERLINK "http://humbio.ru/humbio/cytology/002fe966.htm" A . Это останавливает клетки в поздней фазе G1 или ранней S-фазе клеточного цикла. В это время клетка сама определяет свою дальнейшую судьбу - если повреждения не могут быть устранены, она вступает в  HYPERLINK "http://humbio.ru/humbio/apon/0000923f.htm" апоптоз .Существуют две разнонаправленные системы регуляции  HYPERLINK "http://humbio.ru/humbio/genexp/0007f67d.htm" G1/S - перехода: положительная и отрицательная.
Система положительно регулирующая вход в S-фазу, включает гетеродимер  HYPERLINK "http://humbio.ru/humbio/cytology/001cc03d.htm" E2F-1/DP-1 и активирующие его  HYPERLINK "http://humbio.ru/humbio/cytology/003101c6.htm" циклин-киназные комплексы .Другая система тормозит вход в S-фазу. Она представлена опухолевыми супрессорами  HYPERLINK "http://humbio.ru/humbio/01122001/p53ch/000008f6.htm" р53 и HYPERLINK "http://humbio.ru/humbio/cytology/00264e67.htm" pRB , которые подавляют активность гетеродимеров E2F-1/DP-1.
Нормальная пролиферация клеток зависит от точного баланса между этими системами . Соотношение между этими системами может изменяться, приводя к изменению скорости пролиферации клеток.
В G1-фазе точка рестрикции (R) отличается от остальных контрольных точек, поскольку она не определяет специальное состояние клетки, идеальное для перехода в следующую фазу, а меняет дальнейшее направление жизни клетки. У позвоночных после того, как клетка пробыла в G1-фазе около трёх часов, она вступает в точку рестрикции, где клетка решает, пойдёт ли она дальше по клеточному циклу или же перейдёт в стадию покоя — G0-фазу.
Эта точка также разделяет G1-фазу на две половины: премитотическую и постмитотическую. Между началом G1-фазы (которая начинается в новой клетке после митоза) и R клетка находится в G1-постмитотической подфазе или постмитотической фазе. После R и перед S-фазой клетку называют находящейся в G1-пресинтетической подфазе или пресинтетической фазе G1-фазы.
Чтобы клетка прошла через G1-постмитотическую фазу, необходимо высокое содержание факторов роста и стабильный уровень синтеза белков, иначе клетка перейдёт в G0-фазу.
Некоторые авторы утверждают, что точка рестрикции и G1/S-точка есть одно и то же, но в более новых работах выяснилось, что это — две различные точки G1-фазы, в которых отмечается прогресс клетки. Первая, точка рестрикции, зависит от факторов роста и определяет, уходить ли клетке в G0-фазу, в то время как вторая контрольная точка зависит от питательных веществ и определяет, уходить ли клетке в S-фазу. Некоторые разногласия между исследователями приписывают тому, что одни из них изучали клетки млекопитающих, а другие — дрожжей.
G1/S-контрольная точка
G1/S-контрольная точка находится между началом G1-фазы и S-фазы, в которой определяется переход клетки в S-фазу. Факторами, из-за которых клетка может не вступить в S-фазу, могут быть недостаток факторов роста, повреждения ДНК и другие особые обстоятельства.
В этой точке образование комплексом G1/S-циклинов и циклинзависимых киназ (ЦЗК) подводит клетку к вступлению в новый цикл деления. Потом эти комплексы активируют S-ЦЗК комплексы, которые подводят клетку к репликации ДНК в S-фазе. Одновременно с этим активность комплекса стимуляции анафазы значительно уменьшается, что позволяет активироваться S- и М-циклинам.
