Эндокриная система, спорт и двигательная активн..


Эндокриная система, спорт и двигательная активность
Содержание:


Эндокриная система, спорт и двигательная активность. Уильям Д. Кремер
Что такое эндокринологияКонтроль секреции гормоновСпорт и эндокринная системаВведение в эндокринологию спортаКлассификация и синтез гормоновРегуляция секреции гормоновТранспорт гормонов в кровиВыведение гормоновМеханизм действия гормоновГормональные рецепторыТестирование с использованием физической нагрузкиОпределение (тесты и допинг-контроль) пептидных гормоновКоличественный допинг-тест пептидных гормоновХорионический гонадотропин: допинг-контроль, тестыЭритропоэтин: допинг-контроль, тестыГормон роста: допинг-контроль, тестыДопинг-контроль: методы и тестыДопинг-контроль: количественный анализЭндокринная регуляция репродуктивной системыВиды гормона роста и влияние физической нагрузкиПередняя доля гипофизаБелки, связывающие соматотропный гормонСиловая тренировка: влияние на гормон ростаВозраст и гормон ростаАэробные упражнения: влияние на гормон ростаПроопиомеланокортинИнсулиноподобный фактор роста (научный обзор)Инсулиноподобный фактор роста и физическая нагрузкаМеханический фактор роста (научный обзор)АдреналинНадпочечникиПептид FГипоталамо-гипофизарно-надпочечниковая системаКортизолЖенская репродуктивная системаНарушение менструального циклаОральные контрацептивы и спортОсь гипоталамус-гипофиз-яичкиАдаптация мышц к физической нагрузкеСиловые тренировки и тестостеронЭндорфины и кортизолСиловые тренировки и иммунитетВлияние инсулина на рост мышцФизиология восстановления костной тканиВлияние диеты и питания на гормон ростаВлияние диеты и питания на инсулиноподобный фактор ростаВлияние диеты и питания на тестостеронВлияние диеты и питания на кортизолВлияние диеты и питания на инсулинВлияние диеты и питания на состав телаТренировки и адаптация в условиях горТренировки во время жарыТепловой баланс организма: термогенез, теплоотдачаТепловой стрессАргининвазопрессинТренировки в холодное времяТренировки в период полового созреванияЭффекты и влияние тестостерона на организмЭффекты и влияние гормона роста на организмПеретренировкаСоревнования и гормоныВ предлагаемом издании “Эндокринная система, спорт и двигательная активность” центром внимания стали железы внутренней секреции, продуцирующие гормоны, под влиянием и контролем которых находятся многие функции организма. Адаптация организма человека в ответ на спортивную тренировку сопровождается заметными изменениями функции эн-докринной системы. Редакторы и авторы-составители данного издания предоставили нам обширные и авторитетные сведения об этой сложнейшей системе. Я уверен, что эта книга на протяжении многих лет будет служить незаменимым справочным пособием для врачей, исследователей и студентов. Я очень рад поздравить редакторов и авторов-составите-лей этой книги с высоким уровнем выполненной ими работы и приветствовать ее выход.
Жак Рогге, Президент МОК
Предисловие
Для каждого из нас является честью внести свой важный вклад в область эндокринологии, и частности и эндокринологию спорта и двигательной активности. Нам посчастливилось привлечь к плодотворной работе над этой книгой группу исключительных ученых. Каждая глава написана одним или несколькими ведущими специалистами мирового уровня в этой cпeцифической области знаний. Их энтузиазм и увлеченность данным проектом и его значимостью отражаются в содержании каждой главы. Мы также выражаем признательность многим нашим известным коллегам, которые внесли весомый вклад в развитие этой области научных знаний, однако не смогли принять участия в написании книги.
Каждому автору было предложено разработать систему, которая охватила бы не только передний край существующих знаний, но и послужила отправной точкой для продолжения исследований. Эти одно на немногих изданий, представляющих исчерпывающий анализ данных но многим направлениям исследований эндокринологии спорта и двигательной активности. Важно понимать, что каждая из глав этой книги должна была стать не просто обширным обзором существующих литературных источников, а сформировать на основе рассматриваемого материала современную концептуальную систему знаний, полому мы не стремились охватить всю существующую литературу, но попытались предложить читателю перспективу современного состояния эндокринологии, которой смогли бы воспользоваться как специалисты, которые занимаются прикладными медицинскими исследованиями, так и те, кто посвятил себя исследованию фундаментальных научных проблем. Мы надеемся, что это издание наряду с использованием в образовательных целях послужит также стимулом для будущих исследований в области эндокринологии спорта и двигательной активности.
Уильям Дж. Кремер, Сторрс, Коннектикут Алан Д. Рогол, Шарлотсвиль, Вирджиния
От издательства
Двигательная активность и спорт являются неотъемлемом частью современной жизни человека. Двигательная активность — одна из основных детерминант здоровья, относящихся к образу жизни, способствует достижению и сохранению крепкого здоровья, высокой и устойчивой общей н специальном работоспособности, надежной резистентности и лабильном адаптации к изменяющимся и сложным условиям внешней среды обитания, помогает формированию и соблюдению полезного для здоровья рационально организованного режима трудовой и бытовой деятельности, обеспечивает необходимую и достаточную двигательную активность, а также активным отдых, т.е. рациональный двигательный режим. Занятия физической культурой обеспечивают формирование, развитие и закрепление жизненно важных умений, навыков, привычек личной гигиены, социальной коммуникабельности, организованности и содействуют соблюдению социальных норм поведения н обществе, дисциплине, активному противоборству с нежелательными привычками и вилами поведения.
Однако необходимо учитывать, что при неправильных подходах к использованию двигательной активности она может также оказывать негативное воздействие. В этом отношении в неоднозначной ситуации оказываются иногда спортсмены в связи с профессионализацией спорта, появлением новых технических злементов и даже новых видов спорта, требующих большого напряжения, вовлечением в спорт высоких достижений детей и подростков; расширением диапазона женских видов спорта за счет тех, которые считались исключительно мужскими. Все это превращает спорт в экстремальный фактор, требующий мобилизации функциональных резервов и компенсаторно-приспособительных механизмов, контролируемых нервной, эндокринной и иммунной системами. Двигательная активность подвергает механизмы поддержания нормального функционирования организма серьезной проверке. Для получения положительных результатов и исключения отрицательною влияния двигательной активности большое значение имеет глубокое знание всевозможных изменений в этих системах, индуцированных двигательной активностью. Согласованная активация регулирующих систем приводит к различным последствиям, включая изменения на физическом и поведенческом уровнях. Если реакции находятся в пределах адаптивного характера, в организме сохраняется гомеостаз. Такой ответ обусловлен изменениями в регулирующих системах, колеблющимися в нормальных пределах. Если нагрузка не адекватна, она вызывает неадекватные изменения. Результатом являются нарушения нейроэндокринном регуляции, приводящие к срыву адаптации и развитию различных заболеваний.
Эта книга дает читателю более полную картину многих ключевых направлений исследований, в частности данные, касающиеся эндокринных механизмов. В течение многих лет эндокринология спорта и двигательной активности существовала в виде составной части многих разделов физиологии и казалась лишенной непосредственного подтверждения собственного значения как самостоятельной научной дисциплины. Несмотря на то что в медицине эндокринология как отдельная отрасль знаний развивалась на протяжении многих десятилетий, в сфере двигательной активности и спорта она стала применяться недавно и ее внимание ограничивалось одним, самое большее несколькими гормонами. Благодаря неуклонному развитию Человеческого общества, быстрому прогреccy науки и техники, развитию биофизики, биохимии, физиологии и патологии, основанному на современных достижениях точных наук, стало возможным глубоко проникнуть в биологическую природу всего живого, в том числе изучить интимные механизмы регуляторном деятельности эндокринной системы.
Книга коллектива авторов “Эндокринная система, спорт и двигательная активность”, предлагаемая издательством Национального университета физического воспитания и спорта Украины “Олимпийская литература”, под общей редакцией Уильяма Дж. Кремера и Алана Д. Рогола в этом плане представляет особый интерес. Каждая глава книги написана одним или несколькими ведущими специалистами мирового уровня в этой специфической области знаний. Авторам удалось не только представить обширный обзор по проблеме эндокринология, двигательная активность и спорт как монолитный труд, но и сформулировать современные концептуальные системы знаний но определенным вопросам этого раздела науки.
Кинга начинается с общего обзора закономерностей и концепции эндокринологии. В первых главах представлена структура эндокринной системы, различные аспекты строения и функционирования желез внутренней секреции, механизмы и закономерности влияния гормонов. Показано, что эндокринная система имеет иерархическую организацию: гипоталамус I уровень контроля (гипоталамические гормоны); гипофиз II уровень контроля (цитокины и фактры роста), III уровень контроля (периферические гормоны). Механизмы, используемые эндокринной системой для регулирования биологических процессов в тканях-мишенях, характеризуются значительной сложностью п интегрированностью. С целью поддержания гомеостаза н условиях изменении внутренний н внешней среды для управления физиологическими процессами организм использует разнообразные внутриклеточные механизмы передачи сигналов. Наиболее важная роль принадлежит гормонам.
В книге рассмотрены подходы и технологии, которые и свете современных достижении пауки могут быть применены для интеграции тестирования с использованием физической нагрузки с новыми международными методами биологических исследований, что позволило по-новому взглянуть па механизмы развития заболеваний на системном и клеточном уровнях при чрезмерных физических нагрузках.
Представлен ряд современных приемов допинг-контроля, обладающих максимальной специфичностью и чувствительностью аналитических процедур. Данные тем более интересны, если учесть постоянное увеличение списка запрещенных субстанций.
