Гиперболическими синусом


Гиперболическими синусом,косинусом,тангенсом и котангенсом называются функции :
; ; .Областью определения функций shx , chx , thx является вся числовая ось; функция y=cthx не определена в точке х=0. Название гиперболических функций (синус, косинус, …) объясняется тем, что для них справедливы тождества ''похожие'' на тригонометрические:
ch(x± y)=chx · chy ± shx · shy , (1)
sh(x± y)=shx · chy± chx · shy , (2)
ch2x–sh2x=1 , (3)
ch2x=ch2x+sh2x , (4)
sh2x=2shx · chx . (5)
Тождества (2) и (5) аналогичны соответствующим формулам тригонометрии, а формулы (1) , (3) и (4) отличаются от тригонометрических только знаком. Доказываются тождества (1) – (5) непосредственной проверкой.
 Очевидно, что функция y=chx является четной и принимает только положительные значения.
Функция y=shx – нечетная.
Функции y=thx и y=cthx являются нечетными как частные четной и нечетной функции. Отметим, что в отличие от тригонометрических, гиперболические функции не являются периодическими.
Прямая у=1 является правой горизонтальной асимптотой графика функции y=cthx . В силу нечетности данной функции ее левой горизонтальной асимптотой является прямая у= –1. Нетрудно показать, что эти прямые одновременно являются асимптотами и для функции y=thx. Функции shx и chx асимптот не имеют.

Приложенные файлы

  • docx 11185515
    Размер файла: 15 kB Загрузок: 0

Добавить комментарий