Если клетка не может перейти в S-фазу, она вступает в покоящуюся G0-фазу, где нет ни клеточного роста, ни деления[.Общая ситуация выгладит так. В клетке постоянно присутствуют специальные белки-ферменты, которые путем фосфорилирования других белков (по остаткам серина, тирозина или треонина в полипептидной цепи), регулируют активность генов, ответственных за прохождение клетки по тому или иному периоду клеточного цикла. Эти белки-ферменты называются циклин-зависимыми протеинкиназами (cdc). Имеется несколько их разновидностей, но они все обладают сходными свойствами. Хотя количество этих циклин-зависимых протеинкиназ может варьировать в различных периодах клеточного цикла, они присутствуют в клетке постоянно, независимо от периода клеточного цикла, то есть они имеются в избытке. Другими словами, их синтез или количество не лимитирует или не регулирует прохождение клеток по клеточному циклу. Однако при патологии, если синтез их нарушен, снижено их количество или имеются мутантные формы с измененными свойствами, то это, конечно же, может повлиять на течение клеточного цикла.
Почему же такие циклин-зависимые протеинкиназы сами не могут регулировать прохождение клеток по периодам клеточного цикла. Оказывается, что они находятся в клетках в неактивном состоянии, а для того чтобы они активировались и начали работать, необходимы специальные активаторы. Ими являются циклины. Их также много разных типов, но они присутствуют в клетках не постоянно: то появляются, то исчезают. В разные фазы клеточного цикла образуются разные циклины, которые связываясь с Cdk образуют различные Cdk_циклиновые комплексы. Эти комплексы регулируют разные фазы клеточного цикла и поэтому называются G1-, G1/S-, S- и М-Cdk (рис. из моих рис. циклины). Так, например, прохождение клетки по G1 периоду клеточного цикла обеспечивает комплекс циклин-зависимой протеинкиназы_2 (cdk2) и циклина D1, циклин-зависимой протеинкиназы_5 (cdk5) и циклина D3. Прохождение через специальную точку рестрикции (R_пункт) периода G1 контролирует комплекс cdc2 и циклина С. Переход клетки из G1 периода клеточного цикла в S период контролирует комплекс cdk2 и циклина Е. Для перехода клетки из S периода в G2 период необходим комплекс cdk2 и циклин А. Циклин-зависимая протеинкиназа_2 (cdc2) и циклин В участвуют в переходе клетки из G2 периода в митоз (М период). Циклин H в соединении с cdk7 необходим для фосфорилирования и активации cdc2 в комплексе с циклином В.
РЕГУЛЯЦИЯ КЛЕТОЧНОГО ЦИКЛА G1 период cdk2 + циклин D1cdk5 и циклин D3 R_пункт периода G1 cdc2 + циклин Спереход из G1 в S период cdk2 + цикли Епереход из S в G2 период cdk2 + циклин Апереход из G2 периода в митоз (М период) cdc2 + циклин Вциклин H + cdk7 необходим для фосфорилирования и активациии cdc2 в комплексе с циклином ВЦиклины - новый класс белков, открытый Тимом Хантом, которые играют ключевую роль в управлении делением клеток. Название «циклины» появилось из-за того, что концентрация белков этого класса изменяется периодически в соответствии со стадиями клеточного цикла (например, падает перед началом деления клетки).
Первый циклин был обнаружен Хантом в начале 1980-х годов, во время опытов с икрой лягушек и морских ежей. Позднее циклины были найдены и в других живых существах.
Оказалось, что эти белки мало изменились в ходе эволюции, как и механизм управления клеточным циклом, который дошел от простых дрожжевых клеток до человека в «законсервированном» виде.
Тимоти Хант (R. Timothy Hunt) вместе с соотечественником-англичанином Полом Нерсом (Paul M. Nurse) и американцем Лиландом Хартуэллом (Leland H. Hartwell) в 2001 году получили нобелевскую премию по физиологии и медицине за открытие генетических и молекулярных механизмов регуляции клеточного цикла - процесса, который имеет важнейшее значение для роста, развития и самого существования живых организмовКонтрольные точки клеточного цикла
1. Точка выхода из G1_фазы, называемая Старт - у млекопитающих и точкой рестрикции у дрожжей. После перехода через точку рестрикции R в конце G1 наступление S становится необратимым, т.е. запускаются процессы ведущие к следующему делению клетки.2. Точка S - проверка точности репликации.