Очень важными являются результаты обобщения данных о взаимосвязи репродуктивной функции и двигательной активности. В ситуациях, когда физические тренировки сочетаются с недостаточной энергетической ценностью рациона питания, снижением массы тела, нарушениями нормального режима питания и др., они могут способствовать замедлению роста, развития и полового созревания, нарушениям репродуктивной функции.
В свете современных представлений подробно изложены материалы, касающиеся секреции важнейших гормонов в ответ на двигательную активность: соматотронного, проониомеланокортина, инсулиноподобных факторов роста и др. Показаны особенности их секреции в зависимости от возраста, пола, уровня физической нагрузки и многих других факторов. Интересны данные о взаимоотношениях этих гормонов с глюкокортикоидами, кортикостероидами, половыми гормонами. Подробно освещено влияние продуцируемых надпочечниками гормонов на метаболизм жиров, белкой, углеводов в покое и при физической нагрузке. Показана тесная взаимосвязь с иммунной н нервной системами. Интересна перспектива использования показателен функции гипоталамо-гипофизарно-надпочечниковой системы как индикатора адекватности тренировочной нагрузки и эффективности адаптационных процессов с помощью проведения долгосрочного контроля функции этой системы в организме отдельных спортсменов.
В ряде глав отражены основы спортивной подготовки женщин и мужчин. Установлены факторы, приводящие к нарушениям к половой сфере у мужчин и женщин при чрезмерной двигательной активности. Показано негативное влияние при атом на сердечно-сосудистую, костно-мышечную и другие системы организма. Намечены пути устранения такого влияния. Достаточно полно рассмотрено действие контрацептивов на здоровье женщины и физическую работоспособность при занятиях спортом.
Во многих главах рассматриваются гормональные механизмы, опосредующие индуцированные физической нагрузкой адаптации; формирование реакции на стресс, обусловленный двигательной активностью. Обсуждается положение, какую величину физической нагрузки может выдержать организм без подавления активности иммунной системы и повышения восприимчивости к заболеваниям. Вероятнее всего, эта величина варьирует в зависимости от того, в какой степени организм подвергается воздействию других стрессовых факторов.
Отдельные главы посвящены особенностям эндокринной регуляции при двигательной активности и занятиях спортом в условиях гор, повышенных и пониженных температур, при различной влажности воздуха, различном питании.
Изучение эндокринной системы в приложении к двигательной активности и использование этих знаний позволяют лучше понять механизмы реализации стрессовых реакций в организме в период соревнований, при перетренировке, оптимизировать тренировочные программы с целью достижения более высоких спортивных результатов, способствовать нормальному развитию и сохранению здоровья спортсменов. Книга может быть использована как учебное пособие, представляющее теоретический и практический интерес для студентов, преподавателем вузов физического воспитания и спорта, медицинских вузов и биологических факультетом университетов, а также может служить справочным пособием дли тренеров, врачей и других специалистов, занимающихся проблемами эндокринологии.
Об авторах
Оскар Алказар — доктор философии, исследовательский отдел, Центр изучения диабета Джослин и кафедра медицины, Гарвардская школа медицины; Бостон, Массачусетс, США
Лоренс Армстронг — доктор философии, кафедра кинезиологии и физиологии-нейробиологии, Университет Коннектикута; Сторрс, Коннектикут, США
Герхард Бауманн — доктор медицины, отдел эндокринологии, метаболизма и молекулярной медицины, Школа медицины Фейнберга Северо-Западного университета и Администрация по делам ветеранов Системы здравоохранения Чикаго; Чикаго, США
Бет Бейдлеман — доктор наук, Отдел биофизики и биомедицинского моделирования, Исследовательский медицинский институт изучения факторов окружающей среды армии США; Натик, Массачусетс, США
Шелендер Басин — доктор медицины, Школа медицины Калифорнийского университета в Лос-Анджелесе, Исследовательский центр репродуктивной биологии, отдел эндокринологии, метаболизма и молекулярной медицины, Университет медицины и науки Чарльза Р. Дрю; Лос-Анджелес, Калифорния, США
Мартин Бидлингмайер — доктор медицины, лаборатория нейроэндокринологии, Медицинская клиника, Инненштадт; Клиника университета Людвига-Максимилиана; Цимзенштрассе 1, 80336, Мюнхен, Германия
Роберт X. Боне — доктор философии, кафедра микробиологии и иммунологии, Школа медицины Государственного университета Пенсильвании; Херши, Пенсильвания, США
Джек А. Булант — доктор философии, кафедра физиологии и клеточной биологии, Школа медицины Государственного университета Огайо; Коламбус, Огайо, США
Пьер Булу — доктор медицины, Отдел медицины, Медицинская школа Колледжа Роял Фри и университета, Лондонский университет, Камнус Роял Фри; ул. Роланд Хилл, Лондон, NW3 2PF, Великобритания
Джил А. Буш - доктор философии, Лаборатория комплексной физиологии, Отдел здоровья и работоспособности человека, Университет Хьюстона; Хьюстон, TX 77204, США
Джон В. Кастелани — доктор философии, Отделение термической и горной медицины, Исследовательский медицинский институт изучения факторов окружающей среды армии США; ул. Канзас 42, Натик, МА 01760 - 5007, США
Ден М. Купер — доктор философии, Центр изучения оздоровительных эффектов двигательной активности у детей, отдел педиатрии; Медицинский колледж Ирвина; Калифорнийский университет, Ирвин, СА 92868, США
Росс К. Кунео — доктор философии, Отдел диабета и эндокринологии, Квинслендский университет, Госпиталь принцессы Александры; Брисбен 4120, Квинсленд, Австралия
Девид В. Дегрут — магистр естественных наук, Отделение термической и горной медицины, Исследовательский медицинский институт изучения факторов окружающей среды армии США, ул. Канзас 42, Натик, МА 01760-5007, США
Майкл Р. Дешене — доктор философии, Отдел кинезиологии, Колледж Уильяма и Мэри; Вильямсбург, VA 23187-8795, США
Мари Жан Де Суз — доктор философии, Лаборатория двигательной активности и здоровья скелета женщин, факультет физического воспитания и здоровья, ул. Хардборд 52, Университет Торонто; Торонто, Онтарио, M5S 2W6, Канада
Кейихиро Дохи — доктор философии, Университет наук о здоровье и спорте Осаки, Асаширодаи, Куматори-Хо, Сеннан-ган; Осака, 590 — 0496, Япония
Алон Элиаким — доктор медицины, Медицинская школа Саклера, Тель-Авивский университет и Центр детского здоровья и спорта, отдел педиатрии; Главный госпиталь Мейра; Кфар-Саба 44281, Израиль
Карл Е. Фридл — доктор философии, Исследовательский медицинский институт изучения факторов окружающей среды армии США; улица Канзас 42, Натик, МА 01760-7007, США
Эндрю К. Фрай — доктор философии, Лаборатория биохимии физических упражнений, Рои Филд Хаус 135, Университет Мемфиса; Мемфис, TN 38152, США
Элен Л. Гликман — доктор философии, Школа двигательной активности, досуга и спорта, Государственный университет Кента; Кент, ОН 44513, США
Алан X. Голдфарб — доктор философии, Отдел наук о спорте и двигательной активности, Университет Гринсборо Северной Каролины; Гринсборо, NC 27402-6170, США
Джефри Голдспинк — доктор философии, Отдел хирургии, Медицинская школа Колледжа Роял Фри и университета, Лондонский университет; Кампус Роял Фри, ул. Роланд Хилл, Лондон, NW3 2PF, Великобритания
Лаура Дж. Гудъеар — доктор философии, Центр диабета Джослин; площадь Ван Джослин, Бостон, МА 02215, США
Скотт Е. Гордон — доктор философии, Лаборатория работоспособности человека, Университет Восточной Каролины; Гринвиль, NC 27858, США
Ричард Е. Гринделанд — доктор философии, Отдел наук о жизни, Исследовательский центр НАСА-Амес; Моффет Филд, СА 94035, США
Маджабин Хамид — доктор философии, Отдел хирургии, Медицинская школа Колледжа Роял Фри и университета, Лондонский университет, Кампус Роял Фри, ул. Роланд Хилл, Лондон, NW3 2PF, Великобритания