3. Точка G2/M_перехода - проверка завершения репликации.4. Переход от метафазы к анафазе митоза.
Регуляция репликации
Перед началом репликации Sc ORC_комплекс (origin recognition complex) садится на ori - точку начала репликации. Cdc6 представлен во всем клеточном цикле, но его концентрация возрастает вначале G1, где он связывается c ОRC комплексом, к которому затем присоединяются Mcm белки с образованием pre-replicative complex (pre-RC). После сборки pre-RC клетка готова к репликации.
Для инициации репликации S-Cdk соединяется с протеинкиназой (?), которая фосфорилирует pre-RC. При этом Cdc6 диссоциирует от ОRC после начала репликации и фосфорилируется, после чего убиквитинируется SCF и деградирует. Изменения в pre-RC препятствуют повторному запуску репликации. S-Cdk так же фосфорилирует некоторые Mcm белковые комплексы, что запускает их экспорт из ядра. Последующая дефосфориляция белков вновь запустит процесс образования pre-RC.
Циклины - активаторы Cdk. Циклины, так же как и Cdk вовлечены в различные, помимо контроля клеточного цикла, процессы. Циклины разделяются на 4 класса в зависимости от времени действия в клеточном цикле: G1/S, S, M и G1 циклины.G1/S циклины (Cln1 и Cln2 у S. cerevisiae, циклин E у позвоночных) достигает максимальной концентрации в поздней G1_фазе и падает в S_фазе.
G1/S cyclin-Cdk комплекс запускает начало репликации ДНК выключая различные системы подавляющие S-phase Cdk в G1_фазе G1/S циклины также инициируют дупликацию центросом у позвоночных, образование веретенного тела у дрожжей. Падение уровня G1/S сопровождается увеличением концентрации S циклинов (Clb5, Clb6 у Sc и циклин A у позвоночных), который образует S циклин-Cdk комплекс который напрямую стимулирует ДНК репликацию. Уровень S циклина остается высоким в течении всей S, G2_фаз и начала митоза, где помогает началу митозу в некоторых клетках.
М-циклины (Clb1,2,3 и 4 у Sc, циклин B у позвоночных) появляется последним. Его концентрация увеличивается, когда клетка переходит к митозу и достигает максимума в метафазе. М-циклин-Cdk_комплекс включает сборку веретена деления и выравнивание сестринских хроматид. Его разрушение в анафазе приводит к выходу из митоза и цитокиезу. G1 циклины (Cln3 у Sc и циклин D у позвоночных) помогает координировать клеточный рост с входом в новый клеточный цикл. Они необычны, так как их концентрация не меняется от фазы клеточного цикла, а меняется в ответ на внешние регуляторные сигналы роста.
Генетическое значение митоза. Разновидности митоза (амитоз, эндомитоз).
К нетипичным формам митоза относятся амитоз, эндомитоз.Причины нерасхождения хромосом многообразны. Полиплоидные клетки можно получать, используя рентгеновское облучение, повышенные или пониженные температуры, некоторые химические вещества (эфир, хлороформ). В то же время, встречается и спонтанная полиплоидизация, которая происходит без видимых причин.1. Амитоз — это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма. Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, — оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.2. ЭндорепродукцияПонятие «эндорепродукция» объединяет разнообразные отклонения от митоза, связанные с увеличением количества ДНК в клетке.а) Политения (Эндомитоз) - Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). Политенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.б) Полиплоидизация – это увеличение числа хромосом в ядре. Является или следствием нерасхождения хромосом в анафазе, или результатом эндомитоза (закрытого митоза), протекающего внутри ядра. Вместо двух ядер образуется одно, в котором число хромосом становится в два раза большим, чем в исходном ядре. Таким образом, из диплоидной клетки (2n) образуется тетраплоидная (4n). В дальнейшем число хромосом может возрастать, и одно ядро может содержать множество хромосомных наборов (8n...16n...32n; и даже до 4000...6000n, например, в макронуклеусе у инфузорий).