Хейнц В. Харбах — доктор медицины, Отдел анестезиологии, интенсивной медицины, терапии боли, Университетский госпиталь; Гиссен, ул. Рудоль-фа-Бухгайма 7, D 35385, Гиссен, Германия
Стефан Харридж — доктор философии, Отдел физиологии, Медицинская школа Колледжа Роял Фри и университета, Лондонский университет; Кампус Роял Фри, ул. Роланд Хилл, Лондон, NW3 2PF, Великобритания
Гюнтер Хемпельман — доктор медицины, Отдел анестезиологии, интенсивной медицины, терапии боли, Университетский госпиталь; Гиссен, ул. Рудольфа-Бухгайма 7, D 35385, Гиссен, Германия Ричард К. Хо — доктор философии, Исследовательское отделение, Центр диабета Джослин и Отдел медицины, Гарвардская медицинская школа; Бостон, МА 02215, США
Джей Р. Хофман — доктор философии, Отдел наук о здоровье и двигательной активности, Колледж Нью Джерси; Юинг, NJ 08628, США
Уесли К. Химер — доктор философии, Отдел биохимии и молекулярной биологии, Пенсильванский государственный университет; Упиверсити парк, РА 16802, США
Уоррик Дж. Индер — доктор медицины, Отдел медицины, Госпиталь Сент-Винсента, Мельбурнский университет; Фицрой, VIC 3065, Австралия
Дэниел А. Джуделсон — магистр гуманитарных наук, Лаборатория работоспособности человека, Отдел кинезиологии, Университет Коннектикута, Сторрс, СТ 06269-1110, США
Фаузи Кади — доктор философии, Отдел физического воспитания и здоровья; Эребру, Швеция Майкл Кьер — доктор медицины, доктор философии, Университет Копенгагена, Исследовательский центр спортивной медицины, Госпиталь Биспебьерг; Биспебьерг Бакке 23, DK 2400, Копенгаген NV, Дания
Уильям Дж. Кремер — доктор философии, Лаборатория работоспособности человека, Отдел кинезиологии, Университет Коннектикута, Сторрс, СТ 06269-1110, США
Анн Б. Луке — доктор философии, Отдел биологических паук, Университет Огайо, Ирвин Холл 053, Афины; ОН 45701, США
Керри Е. Махони — бакалавр естественных наук, Отдел кинезиологии, Университет Коннектикута; Сторрс, СТ 06269—1110, США
Карл М. Мареш — доктор философии, Лаборатория работоспособности человека, Отдел кинезиологии, Университет Коннектикута; Сторрс, СТ 06269-1110, США
Андреа М. Мастро — доктор философии, Отдел биохимии и молекулярной биологии; Саус Фрир Билдинг 431, Пенсильванский государственный университет, Университи парк, РА 16802, США
Роман Миузен — доктор философии, факультет физического воспитания и физиотерапии, Брюссельский университет Врие, Брюссель, 1050, Бельгия Мери П. Майлз — доктор философии, Отдел здоровья и развития человека, Государственный университет Монтаны; Бозман, МТ 59717, США
Ден Немет — доктор медицины, Медицинская школа Саклера, Тель-Авивский университет и Центр детского здоровья и спорта, отдел педиатрии; Главный госпиталь Мейра; Кфар-Саба 44281, Израиль
Бредли К. Ниндл — доктор философии, Отделение работоспособности военнослужащих, Исследовательский медицинский институт изучения факторов окружающей среды армии США; Натик, МА 59717, США
Чарльз Т. Робертс — доктор философии, Отдел педиатрии, Орегонский университет, Сем Джексон Парк Роад 3181 SW, Портланд, OR 2W6, Канада Керол Д. Роджерс — доктор философии, отдел физического воспитания и здоровья, Университет Торонто, Торонто, Онтарио, Канада и отдел физиологии, медицинский факультет, Университет Торонто, Онтарио, M5S 2W6, Канада
Джеймс Н. Реми — доктор философии, Отдел педиатрии, Отделение поведенческой медицины, Государственный университет штата Нью-Йорк в Буффало; 3435, Мейн Стрит, Буффало, NY 14214 — 3000, США
Алан Д. Рогол — доктор медицины, доктор философии, клиническая педиатрия, Университет Вирджинии; ODR Консалтинг, 685 Экснлорерс Роад, Шарлотсвиль, VA 22911—8441, США
Клиффорд Дж. Розен — доктор медицины, Центр исследований остеопороза и образовательной деятельности штата Мэн, Госпиталь Сент-Джозефа; Бродвей 900, Бангор, ME 04401, США
Вильгельм Шонцер — доктор философии, Институт биохимии, Кельнский спортивный университет; Карл-Дием Вег б, 50933, Кельи, Германия Мэтью Дж. Шарман — магистр естественных наук, Лаборатория работоспособности человека, Отдел кинезиологии; 2095 Хиллсайд роад, Модуль 110, Университет Коннектикута, Сторрс, СТ 06269—1110, США
Жанет Е. Стааб — бакалавр, Отделение термической и горной медицины, Исследовательский медицинский институт изучения факторов окружающей среды армии США; улица Канзас 42, Натик, МА 01760-5007, США
Кристиан Дж. Страсбургер — доктор медицины, Отделение эндокринологии, отдел медицины внутренних органов; Чарите —, Кампус Митте, Шу-манстрассе 20/21, 10117 Берлин, Германия
Юрген М. Стейнакер — доктор медицины, доктор философии, Секция спорта и реабилитационной медицины, Университет Ульма; 89070 Ульм, Германия
Марио Тевис - доктор философии, Институт биохимии, Кельнский спортивный университет; Карл-Дием Вег 6, 50933, Кельн, Германия
Н. Тревис Триплет — доктор философии, Отдел наук о здоровье, досуге и двигательной активности, Аппалачский государственный университет; Бун, NC 28608, США
Джаси Л. Ванхест - доктор философии, Отдел кинезиологии, Университет Коннектикута, Сторрс, СТ 06269—1110, США и адыонкт отдела физического воспитания и здоровья, Университет Торонто; Торонто, Онтарио, M5S 2W6, Канада
Иоганнес Д. Велдгуис — доктор медицины, Отдел эндокринологии и метаболизма, Отдел медицины внутренних органов, Медицинская школа Майо, Главный центр клинических исследований, Клиника Майо; Рочестер, MN 55905, США Атко Виру — доктор естественных паук, доктор философии, Институт спортивной биологии, Университет Тарту; Юликооли, 18, Тарту 51014, Эстония Мехис Виру - доктор философии, Институт спортивной биологии, Университет Тарту; Юликооли, 18, Тарту 51014, Эстония
Джефф С. Волек — доктор философии, Отдел кинезиологии, Университет Коннектикута; Сторрс, СТ 06269-1110, США
Дженифер Д. Уоллес — доктор философии, доктор медицины, Центр метаболических исследований, отдел медицины, Квинслендский университет, Госпиталь принцессы Александры; Брисбен 4120, Квинсленд, Австралия
Артур Л. Велтман — доктор философии, Отдел сферы обслуживания, Отдел медицины, Главный центр клинических исследований и лаборатория спортивной физиологии, Университет Вирджинии; Шарлотсвиль, VA 22908, США
Джуди Велтман — магистр естественных наук, Главный центр клинических исследований, Университет Вирджинии; Шарлотсвиль, VA 22908, США Лаури Видеман — доктор философии, Отдел наук о спорте и двигательной активности, Университет Гринсборо Северной Каролины; Гринсборо, NC 27402-6170, США
Ненси Вильямс - доктор паук, Исследовательский центр физиологии и отдел кинезиологии Нолла, Лаборатория Нолла 108, Университет штата Пенсильвания; Университи Парк, РА 16802, США
Гари А. Виттерт — доктор медицины, Отдел медицины, Королевский госпиталь Аделаиды, Университет Аделаиды; Аделаида, SA 5000, Австралия Зида By — доктор медицины, Отделение эндокринологии, отдел медицины внутренних органов, Чарите — Кампус Митте; Шуманстрассе 20/21, 10117 Берлин, Германия
Ши Ю Янг — доктор философии, магистр ветеринарных наук, Отдел хирургии, Медицинская школа Колледжа Роял Фри и университета, Лондонский университет, Кампус Роял Фри, ул. Роланд Хилл, Лондон, NW3 2PF, Великобритания
Что такое эндокринология
Что такое эндокринология?
Эндокринология — наука о межклеточном и внутриклеточном обмене информацией. В соответствии с классическим определением Бейлисса и Старлинга, которое было дано более 100 лет назад, в организме происходит секреция химического вещества (гормона, от греческого слова hormaein, стимулировать, побуждать к действию) в систему кровообращения с целью воздействия на отдаленные его части (целевой орган). В то время еще ничего не было известно о рецепторах гормонов. Предложенная гипотеза, по мнению авторов, должна была описать действие секретина — химического вещества, выделяемого небольшой железой в кровеносное русло для стимуляции секреции экзокрина панкреатической железой (Bayliss, Starling, 1902).
Некоторые гормоны эндокринной системы и их действие
Эндокринная железа Гормон Основное действие
Семенники ТестостеронСтимулирует развитие и обеспечивает сохранение мужских половых признаков, рост и анаболизм белков
Яичники ЭстрогеныФормирует вторичные женские половые признаки и эпифиз длинных костей
Прогестерон Формирует женские половые признаки; необходим для нормального протекания беременности; формирует молочные железы
Передняя доля гипофизаГормон роста, или соматотропин, соматотропный гормон (СТГ)Стимулирует синтез ростовых факторов ИФР-I и ИФР-II; стимулирует синтез белка; необходим для нормального протекания процессов роста и промежуточного метаболизма
Адренокортикотропный гормон (АКТГ), или кортикотропинСтимулирует выделение глюкокортикоидов корой надпочечниковТиреотропный гормон (ТП'), или тиреотропин Стимулирует синтез и выделение гормонов щитовидной железой
Фолликулостимулирующий гормон (ФЛГ), или фолликулотропин Стимулирует рост фолликулов в яичниках; семенных канальцев в семенниках и продукцию спермы
Лютеинизирующий гормон (ЛГ), или лютропин Стимулирует овуляцию, а также образование и секрецию половых гормонов в яичниках и семенниках
ПролактинСтимулирует образование молока в молочных железах
Задняя доля гипофиза Антидиуретический гормон (АДГ) Увеличивает обратную абсорбцию воды в почках и стимулирует сокращение гладкой мускулатуры
Окситоцин Стимулирует сокращение матки и выделение молока молочными железами
Кора надпочечников, адреналовая кора ГлюкокортикоидыИнгибируют или замедляют включение аминокислот в состав белков (кортизол); стимулируют превращение белков в углеводы (глюконеогенез); способствуют поддержанию нормального уровня сахара в крови, сохранению глюкозы, использованию жира в обменных процессах
Минералкортикоиды (альдостерон, дезоксикортикостерон и др.) Регулируют натрий-калиевый обмен, способствуют удержанию воды в организме
Мозговое вещество надпочечников АдреналинПовышает сердечный выброс; кровеснабжение скелетных мышц и сердца; выделяет глюкозу в кровь, расщепляет гликоген и мобилизует жирыНорадреналин Подобен адреналину; кроме того, способствует сужению кровеносных сосудов
Проэнкефалины (например, пептиды F, E) Стимулирует иммунную систему
Щитовидная железа ТироксинСтимулирует окислительные процессы в митохондриях и рост клеток
Кальцитонин Снижает содержание кальция в крови, подавляет активность остеокластов
Сердце (кардиоциты) Атриальный натрийуретический фактор (АНФ) Способствует выделению из организма натрия и воды; обеспечивает гомеостаз давления и объема крови, противодействует влиянию системы ренин—ангиотензин
Поджелудочная железа ИнсулинСтимулирует поглощение глюкозы и ее накопление в виде гликогена
Глюкагон Увеличивает содержание глюкозы в крови
Паращитовидные(околощитовидные) железы Паратиреоидный гормон (паратгормон, паратиреондин) Повышает содержание кальция и снижает содержание фосфата в крови
Кожа Витамин DОбразует витамин D из 7-дегидрохолестерина при действии солнечных лучей
Жировая ткань Лептин Регулирует аппетит и образование энергии
Первоначально считалось, что все гормоны образуются в специализированных железах, например в щитовидной, надпочечниках или железах внутренней секреции, с целью последующего их воздействия на один или несколько органов-мишеней как средство регуляции гомеостаза различных метаболических процессов (механизмы биохимического контроля) — образования генов; биосинтеза и ферментативного катализа; изменений, превращений и разрушения биологических соединений; биохимического опосредования действия и взаимодействия этих соединений, а также как средство получения, накопления и использования накопленной энергии. Впоследствии были сформулированы фундаментальные концепции, которые описывали многие формы межклеточной (и даже внутриклеточной) передачи информации у растений и животных. Гормоны представлены различными классами биологических молекул. Сегодня уже известно, что практически все ткани и клетки организма либо продуцируют гормоны, либо являются чувствительными к ним. Такая система гормональной регуляции, которая функционирует в тесной взаимосвязи с нервной и иммунной системами, предоставляет тканям и органам суммарную информацию о внешних условиях, необходимую для поддержания метаболического гомеостаза. Эти фундаментальные представления получили значительное развитие благодаря достижениям клеточной биологии, молекулярной биологии и генетики, позволяющим объяснить процессы синтеза гормонов, их воздействия и возможной интеграции, однако основа представлений об эндокринной системе осталась прежней — взаимодействие разнообразных систем и обеспечение клеточного и метаболического гомеостаза.
В классических исследованиях гормоны определяли на основании принципа удаления—замещения. У нормальных животных удаляли эндокринные железы, удаленные ткани растирали и экстрагировали активные вещества. Восстановление функций, утраченных после удаления железы, происходит при введении экспериментальному животному экстракта; так были открыты многие гормоны. Более 150 лет назад Бертольд получил результаты, подтверждающие концепцию гормональной регуляции, продемонстрировав возобновление роста бородки и гребня у кастрированных петухов после обратной имплантации семенников в полость тела (Бертольд, 1849). Поскольку трансплантат был эктопическим и лишенным иннервации, ученый заключил, что яички выделяют продукт, который контролирует развитие (и сохранение) вторичных половых признаков. Концепция гомеостаза была сформулирована Клодом Бернаром, который показал, что печень способна выделять глюкозу в кровь:
“Постоянство внутренней среды является условием независимого существования живого... Столь далеко от высших животных, нечувствительных к изменениям окружающей среды, и в отличие от них, она существует в точном и осведомленном взаимоотношении со своим окружением таким образом, что ее равновесие поддерживается благодаря постоянной и тонкой компенсации, установившейся как бы с помощью самых чувствительных весов” (Bernard, 1957).
Об этих результатах Бернара было известно Бейлиссу и Старлингу, когда они выдвинули гипотезу, объясняющую действие секретина, и впервые использовали слово гормон. Позднее Вальтер Кеннон обратил внимание на то, что достичь постоянства внутренней среды можно только посредством совместного осуществления максимально скоординированных физиологических процессов, которые он назвал гомеостатическими (Cannon, 1939).
Гормоны, выделяемые эндокринными железами, могут сразу обладать полной активностью, как кортизол, а могут нуждаться для своей активации в последующей модификации, например превращение тетрайодтиронина (тироксина Т4) в трийодтиронин (Т3) специфической дейодиназой, тестостерона в дигидротестостером (ДГТ) 5-а редуктазой и витамина D, в 1,25-дигидроксивитамина D двумя различными гидроксилазами. Изменения с помощью фосфорилирования, сульфатирования или присоединения липидной цели могут потребоваться, чтобы гормон стал растворимым а той среде, где ом находится.
Поскольку гормоны обладают способностью оказывать дистанционное воздействие, в процессе эволюции возникли специальные транспортные системы. Некоторые стероидные гормоны имеют специфические связывающие белки, которые обеспечивают их растворимость в водной среде (половой гормон связывается с гормонсвязывающим глобулином и альбумином). Существует обширная группа белков, связывающих инсулиноподобные факторы роста (insulin-like growth factor binding proteins, IGFBP), которые переносят ИФР-1 и ИФР-11 к местам их действия, продлевают время их существования и подавляют их влияние как гипогликемических факторов (LeRoltch, 2003).
Скорость секреции большинства гормонов не постоянна. Их концентрация в кровяном русле также величина не постоянная, что может быть обусловлено как прерывистым характером секреции, так и изменениями в характере обменных процессов (выведение). Так, концентрация инсулина в крови крайне не постоянна, она варьирует ежеминутно в зависимости от времени приема и состава пищи, отклоняясь от среднего уровня, который, как правило, определяется соотношением мышечной массы и жировой ткани в организме и локализацией жировой ткани в нем (висцеральная или подкожная). Уровень гормона роста изменяется волнообразно в течение дня в зависимости от особенностей питания и сна Содержание гормонов из группы гонадотропинов, а именно лютеинизирующего гормона (ЛГ) и фолликулостимулирующего гормона (ФСГ), а также половых стероидных гормонов — эстрогена и прогестерона — подвергается циклическим изменениям на протяжении менструального цикла, продолжительность которого составляет около 28 дней; кроме того, уровень ЛГ подвергается ритмическим колебаниям с интервалом I — 2 ч в течение суток. Содержание адренокортикотропного гормона (АКТГ) и кортизола также обычно подвержено циклическим колебаниям в течение дня (высокий уровень в утренние часы и низкие уровни вечером и ночью) у тех, кто спит в ночное время. Нарушение этих ритмов может привести к бесплодию или нарушениям менструального цикла.
В чем состоит роль гормонов?
Для распознавания сигнала на клетке-мишени имеются высокоспецифичные “рецепторы", которые распознают химическую информацию (первичный мессенджер) и запускают каскад химических реакций, приводящих к изменениям функции клетки, например изменениям процессов синтеза белка. Рецепторные белки могут располагаться на поверхности клеточной мембраны, в цитоплазме или ядре. Эти рецепторы представляют собой часть единого регуляторного механизма и сигнал от гормона, поступаюший в клетку, может быть модифицирован в зависимости от их количества и аффинности (степени сродства) к лиганду. Эндоцитоз рецептора приводит к интернализации поверхностных рецепторов, что в свою очередь может сопровождаться диссоциацией комплекса гормон—рецептор и ослаблению воздействия гормона. Снижение чувствительности рецептора (аттенуация сигналов рецептора в присутствии лиганда) может приводить к изменению аффинности рецептора к лиганду, например за счет фосфорилирования (как в случае адреналина). Основные сигнальные пути гормональной регуляции используют для активации различных внутриклеточных процессов рецепторы, сопряженные с G-белками, тирозиикиназпые рецепторы, серии-треонинкиназные рецепторы, ионные каналы, цитокиновые рецепторы и ядерные рецепторы.
Механизмы межклеточного обмена информацией
Обмен Механизм обмена
Эндокринный
(гемокринный) Химический мессенджер (вещество-носитель информации — гормон) образуется в специализированно ткани или органе (железе) и выделяется в систему кровообращения, оказывая влияние на другой пространственно удаленный орган
Паракринный Гормон синтезируется в специализированной клетке и оказывает влияние на клетки, расположенные поблизости
Юкстакринный Гормон синтезируется в определенной клетке и оказывает влияние на соседнюю клетку
Аутокринный Гормон синтезируется в определенной клетке и воздействует на поверхность этой же клетки
Интракрииный Гормон синтезируется в одной клетке и оказывает воздействие на процессы, происходящие в этой же клетке без участия поверхностных рецепторов клетки
Контроль секреции гормонов
Контроль секреции гормонов
Эндокринная система имеет иерархическую организацию, например клетки гипоталамуса выделяют тиреотропин-рилизинг-гормон (ТРГ, тиреолиберин), который стимулирует синтез тиреостимулирующего гормона (тиреотропного гормона, ТТГ) в передней доле гипофиза, который в свою очередь воздействует на клетки щитовидной железы, побуждая их увеличить синтез и секрецию тиреоидных гормонов Т4 и Т3. Тиреоидные гормоны в системе кровообращения находятся в связанном состоянии, образуя комплекс со специфическим белком — тироксинсвязывающим, и влияют практически на все клетки организма посредством взаимодействия с внутриклеточными рецепторами тиреоидиого гормона, изменяя уровень метаболизма в клетках-мишенях.