30. Дифференцировка клеток.
Дифференцировка клеток — процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Дифференцировка меняет функцию клетки, её размер, форму и метаболическую активность.
Фенотип клеток — это результат координированной экспрессии (то есть согласованной функциональной активности) определённого набора генов. В процессе дифференцировки менее специализированная клетка становится более специализированной. Например, моноцит развивается в макрофаг, промиобласт развивается в миобласт, который образуя синцитий, формирует мышечное волокно. Деление, дифференцировка и морфогенез— основные процессы, путём которых одиночная клетка (зигота) развивается в многоклеточный организм, содержащий самые разнообразные виды клеток.
Дифференцировка клеток происходит не только в эмбриональном развитии, но и во взрослом организме (при кроветворении, сперматогенезе, регенерации поврежденных тканей).
Дифференцировка в процессе развития эмбриона
Общее название для всех клеток, ещё не достигших окончательного уровня специализации (то есть способных дифференцироваться), — стволовые клетки. Степень дифференцированности клетки (её «потенция к развитию») называется потентностью. Клетки, способные дифференцироваться в любую клетку взрослого организма, называют плюрипотентными. Плюрипотентными являются, например, клетки внутренней клеточной массы бластоцисты млекопитающих. Для обозначения культивируемых in vitro плюрипотентных клеток, получаемых из внутренней клеточной массы бластоцисты, используется термин «эмбриональные стволовые клетки».
Дифференцировка — это процесс, в результате которого клетка становится специализированной, т.е. приобретает химические, морфологические и функциональные особенности. В самом узком смысле это изменения, происходящие в клетке на протяжении одного, нередко терминального, клеточного цикла, когда начинается синтез главных, специфических для данного клеточного типа, функциональных белков. Примером может служить Дифференцировка клеток эпидермиса кожи человека, при которой в клетках, перемещающихся из базального в шиповатый и затем последовательно в другие, более поверхностные слои, происходит накопление кератогиалина, превращающегося в клетках блестящего слоя в элеидин, а затем в роговом слое — в кератин. При этом изменяются форма клеток, строение клеточных мембран и набор органоидов. На самом деле дифференцируется не одна клетка, а группа сходных клеток. Примеров можно привести множество, так как в организме человека насчитывают порядка 220 различных типов клеток. Фибробласты синтезируют коллаген, миобласты — миозин, клетки эпителия пищеварительного тракта — пепсин и трипсин. 338
В более широком смысле под дифференцировкой понимают постепенное (на протяжении нескольких клеточных циклов) возникновение все больших различий и направлений специализации между клетками, происшедшими из более или менее однородных клеток одного исходного зачатка. Этот процесс непременно сопровождают морфогенетические преобразования, т.е. возникновение и дальнейшее развитие зачатков определенных органов в дефинитивные органы. Первые химические и морфогенетические различия между клетками, обусловливаемые самим ходом эмбриогенеза, обнаруживаются в период гаструляции.
Зародышевые листки и их производные являются примером ранней дифференцировки, приводящей к ограничению потенций клеток зародыша.
ЯДЕРНО_ ЦИТОПЛАЗМАТИЧЕСКИЕ ОТНОШЕНИЯ
Можно выделить целый ряд признаков, которые характеризуют степень дифференцированности клеток. Так, для недифференцированного состояния характерны относительно крупное ядро и высокое ядерно-цитоплазматическое отношение Vядра/Vцитоплазмы (V—объем), диспергированный хроматин и хорошо выраженное ядрышко, многочисленные рибосомы и интенсивный синтез РНК, высокая митотическая активность и неспецифический метаболизм. Все эти признаки изменяются в процессе дифференцировки, характеризуя приобретение клеткой специализации.
Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называют гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это очень важно, потому что указывает на координированность и интегрированность эмбрионального развития.
В то же время удивительно, что, в сущности, с момента одноклеточной стадии (зиготы) развитие из нее организма определенного вида уже жестко предопределено. Всем известно, что из яйца птицы развивается птица, а из яйца лягушки —лягушка. Правда, фенотипы организмов всегда различаются и могут быть нарушены до степени гибели или возникновения порока развития, а нередко могут быть даже как бы искусственно сконструированы, например у химерных животных.
Требуется понять, каким образом клетки, обладающие чаще всего одинаковыми кариотипом и генотипом, дифференцируются и участвуют в гисто- и органогенезе в необходимых местах и в определенные сроки соответственно целостному «образу» данного вида организмов. Осторожность при выдвижении положения о том, что наследственный материал всех соматических клеток абсолютно идентичен, отражает объективную реальность и историческую неоднозначность в трактовке причин клеточной дифференцировки.
В. Вейсман выдвинул гипотезу о том, что только линия половых клеток несет в себе и передает потомкам всю информацию своего генома, а соматические клетки могут отличаться от зиготы и друг от друга количеством наследственного материала и поэтому дифференцироваться в разных направлениях. Ниже приведены факты, подтверждающие возможность изменения наследственного материала в соматических клетках, но их надо трактовать как исключения из правил.
31. Клетки, синтезирующие белки
все клетки синтезируют белок, пример "профессиональных" - поджелудочная железа: инсулин, глюкагон - гормоны белковой природы + ферменты, которые она выделяет в кишечник (амилаза, липаза, протеазы) белки-ферментыКлетки фагоцитирующие - макрофаги и нейтрофилы
Фагоциты выполняют не только защитные (поглощают и разрушают чужеродные агенты), но и дренажные функции (удаляют погибшие и деградировавшие структуры организма). Фагоциты представлены клетками миелопоэтического ряда (полиморфно-ядерные лейкоциты) и макрофагально-моноцитарной системы (моноциты, тканевые макрофаги)
Нейтрофилы — основные эффекторные клетки острого воспаления; у взрослых лиц они составляют самую многочисленную популяцию лейкоцитов. Основная часть нейтрофилов циркулирует в крови в течение 6-7 ч. Затем они скапливаются в капиллярах, где формируют краевой пул, прикрепляясь к эндотелию (по периметру кровотока); в таком состоянии нейтрофилы находятся в готовности немедленно покинуть кровеносное русло (феномен краевого стояния). Нейтрофилия (увеличение их количества в периферической крови) часто указывает на наличие воспалительной реакции.
транспортирующие клетки
 клетки эпителия почечных канальцев, они транспортируют вещества из первичной мочи обратно в кровь (глюкозу, белки)
Клетки с высокой механической резистентностьюФибробласты, остеоциты, клетки соединительной ткани
клетки, способные к сокращению
миоциты, кардиомиоциты, гладкомышечные клетки
Высвобождение Са2+ из депо (канал + рецептор рионадин (пример клеток).
Особая роль Са2+ как вторичного меcсенджера и большое количество Са2+- транспортирующих систем, принимающих участие в регуляции уровня Са2+ в клетке позволяют выделить кальциевую систему сигнализации в отдельную область внутриклеточной сигнализации.
Поддержание низкой концентрации ионов кальция чрезвычайно важно для нормального функционирования клетки, поскольку долговременное повышение уровня кальция в цитозоле приводит к гибели клетки. Большинство Са2+- регулируемых процессов в клетке происходит при изменении концентрации Са2+ в диапазоне 10-7 - 10-6 М, тогда как концентрация Са2+ во внеклеточной среде близка к 10-3 М. С другой стороны,  HYPERLINK "http://humbio.ru/humbio/ssb/000dd09e.htm" мембранный потенциал эукариотических клеток в покое составляет от - 0 до -90 mV (внутри минус). Таким образом, катионы, такие как Са2+, будучи распределены согласно электрохимическому градиенту, должны присутствовать в цитоплазме в гораздо более высоких концентрациях, чем 10-7 М. Следовательно, в клетках имеются механизмы, которые выводят ионы Са2+ наружу. Эукариотические клетки содержат следующие Са2+ транспортные системы:
Ca2+ (КАЛЬЦИЕВЫЕ) КАНАЛЫ КЛЕТОЧНОЙ МЕМБРАНЫ , HYPERLINK "http://humbio.ru/humbio/cell_sign3/0000bce8.htm" Ca2+ (кальций)-транспортная система митохондрий HYPERLINK "http://humbio.ru/humbio/cell_sign3/0000af65.htm" Ca2+ (кальций) транспортная система эндоплазматического ретикулума .Как правило,  HYPERLINK "http://humbio.ru/humbio/cytology/000bb55c.htm" плазматическая мембрана содержит три системы: Ca2+ (КАЛЬЦИЕВЫЕ) КАНАЛЫ КЛЕТОЧНОЙ МЕМБРАНЫ , специфичную Ca2+-ATPАЗЫ ВНЕШНЕЙ МЕМБРАНЫ КЛЕТКИ (PMCA, E1,E2, P типа) и Na+/Ca2+ - обменник .
Вход Са2+ в клетки по градиенту концентрации осуществляется, в основном, по  HYPERLINK "http://humbio.ru/humbio/cell_sign3/000058d5.htm" Ca2+ (КАЛЬЦИЕВЫЕ) КАНАЛЫ КЛЕТОЧНОЙ МЕМБРАНЫ .Выход Са2+ осуществляется  HYPERLINK "http://humbio.ru/humbio/cell_sign3/0000dc3a.htm" Ca2+-ATPазой и  HYPERLINK "http://humbio.ru/humbio/cell_sign3/0001a445.htm" Na+-Сa2+ обменником .Уровень Ca2+ поддерживается также  HYPERLINK "http://humbio.ru/humbio/cell_sign3/0000de19.htm" Са2+-АТРазой (ЭР) и митохондриальными Са2+-транспортирующими системами. Повышение Ca2+ в цитоплазме происходит при открывании кальциевых каналов и входе кальция по градиенту концентраций. Повышение уровня Ca2+ опосредует такие реакции клетки как освобождение нейромедиатора в нервном синапсе, расщепление гликогена при воздействии адреналина на клетки мышц, апоптоз, сократительную активность мышечных волокон, и многие другие.
Некоторые патологии, такие как гипертония и сердечная недостаточность могут быть связаны с нарушением транспорта Ca2+. Однако, кратковременное повышение Ca2+ необходимо для регуляции активности Са2+-зависимых ферментов в ответ на разнообразные факторы: гормоны, нейромедиаторы, факторы роста и антигены.  HYPERLINK "http://humbio.ru/humbio/cell_sign3/00009a07.htm" Ca2+-каналы-рецепторы являются рецепторами некоторых внеклеточных и внутриклеточных стимулов.
Кальций - не только структурный компонент костной ткани. Ионы кальция играют ключевую роль в мышечном сокращении, увеличивают проницаемость мембраны клеток для ионов калия, влияют на натриевую проводимость клеток, на работу ионных насосов, способствуют секреции гормонов, участвуют в каскадном механизме свёртывания крови. Кроме этого, они служат важнейшими посредниками во внутриклеточной передаче сигналов. Концентрация кальция внутри клеток зависит от его концентрации во внеклеточной жидкости. Пределы колебаний общей концентрации Са2+ в плазме крови здоровых людей составляют
несвязанного, ионизированного кальция (около 50%);
ионов кальция, соединённых с белками, главным образом, с альбумином (45%);
недиссоциирующих комплексов с цитратом, сульфатом, фосфатом и карбонатом (5%).