Все эти системы регулируются с помощью негативных и иногда позитивных обратных связей, что позволяет поддерживать систему в целом в достаточно узком диапазоне функциональных состояний (гомеостаз). Вместе с тем эта сложная иерархическая система не работает в изоляции от других регуляторных систем организма. Существует множество точек взаимодействия систем эндокринной регуляции с нервной и иммунной системами, например ответ организма на стресс (Selye, 1950), который реализуется посредством сложного взаимодействия центральной нервной системы (ЦНС) и периферических систем. Эта система должна получать (и интегрировать) разнообразные нейросенсорные сигналы, в частности сигналы от органов зрения, внутренних органов, системы кровообращения и лимбической системы мозга. Согласованная активация этой системы приводит к различным последствиям, включая изменения на физическом и поведенческом уровне. Если эти реакции носят адаптивный характер, организм остается в пределах, обеспечивающих сохранение гомеостаза. Иерархия такого ответа на стресс является определяющей для многих других взаимодействий нервной, эндокринной и иммунной систем.
Центральными компонентами системы являются мелкоклеточные нейроны паравентрикулярпого ядра гипоталамуса, секретирующие кортикотропин-рилизинг-гормон (КРГ, кортиколиберин) и аргининвазопрессин (АВП), КРГ-продуцирующие нейроны paragigantocellular и parabranchial ядер продолговатого мозга и locus ceruleus (синее пятно) и другие преимущественно норадренергические (норадреналин) клеточные группы продолговатого мозга и варолиева моста (locus ceruleus / норадреналиновая симпатическая система). Периферические ветви представлены гипоталамо-гипофизарно-надпочечниковой системой, эфферентной симпатико-надпочечпиковой системой и некоторыми компонентами парасимпатической нервной системы. АВП и КРГ активируют в гипофизе синтез проопиомеланокортина(ПОМК), который впоследствии расщепляется с образованием АКТГ (а также многих других, играющих центральную роль, активных пептидов, таких, как а-меланоцитстимулирующий гормон, а-МСГ). АКТГ активирует в надпочечниках синтез кортизола и других стероидов, которые влияют на метаболический гомеостаз и иммунную систему. Существует взаимодействие с регуляторной системой половых желез (ингибирование на различных уровнях), гипоталамо-гипофизарной-гормон роста/ИФР-1 системой (ингибирование на различных уровнях) и тиреоидной системой (снижение синтеза ТСГ и угнетение превращения гормона Т4 в более акактивный в метаболическом плане Т3 — это явление получило название синдрома “эутиреоидной слабости” (“euthyroid sick” syndrome), который характеризуется снижением уровня ТСГ и пониженной активностью периферических тиреоидных гормонов), кроме того, различные метаболические процессы подвержены противоположному по характеру воздействию гормона роста и половых стероидов на катаболизм жировой ткани, а также анаболизм мышечной и костной тканей.
Спорт и эндокринная система
Спорт и эндокринная система
Двигательная активность подвергает механизмы поддерживания гомеостаза серьезной нагрузке. При остром ответе на физическую нагрузку можно наблюдать усиление обменных процессов в 10 раз и более.
Во время обычных тренировочных занятий от организма требуется периодически развивать значительное мышечное усилие и функционировать на пределе физиологических возможностей. Нагрузки, которым подвергается организм спортсмена во время соревнований, не менее значительны, чем марафонский бегпродолжительностью 2 ч 10 мин или выступление спортсмена-тяжелоатлета, поднимающего штангу весом в четыре раза больше массы его собственного тела. Механизмы, позволяющие организму переносить подобные нагрузки и приспосабливаться к ним, непосредственно связаны с гормональной регуляцией физиологических систем в сочетании с острыми и хроническими адаптационными изменениями.
В течение последних 50 лет и более физиология спорта и двигательной активности продолжала расширять исследования гормональных механизмов, опосредующих индуцированные физической нагрузкой адаптации. Например, в силовой тренировке основное значение для острого ответа при выполнении физических упражнений и последующего ремоделирования тканей имеют многие компоненты эндокринной системы (Kraemer, Ratamess, 2003). Повышение уровня гормонов в ответ на выполнение силовых упражнений происходит в уникальных физиологических условиях. Резкое повышение содержания гормонов в системе кровообращения (причинами которого могут быть возросший уровень секреции, ослабление очистки крови в печени, уменьшение объема плазмы, снижение скорости распада), которое наблюдается как во время, так и сразу после занятия силовыми упражнениями, увеличивает вероятность взаимодействия с мембранными рецепторами клеток тканей-мишеней (т. е. с белками) либо с ядерными/цитоплазматическими рецепторами клеток тканей-мишеней (т.е. со стероидными рецепторами) (Кraemer, 2000). Наряду с изменениями концентрации гормонов в крови возрастает количество доступных для связывания рецепторов, а также происходят другие изменения на клеточном уровне. Взаимодействие гормона с рецептором включает множество процессов, кульминацией которых являются специфические варианты, например увеличение синтеза белка в мышцах. Таким образом, начиная от роли анаболических гормонов (гормона роста,тестостерона, ИФР) в синтезе белка в ответ на занятия силовыми упражнениями и заканчивая значением инсулина в метаболизме гликогена при тренировке выносливости, механизмы гормональной регуляции начинают занимать все более заметное место в науке о двигательной активности и спорте. Вследствие вездесущего характера гормонов ни одна физиологическая система не может адекватно функционировать и адаптироваться к различным формам двигательной активности без их участия. Результатом такого повсеместного влияния гормонов стал рост интереса к эндокринологии у специалистов, занимающихся исследованиями двигательной активности и спорта.
Двигательная активность и спорт создают уникальные физиологические условия, на которые просто невозможно экстраполировать наши представления о физиологии поддержания гомеостаза (или эндокринологии) в состоянии покоя. Занятия физическими упражнениями создают крайне специфический по своей сущности стимул. Сегодня мы знаем, что в отличие от общей схемы реакции организма на стресс, описанной Селье (1950) более 50 лет назад, стресс является крайне специфическим по своим характеристикам и опосредующим его воздействие на организм механизмом, поэтому величина гормонального ответа, равно как и его локализация в организме, может быть разной. Так, в результате выполнения силовых упражнений, в которых нагрузке подвергаются только мышцы руки, можно не обнаружить никаких изменений в содержании анаболических гормонов в крови, однако концентрация факторов роста (таких, как ИФР-1) может существенно возрастать, особенно в тканях, подвергавшихся тренировочной нагрузке. Различия в гормональном ответе могут быть обусловлены уровнем интенсивности двигательной активности — низкая интенсивность занятий сопровождается менее заметными колебаниями содержания гормонов в крови по сравнению с более высокой. Таким образом, влияние выполняемой работы, интенсивности, объема и кратности тренировочных занятий, — все это позволяет создать тренировочный стимул, который оказывает сильное воздействие после одного занятия или периодическое при регулярной двигательной активности.
Понимание роли различных гормонов в рамках отдельной физиологической системы или в случае обмена информацией между различными физиологическими системами организма представляет проблему, поскольку практически нельзя найти гормон, который бы действовал независимо. Более того, учитывая значение многоуровневого обмена информацией для оптимальной регуляции гомеостаза, для ответа на разнообразные энергетические потребности организма при воздействии физической нагрузки необходима комплексная интеграция гормональных сигналов.
И наконец, изучение роли гормонов для двигательной активности и спорта позволяет лучше понять механизм возникновения стрессовых реакций организма в период соревнований, при перетренировке и выделить ключевые факторы в программировании занятий по двигательной активности (таких, как интенсивность, кратность и продолжительность), которые могут быть оптимизированы с целью создания более совершенных тренировочных программ, и в результате — повышения спортивных показателей. Сегодня нет никаких сомнений в том, что данные, полученные в области эндокринологии, позволяют дать ответы на вопрос о физиологических основах любой стрессовой реакции, связанной с занятиями спортом или двигательной активностью.
Введение в эндокринологию спорта
Введение и основные принципы
Основным предназначением физиологических процессов является постоянное стремление к поддержанию гомеостаза организма. Это стремление к поддержанию постоянства внутренней среды подвергается постоянным возмущающим воздействиям со стороны внутренней и внешней среды. Способность поддерживать гомеостаз в условиях изменяющейся среды определяется эффективностью обмена информацией между клетками организма. Основу такого обмена информацией составляют две системы. Нервная система обычно обеспечивает быстрый и короткий ответ на воздействие. В отличие от нее эндокринная система реагирует на изменения в среде гораздо медленнее, однако ее ответ является более продолжительным во времени по сравнению с реакцией нервной системы. Влияние эндокринной системы является всеобъемлющим и регулирует активность практически всех клеток организма. Все наши клетки снабжаются кровью и эндокринная система использует эту особенность физиологической организации для распространения информации по всему телу.
Слово “гормон” происходит от греческого hormaein, что означает стимулировать, побуждать к действию. В 1902 г. Бейлисс и Старлинг описали вещество, которое выделял в кровь один из органов тела (небольшая железа), вызывая тем самым ответную реакцию в другом органе (поджелудочной железе). Это был секретин - первый из обнаруженных и описанных гормонов. Сегодня гормон определяют как “химическое вещество, которое в небольших количествах выделяется в кровь и после переноса кровью вызывает типичный физиологический ответ в других клетках” (Гудмен, 1994). Однако было обнаружено, что наряду с этим примером классического эндокринного воздействия, вещество-медиатор может выделяться во внутритканевую жидкость, распространяться путем диффузии и влиять на соседние клетки (паракринное воздействие) или даже взаимодействовать с той самой клеткой, которая их продуцировала (аутокринное воздействие). Действительно, некоторые вещества, например инсулиноподобный фактор роста I (ИФР-1), могут вызывать биологический ответ с помощью эндокринного, паракринного и аутокрипного механизмов воздействия (Yakar et al., 2002). Совсем недавно было высказано предположение (Re, 2003), что некоторые факторы роста и пептидные гормоны могут непосредственно регулировать поведение клетки, которая их синтезировала, даже не покидая ее пределов (интракринное воздействие).