Биологически активной фракцией является ионизированный кальций, концентрация которого поддерживается в пределах 1,1-1,3 ммоль/л.
Изменение уровня кальция может привести к нарушению многих процессов: изменению порога возбудимости нервных и мышечных клеток, нарушению функционирования кальциевого насоса, снижению активности ферментов и нарушению гормональной регуляции метаболизма. Концентрация Са2+ в плазме регулируется с высокой точностью: изменение её всего на 1% приводит в действие гомеостатические механизмы, восстанавливающие равновесие. Основными регуляторами обмена Са2+ в крови являются паратгормон, калыщтриол и кальцитонин.
Высвобождение Са2+ из депо (канал + рецептор инозитол трифосфат (пример клеток).
Вход Са2+ может происходить через рецептор-оперируемые каналы ( HYPERLINK "http://medbiol.ru/medbiol/cell_sign3/00006d52.htm"  ROC ), G-белок-оперируемые каналы ( HYPERLINK "http://medbiol.ru/medbiol/cell_sign3/00005285.htm"  Ca2+ (кальциевые) каналы G-белок-оперируемые(GOC) ), каналы, активируемые вторичными мессенджерами - second-messennger-operated channel ( HYPERLINK "http://medbiol.ru/medbiol/cytology/001b1d94.htm"  SMOC ) и каналы, регулируемые высвобождением Са2+ из внутриклеточных депо - Са2+-release-activated channel ( HYPERLINK "http://medbiol.ru/medbiol/cell_sign3/000062d3.htm"  CRAC ). Представлены 3 типа SMOC:
1) активируемые  HYPERLINK "http://medbiol.ru/medbiol/cell_sign3/00018359.htm" инозитол-1,4,5-трисфосфатом (IP3) ;2)  HYPERLINK "http://medbiol.ru/medbiol/cell_sign3/00019140.htm" инозитол-1,3,4,5-тетракисфосфатом (IP4) ; и
3)  HYPERLINK "http://medbiol.ru/medbiol/cytology/001d527a.htm" Ca2+ . CRAC каналы могут быть активированы фактором входа Са2+ ( HYPERLINK "http://medbiol.ru/medbiol/cell_sign3/0001474f.htm"  CIF ) или прямым взаимодействием с мембранным рецептором (R).
Ион кальция служит посредником множества клеточных реакций, в том числе  HYPERLINK "http://medbiol.ru/medbiol/cytology/000a87bf.htm" секреторных процессов и пролиферации .Изменение концентрации ионов кальция в специализированных клетках приводит к множеству биологических эффектов на уровне органов и тканей.
Концентрация ионов кальция в межклеточной жидкости примерно 10-3 М, а в цитоплазме клеток около 10-7М. Это обусловлено быстрым выводом кальция из клеток и поглощением его во внутриклеточных кальциевых депо.
Выявлено два типа передачи сигнала при посредстве ионов кальция.
Первый из них осуществляется в электро-возбудимых, преимущественно нервных клетках. В них деполяризация плазматической мембраны вызывает поглощение нервным окончанием кальция через потенциал-зависимые кальциевые каналы что приводит к секреции  HYPERLINK "http://medbiol.ru/medbiol/physiology/001c4903.htm" нейромедиатораВторой способ передачи сигнала при посредстве ионов кальция осуществляется практически во всех типах эукариотических клеток. При этом сигнальная молекула связывается с  HYPERLINK "http://medbiol.ru/medbiol/cytology/001d3c1c.htm" рецептором на поверхности клетки, что приводит к синтезу  HYPERLINK "http://medbiol.ru/medbiol/genexp/00046d67.htm" вторичных посредников, высвобождению ионов кальция из внутриклеточных депо , активации  HYPERLINK "http://medbiol.ru/medbiol/cytology/0020436c.htm" эффекторных ферментов и запуску кальций-опосредованных внутриклеточных реакций
54.ТЕРМИНЫ
 Пролиферация клеток лежит в основе регенерации (восстановления) утраченных частей. Пролиферация (от лат. proles — отпрыск, потомство и fero — несу) — разрастание ткани организма путём размножения клеток делением. Термин в медицине впервые ввел немецкий ученый Вирхов для обозначения новообразования клеток путем их размножения делением.