Несмотря на то что были открыты десятки гормонов, биологическая активность которых регулирует множество физиологических процессов, все они подчиняются нескольким фундаментальным закономерностям. Во-первых, гормоны продуцируются специализированными, лишенными протоков эндокринными железами и секретируются в кровяное русло, где они с кровью разносятся по всему телу и попадают к своим клеткам-мишеням, которые связывают гормон и реагируют на его наличие, изменяя свою биологическую активность определенным запрограммированным образом. Во-вторых, хотя некоторые эндокринные железы и являются главными элементами органов, специализированных па выполнении эндокринной функции (например, гипофиз, щитовидная железа), другие железы располагаются в органах, которые имеют иные основные физиологические функции (например, сердце, кишечник, почки). В-третьих, одна эндокринная железа может продуцировать более одного гормона. В-четвертых, за редкими исключениями одна эндокринная клетка может синтезировать и выделять только один гормон. В-пятых, конкретный гормон может секретироваться более, чем одной эндокринной железой. В-шестых, один гормон может стимулировать несколько разных физиологических реакций в нескольких различных типах клеток-мишеней. В-седьмых, каждый гормон в определенном типе клеток может стимулировать только один ответ. В-восьмых, любая клетка-мишень может взаимодействовать с несколькими различными гормонами, каждый из которых вызывает специфическую ответную реакцию. В-девятых, каждый конкретный вид внутриклеточных процессов, например гликолиз, может регулироваться более, чем одним гормоном. В-десятых, чувствительность клетки-мишени к специфическому гормону может определяться ее уровнем дифференцировки, присутствием других гормонов, внешними условиями и др.
Хотя эндокринная система регулирует множество биологических процессов в клетках-мишенях организма, физиологические эффекты гормонального воздействия можно свести к четырем основным группам. Это: 1) усвоение и метаболизм (анаболические и катаболические процессы ) питательных веществ; 2) поддержание водно-солевого баланса; 3) обеспечение роста и развития организма; 4) реализация репродуктивной функции.
Классификация и синтез гормонов
Содержание
 [убрать] 
1 Классификация гормонов и их синтез1.1 Стероидные гормоны1.2 Пептидные гормоны1.3 Аминокислоты1.4 Катехоламины2 Читайте такжеКлассификация гормонов и их синтез
Все известные гормоны могут быть разделены на группы в зависимости от своего химического состава и способа синтеза следующим образом: 1) стероиды; 2) пептиды/белки; 3) амины.
Стероидные гормоны
Стероидные гормоны являются производными холестерина; к этой группе относятся половые стероиды (андрогены, эстрогены, прогестины), которые продуцируются в половых железах, а также глюкокортикоиды и минералкортикоиды, которые синтезируются надпочечными железами. У человека основным андрогеном или мужским половым гормоном, циркулирующим в крови, является тестостерон. Подобным обрезом эстрогены представляют собой семейство женских половых гормонов. У человека основным эстрогеном является эстрадиол, а в группе прогестинов преобладает прогестерон. Кортизол является основным глюкокортикоидом у человека, а альдостерон — основным минералкортикоидом.
Поскольку предшественником всех стероидных гормонов является одно и то же соединение — холестерин, то основным фактором, определяющим преобладающий продукт эндокринной железы, будут ферментативные пути биосинтеза. Вместе с тем из-за строго определенных отклонений в ферментативном синтезе в продуктах, секретируемых железой, наряду с основным обычно выявляются небольшие количества другого гормона. Например, основная масса стероидов, которые синтезируют семенники, представлена тестостероном, но наряду с ним в небольших количествах образуется еще и кортизол, появление которого обусловлено присутствием небольшого количества ферментов, входящих в состав пути биосинтеза этого стероида.
Скорость образования стероидных гормонов определяется, как и в случае всех прочих ферментативных процессов, активностью фермента, определяющего скорость цепи реакций в целом, т. е. фермента, катализирующего самую медленную реакцию в биохимическом каскаде. Для всех стероидных гормонов такой ограничивающей скорость реакцией является превращение холестерина в прегненолон. Таким образом, факторы, которые увеличивают скорость образования стероидов, главным образом ускоряют формирование прегненолона, а также увеличивают потребление эндокринной железой холестерина из крови (Rhoades, Pflanzer, 2003).
Эндокринные железы, которые продуцируют стероиды, не способны накапливать вновь синтезированный гормон, поэтому по мере синтеза стероид выделяется в систему кровообращения и, соответственно, скорость секреции гормона в кровь равна скорости его продукции в клетках эндокринной железы.
Пептидные гормоны
Белково-пептидные гормоны представляют собой аминокислотные цепи. В случае, если количество аминокислотных остатков в цепи не превышает 20, гормон обычно называют пептидным, если цепь включает 20 аминокислотных остатков или более, гормон называют белковым (Goodman, 1994). Примерами пептидных гормонов являются окситоцин, вазопрессин и соматостатин. В количество (-100) белковых гормонов, описанных к настоящему времени, входят инсулин, гормон роста, кальцитонин и глюкагон. Некоторые из этих белков существуют как относительно простые, одиночные аминокислотные цепи, тогда как другие характеризуются наличием дисульфидных связей, соединяющих различные участки полипептидной последовательности, и имеют сложную четвертичную структуру. Некоторые белковые гормоны могут даже состоять из нескольких субъединиц, объединенных вместе в единую структуру.
Независимо от своего конечного строения все белково-пептидные гормоны синтезируются в эндокринных клетках подобно всем остальным белкам. Это означает, что синтез предшественников белковопептидных гормонов происходит на рибосомах при участии тРНК и мРНК в виде гораздо более длинных цепей но сравнению с теми, которые обнаруживаются в составе активного гормона. Такие препрогормоны содержат сигнальную информацию, указывающую, что белок предназначен для выделения из клетки. Первоначальные модификации этих молекул происходят в эпдоплазматическом ретикулуме, там, где располагаются рибосомы, и включают протеолитические реакции, которые приводят к удалению аминокислотных составляющих, включая сигнальную последовательность, и соответственному укорочению цепи. Сформировавшиеся в результате этих процессов прогормоны попадают затем в комплекс Гольджи, где подвергаются дальнейшему протеолитическому расщеплению и, возможно, присоединению молекул углеводов (гликозилирование) или фосфатных групп (фосфорилирование). После завершения этих модификаций от комплекса Гольджи отсоединяется участок мембраны, формирующий везикулу, в которой заключен сформированный гормон. Эта секреторная везикула остается в цитоплазме эндокринной клетки до момента получения соответствующего сигнала, стимулирующего повышение концентрации ионов кальция в клетке. Это в свою очередь приводит к тому, что секреторная везикула сливается с плазматической мембраной клетки и выделяет гормон во внеклеточное пространство путем экзоцитоза. Обычно запас пептидно-белковых гормонов в клетке ограничен, поэтому сигнал, стимулирующий секрецию клеткой гормона, допускает и его дополнительный синтез (Rhoades, Pflanzer, 2003).
Протеолитическое расщепление прогормона во время синтеза гормонов белковой природы приводит к большому разнообразию гормонов, продуцируемых эндокринной системой. Одна и та же молекула-предшественник может подвергаться различным модификациям, приводящим к образованию разнообразных конечных продуктов. Возможно, наилучшим примером подобных процессов является предшественник проопиомеланокортина (ПОМК), который содержит аминокислотные последовательности нескольких белково-пептидных гормонов, в число которых входят адренокортикотропный гормон (АКТГ), β-эндорфин и β-липотронный гормон (Krieger et al., 1980; Chretian, Seidah, 1981). Каким будет основной гормон, производимый конкретной эндокринной железой, синтезирующей ПОМК, будут определять специфические протеолитические ферменты, которые экспрессируют клетки этой железы. Например, клетки передней доли гипофиза содержат набор ферментов, который обеспечивает формирование АКТГ в качестве основного конечного продукта образования прогормона ПОМК. В то же время нейроны головного мозга, которые также продуцируют ПОМК, содержат ферменты, которые расщепляют эту молекулу-предшественник таким образом, что секретируется преимущественно β-эндорфин. Альтернативные варианты образования ПОМК обнаружены в плаценте, репродуктивных органах, желудочно-кишечном тракте и легких (Liotta et al., 1982; Margioris et al., 1982). Такая специфическая продукция различных гормонов из одного общего предшественника в зависимости от наличного спектра ферментов обладает определенным сходством с особенностями процессов биосинтеза стероидов.
Аминокислоты
Амины также известны под названием гормонов — производных аминокислот, включают соединения, образованные из аминокислоты тирозина. В эту группу входят тиреоидные гормоны (тироксин Т4 и трийодтиронин Т3) и катехоламины (адреналин и норадреналин). Несмотря на то что все они происходят от общей молекулы-предшественника, тиреоидные гормоны и катехоламины различаются во многих аспектах, включая их синтез, транспорт в кровеносной системе и механизм воздействия на клетки-мишени. Эти группы аминов будут рассмотрены по отдельности с учетом особенностей их биосинтеза.