дифференцировка — процесс прогрессивной химической, структурной и функциональной специализации клетки.
• Главные направления дифференцировки клеток:
— электрогенез (способность к генерации электрических импульсов);
— сокращение;
— секреция;
— экскреция (способность избирательно накапливать из внутренней среды организма конечные продукты обмена и выделять их во внешнюю среду);
— всасывание.
• Биохимическая основа: дифференцированные клетки характеризуются строго определенным набором белков (ферментных, транспортных, рецепторных, сократительных и др.), которые позволяют им выполнять свои специфические физиологические функции.
• Морфологические проявления: уменьшение ядерно-плазменного отношения (в основном, за счет нарастания объема цитоплазмы), увеличение количества органелл, в том числе и специального значения, появление включений, приобретение клеткой формы, соответствующей выполняемой функции.
• Формы гибели клетки.
Некро́з — это патологический процесс, выражающийся в местной гибели ткани в живом организме в результате какого-либо экзо- или эндогенного её повреждения.—
Причинные факторы: резкое изменение окружающей клетку среды (ожог, обморожение, дефицит кислорода, изменение рН, контакт с кислотами, щелочами и др.).
— Высокая скорость процесса (от нескольких минут до одного часа).
— Структурные преобразования начинаются с цитоплазмы (нарушение структуры митохондрий, разрушение лизосом), затем нарушается проницаемость плазмалеммы для ионов и воды, клетка набухает, мембрана разрушается, клетка гибнет.
Апоптоз — регулируемый процесс программируемой клеточной гибели, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной.
— Причинный фактор: генетическая запрограммированность (в результате действия специальных генов, контролирующих данный процесс).
— Низкая скорость процесса (1—12 ч).
Реплика́ция, редупликации — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК.
Клеточная адгезия (cell adhesion)  — способность клеток слипаться друг с другом и с различными субстратами, которая обусловлена специфическими белками, связанными с плазматической мембраной; эти белки часто пронизывают мембрану и присоединяются к цитоскелету. Существуют два основных типа К.а.: клетка-внеклеточный матрикс и клетка-клетка. К белкам К.а. относятся: интегрины), функционирующие как клеточно-субстратные, так и межклеточные адгезивные рецепторы; селектины— адгезивные молекулы, обеспечивающие адгезию лейкоцитов к клеткам эндотелия; кадгерины — кальций-зависимые гомофильные межклеточные белки; адгезивные рецепторы суперсемейства иммуноглобулинов, которые особенно важны в эмбриогенезе, при заживлении ран и иммунном ответе; хоминговые рецепторы) — молекулы, обеспечивающие попадание лимфоцитов в специфическую лимфоидную ткань. Для большинства клеток характерна избирательная К.а.: после искусственной диссоциации клеток из разных организмов или тканей в суспензии собираются (агрегируют) в обособленные скопления преимущественно однотипные клетки. К.а. нарушается при удалении из среды ионов Ca2+ и при обработке клеток специфическими ферментами. С нарушением избирательности К.а. связана способность опухолевых клеток к метастазированию. К.а. быстро восстанавливается после удаления диссоциирующего агента.

Приложенные файлы

  • docx 10740247
    Размер файла: 141 kB Загрузок: 0

Добавить комментарий