Формирование тиреоидных гормонов зависит от поглощения фолликулярными клетками щитовидной железы тирозина и минерального йодида. Тирозин используется в качестве основы для построения тироглобулина, который представляет собой крупный гликопротеин, накапливающийся в фолликулярных клетках в значительных количествах. При поглощении йодида из крови тирозиновые остатки тироглобулина подвергаются йодированию посредством многоэтапной реакции, которая оканчивается формированием Т4 либо Т, в зависимости от количества атомов йода, связавшихся с тироглобулином. Первоначально тирюглобулин взаимодействует с одним или двумя ионами йода, что приводит к образованию монойодтирозина (МИТ) или дийодтирозина (ДЙТ) соответственно. На следующем этапе энзиматического синтеза тиреоидных гормонов к молекуле тирюглобулина присоединяется еще два атома йода, благодаря чему МИТ превращается в Т3, а ДЙТ — в Т4. На этом этапе тиреоидные гормоны представляют собой часть крупного комплекса тироглобулина, который запасается в клетках желез. После стимуляции секреции тироидного гормона протеолитические ферменты в фолликулярных клетках расщепляют запасенный тироглобулин, что приводит к освобождению гормонов Т3 и Т4, а также их последующему выделению в кровяное русло.
Катехоламины
Катехоламины — адреналин и норадреналин также образуются на основе тирозина, однако их синтез происходит в клетках мозгового слоя надпочечников. Ткань мозгового слоя надпочечников в действительности представляет собой модифицированный компонент симпатической части вегетативной нервной системы. Мозговая ткань надпочечников получает сигнал непосредственно от нервных окончаний симпатической нервной системы и представляет собой пример нейроэндокринной функции.
Образование катехоламинов происходит в хромаффиниых клетках мозгового слоя надпочечников путем многоэтапного биосинтеза. Сначала тирозин при участии тирозингидролазы превращается в 3,4-дигидроксифенилаланин (допа). Эта реакция является лимитирующей скорость процесса образования катехоламинов. Допа затем преобразуется в допамин, который в свою очередь превращается в норадреналин, основная масса последнего подвергается метилированию ферментом фенилэтаноламин-N-метилтрансферазой (PNMT) с образованием адреналина. Как адреналин, так и норадреналин являются катехоламинами, однако стахиометрическое соотношение этих соединений на этапе синтеза и выделения из надпочечников составляет 1 : 4. Несмотря на это, по содержанию в крови норадреналин превосходит адреналин, однако основная масса этого норадреналина продуцируется симпатической нервной системой, где он выполняет функцию нейротрансмиттера и оттуда попадает в кровь. Вместе с тем основным катехоламином, циркулирующим в системе кровообращения, является адреналин (Hedge et al., 1987).
После образования катехоламины могут накапливаться в клетках железы, где происходил их синтез, в виде хромаффинных гранул. Стимуляция симпатической нервной системы приводит к выделению катехоламинов путем типичного экзоцитоза и усилению активации тирозингидролазы, последнее приводит к увеличению продукции катехоламинов хромаффинными клетками и восстановлению внутриклеточных депо катехоламииов (Rhoades, Pflanzer, 2003).
Регуляция секреции гормонов
Регуляция секреции гормонов
Степень воздействия гормона на ткань-мишень пропорциональна его концентрации в крови. Содержание любого биологически активного гормона в системе кровообращения определяется сочетанием нескольких факторов. К этим факторам относятся:
скорость секреции в кровь эндокринной железой;
для некоторых гормонов, в частности тиреоидных, скорость активации (превращения Т4 в Т3) в крови;
для липофильных гормонов, а именно стероидных и тиреоидных, степень связывания белками плазмы крови;
скорость инактивации и удаления из крови (клиренса).
Из всех этих факторов первый — скорость секреции в кровь — является основным, определяющим содержание гормона в системе кровообращения, в частности в условиях отсутствия физической нагрузки (Sherwood, 2004).
Существуют два типа секреции гормона в кровь (Kelly, 1985). Конститутивная секреция представляет собой непрерывное выделение эндокринного вещества в кровь с некоторой базовой скоростью. При таком механизме секреции гормон выделяется клеткой по мере его синтеза, поскольку железа не способна его накапливать, поэтому при получении стимулирующего сигнала происходит увеличение активности синтеза и вновь синтезированный гормон выделяется непосредственно в кровяное русло путем пассивной диффузии через клеточную мембрану. Такой тип секреции характерен для стероидных и тиреоидных гормонов, которые по своим свойствам являются липофильными, как и плазматическая мембрана клетки. Конститутивная секреция регулируется изменениями уровня фосфорилирования белков, которые выступают в роли ферментов пути биосинтеза.
Регулируемая секреция представляет второй тип высвобождения гормона из эндокринной железы в кровь. В этом случае между скоростью синтеза белка и его высвобождением в кровь нет прямой зависимости, как в случае конститутивной секреции. Вместо этого эндокринные железы, которые способны к регулируемой секреции, обладают способностью накапливать синтезированный гормон. Следует отметить, что и в этом случае накопительные способности железистой клетки ограничены. На самом деле для любого отдельно взятого гормона его запас в эндокринных тканях редко превышает суточную потребность организма (Baulieu, 1990).
В случае регулируемой секреции стимулирующее воздействие приводит к высвобождению путем экзоцитоза накопленных везикул, содержащих гормон. В большинстве случаев для обеспечения постоянной готовности клеток к выделению гормона сигнал, вызывающий высвобождение гормона, активизирует ферментативные системы его синтеза. Обычно высвобождению запасенного гормона и активации синтетических процессов предшествует поступление в клетку ионов кальция. Такая регулируемая форма секреции наблюдается для белково-пептидных гормонов и катехоламинов.
Как при конститутивной, так и при регулируемой секреции гормонов стимулом, регулирующим скорость секреции, обычно является: 1) изменение в плазме концентрации питательных веществ или ионов; 2) выделение нейронами нейротрансмиттеров, воздействующих на эндокринные клетки; 3) связывание клеточнымирецепторами гормонов, выделяемых другими эндокринными железами. Как правило, все эти события взаимосвязаны между собой определенным образом. С другой стороны, изменения в секреции гормонов обычно являются результатом воздействия нескольких факторов.
Ответ эндокринных желез на стимулирующее воздействие определяется чувствительной и эффективной системой обратной связи, которая передает информацию от ткани-мишени обратно к органу, выделяющему гормон. Наиболее распространенной формой регуляции скорости секреции в эндокринной системе является негативная обратная связь. Этот тип обратной связи можно наблюдать в случае, когда активность одной системы (эндокринная железа) модифицируется негативным образом, т. е. подавляется активностью другой системы (ткани-мишени), что позволяет поддерживать гомеостаз. Например, повышение концентрации глюкозы в крови стимулирует секрецию инсулина поджелудочной железой. Повышение содержания инсулина в крови способствует поглощению глюкозы мышечными клетками ткань-мишень для инсулина, а также превращению глюкозы в жир, результатом чего является нормализация содержания глюкозы в крови.
Существует несколько различных видов регуляции секреции гормонов путем негативной обратной связи. Управление секрецией нескольких важных гормонов осуществляет гипоталамо-гипофизарная система. Небольшой участок в основании мозга — гипоталамус — продуцирует несколько рилизинг-гормонов или либеринов, которые переносятся портальной системой кровеносных капилляров в переднюю долю гипофиза. В этом примере нейроэндокринной функции гипоталамус выделяет гормоны-либерины, которые, попадая в переднюю долю гипофиза, изменяют там скорость секреции ряда гормонов в систему кровообращения, которая обеспечивает их транспорт ко всем тканям организма. Эти гипофизарные гормоны могут оказывать непосредственное влияние на ткани-мишени, либо активировать железы третьего уровня этой системы регуляции, стимулируя секрецию их специфических гормонов в кровеносное русло.
Что касается негативной обратной связи, в этой нейроэндокринной системе можно выделить “короткую” и “длинную" регуляторные цепи (Vander et al., 2001). В качестве примера действия короткой цепи негативной обратной связи можно привести ситуацию, когда высокий уровень пролактина в крови детектируется гипоталамусом, в ответ на это там происходит выделение допамина, который направляется в гипофиз и ингибирует секрецию гипофизом пролактина в кровеносное русло. В случае системы, состоящей из трех органов, показано существование длинной петли обратной связи. В качестве иллюстрации такого механизма обратной связи рассмотрим регуляцию синтеза кортизола. Рассматриваемая система состоит из гипоталамуса, гипофиза и коры надпочечников. Гипоталамус выделяет кортиколиберин или кортикотропин-рилизинг-гормон (КРГ) в портальную систему кровеносных капилляров, по которой это вещество попадает в переднюю долю гипофиза. После связывания кортиколиберииа с клеточными рецепторами гипофиз выделяет в кровеносное русло АКТГ, который по большому кругу кровообращения попадет к клеткам надпочечников. В тканях коры надпочечников (напомним, что мозговое вещество надпочечников продуцирует катехоламины) АКТГ индуцирует высвобождение в кровь кортизола, который оказывает специфическое воздействие на ткани-мишени печени, скелетных мышц и жировых отложений. В этом случае негативная регуляция наблюдается, когда повышение содержания кортизола в крови подавляет выделение АКТГ гипофизом и/или КРГ гипоталамусом. Этот пример показывает, насколько совершенной в эндокринной системе является интеграция подаваемых и принимаемых сигналов, которая позволяет регулировать секрецию гормонов в эндокринной системе из нескольких органов с помощью короткой и длинной цепей обратной связи (Vander et al., 2001).
Несмотря на то что негативная обратная связь является преобладающим механизмом регуляции, для изменения уровня секреции гормонов в организме используется также позитивная обратная связь. В случае позитивной обратной связи эндокринная железа, продуцирующая гормон, контролирует индуцированные этим гормоном изменения биологической активности ткани-мишени. Если ткань-мишень реагирует недостаточно интенсивно, эндокринная железа выделяет дополнительное количество гормона до тех пор, пока активность биологического процесса, который он регулирует, не достигнет адекватного уровня. Примером позитивной обратной связи является регуляция эндокринной функции во время родов. Окситоцин, выделяемый задней долей гипофиза, стимулирует сокращение матки. По мере прохождения родового процесса и увеличения потребности в более сильных родовых схватках активность матки сигнализирует гипофизу о потребности увеличения секреции окситоцина, что приводит к усилению силы и частоты сокращений матки и позволяет родам завершиться благополучно.
Хотя основной функцией эндокринной системы является поддержание гомеостаза, изменения внутренней среды организма и внешних условий не единственный регулятор секреции гормонов. Концентрация большинства гормонов в крови подвергается прогнозируемым флуктуациям или ритмическим колебаниям, происходящим на протяжении определенного периода времени. Наиболее хороню изучены циркадные или суточные ритмы эндокринной системы. Циркадный ритм характеризует периодические колебания, происходящие в течение 24 ч солнечных суток, тогда как суточный ритм относится к колебаниям уровня секреции гормона, связанным со сменой дня и ночи. Часто эти термины используются как синонимы. Такие естественные, запрограммированные ритмы активности эндокринных желез поддерживаются супрахиазматическими ядрами гипоталамуса. Этот пейсмекер (ритмоводитель) регулирует секрецию гормонов на основании собственных внутренних часов и задаст специфический характер секреции для каждого гормона, например, содержание кортизола в крови выше всего утром, тогда как максимальное содержание гормона роста наблюдается в ночные часы (Illnerova ct al., 2000).
Наряду с суточными колебаниями уровня секреции гормонов, часто наблюдаются и регулярные пульсации с более коротким периодом, которые называются ультралианным ритмом и накладываются на циркадный ритм. Эти периодические повышения секреции гормонов, вероятно, являются следствием возрастания активности гипоталамуса и имеют важное физиологическое значение. Так, было показано, что при одном и том же общем количестве выделяемого гормона усвоение глюкозы было более эффективным в случае, когда кривая продукции инсулина имела волнообразный вил, по сравнению с ситуацией, когда его уровень в крови был постоянным (Porksen, 2002).
Известно также, что секреция гормонов изменяется и на протяжении года, хотя здесь основная масса данных была получена на животных. Годовые ритмы соответствуют изменению продолжительности светового дня, которая регистрируется шишковидной железой центральной нервной системы (Short, 1985). Эта железа, которую за фоточувствительность часто называют еще "третьим глазом", в ответ на изменение продолжительности светового дня регулирует количество выделяемого ею мелатонина (Tamarkin ct al., 1985). Другие сезонные изменения поведения, такие, как зимняя спячка, миграции и даже изменения окраски меха, управляются прогнозируемыми изменениями уровня мелатонина в крови. У человека усиление продукции мелатонина, происходящее при сокращении продолжительности светового дня, может вызывать изменения настроения и даже депрессию (Lcwy et al., 1987). Ранее было показано, что у всех млекопитающих, не исключая и человека, мелатонин играет главную роль в поддержании циркадных ритмов, оказывая влияние на клетки супрахиазматичсских ядер (Pcvct ct al., 2002).
Транспорт гормонов в крови
Транспорт гормонов в системе кровообращения
Все гормоны выделяются эндокринными железами, которые их продуцируют, в сеть венозных капилляров, окружающих железу. После прохождения легких и сердца гормоны попадают в большой круг кровообращения и разносятся по всему телу. В крови только небольшие их количества обнаруживаются в виде связанных с мембраной красных кровяных телец, основная часть которых находится в растворенном состоянии в плазме крови (белково-пептидные гормоны) или в виде ассоциатов с белками плазмы (стероидные и тиреоидные гормоны). Благодаря своему химическому составу белково-пептидные гормоны являются гидрофильными и легко растворяются в плазме крови. Однако, находясь в кровеносном русле, такие гормоны подвергаются расщеплению различными протеолитическими ферментами, что препятствует их взаимодействию с тканями-мишенями. Вместе с тем следует вспомнить, что эндокринные железы, продуцирующие белково-пептидные гормоны, способны накапливать их и выделять после стимулирующего воздействия, указывающего на потребность организма в конкретном гормоне.
В отличие от белково-пептидных стероидные гормоны обладают гидрофобными свойствами и неспособны растворяться в плазме крови, поэтому основная масса их (> 95 %) находится в крови в виде комплексов с различными белками плазмы крови. Гормоны — производные аминокислот также обнаруживаются в плазме крови в виде комплексов с транспортными белками, хотя образование таких комплексов для разных гормонов происходит с различной эффективностью. Так, лишь около 50 % катехоламинов в крови образуют комплексы с транспортными белками, тогда как почти 99 % тиреоидных гормонов, которые являются более гидрофобными, находятся в связанном виде.
Стероиды могут либо связываться с белками, обладающими достаточно высокой специфичностью к определенным гормонам, либо с меньшей избирательностью и сродством с альбумином и транстиретином, концентрация которых в плазме крови достаточно высока. Синтез всех транспортных белков, включая и высокоспецифичные транспортные белки и представленные в большом количестве альбумин и транстиретин, синтезируются в печени (Rhoades, Pflanzer, 2003). Обладающие низким сродством по отношению к стероидным гормонам альбумин и транстиретин имеют несколько участков связывания, которые позволяют им образовывать комплексы не только с гормонами, но и с другими низкомолекулярными соединениями, встречающимися в крови. В отличие от них высокоспецифичные транспортные белки обычно имеют один сайт связывания, строение которого обеспечивает возможность взаимодействия только с конкретным гормоном, и характеризуются гораздо более высоким сродством к своему лиганду по сравнению с альбумином или транстиретином (Baulieu, 1990). Соотношение неспецифичных комплексов гормона с белками плазмы крови и его специфических комплексов со специализированными транспортными белками варьирует для разных гидрофобных гормонов. Например, альдостерон почти в равном количестве образует специфичные и неспецифичные комплексы, тогда как только около 10 % кортизола в плазме крови связано с глобулином и транстиретином, а более 85 % этого гормона находится в виде комплекса с кортикостероид-связывающим глобулином.
Независимо от того, с каким белком (альбумином, транстиретином или специфическим транспортным белком) гормон образует комплекс, лишь небольшие количества стероидных и тиреоидных гормонов, которые находятся в свободной форме, способны связываться с клеточными рецепторами тканей-мишеней, т. е. только несвязанный с транспортным белком гормон способен обеспечить специфическое биологическое воздействие на клетки-мишени. Когда свободные стероидные или тиреоидные гормоны взаимодействуют с тканью-мишенью, часть связанного гормона диссоциирует из комплекса со связывающим белком, благодаря чему формируется динамическое равновесие между связанной и несвязанной формой, состояние которого определяется потребностью поддержания гомеостаза организма. По сути дела, связанная фракция является своего рода депо, которое предоставляет гормон ткани-мишени по мере необходимости. Это, как предполагают, позволяет компенсировать отсутствие накапливающей способности у желез, синтезирующих стероидные и тиреоидные гормоны, в отличие от желез, продуцирующих белково-пептидные гормоны, которые способны накапливать активный гормон и при необходимости выделять его в кровь. И действительно, уже никто не считает, что основной функцией транспортных белков является преодоление проблемы низкой растворимости гидрофобных гормонов в плазме крови. Было показано, что благодаря своему небольшому размеру большинство стероидных и тиреоидных гормонов хорошо растворяется в крови, несмотря на гидрофобные свойства, обусловленные особенностями химического строения (Kronenberg et al., 2003). Это свидетельствует о том, что связывающие белки выполняют прежде всего запасающую роль, а также препятствуют переходу небольших по размеру гормонов из крови в почечные канальцы, что приводило бы к их преждевременному выведению из организма. В случае инсулиноподобных факторов роста; которые по своей природе являются гидрофильными, специфические связывающие белки выполняют роль непосредственных посредников, при необходимости доставляющих гормон к рецепторам клетки-мишени (Firth, Baxter, 2002).
Выведение гормонов
Метаболический клиренс гормонов
После попадания в систему кровообращения большинство гормонов достаточно быстро деградирует. Как правило, их период полураспада не превышает 30 мин, хотя этот показатель в значительной степени может варьировать. Например, период полураспада катехоламинов составляет несколько секунд, тогда как для тиреоидных гормонов этот показатель равен нескольким дням. Продолжительность жизни любого гормона в крови зависит от особенностей метаболизма и/или клиренса из системы кровообращения. Как и в случае транспорта, специфический метод выведения из системы кровообращения будет определяться химическим составом гормона, однако, как правило, все гормоны подвергаются разрушению в печени и выводятся из организма с помощью почек. Белково-пептидные гормоны и катехоламины обычно расщепляются в крови протеолитическими ферментами, а образовавшиеся в результате распада аминокислоты выводятся через мочевыводящие пути. В отличие от них стероидные и тиреоидные гормоны, устойчивые к протеолитическим ферментам крови, подвергаются деградации в печени посредством серии химических реакций, приводящих к увеличению растворимости этих гидрофобных молекул. Благодаря небольшому размеру после увеличения растворимости основная масса стероидов может быть удалена через мочевыводящие пути, хотя небольшая их часть выделяется непосредственно печенью в составе желчи (Rhoades, Pflanzer, 2003). Еще один, хотя и менее распространенный способ клиренса гормонов, носит название “рецептор-опосредованный эндоцитоз”. В ходе этого процесса некоторые крупные белковые гормоны, такие, как инсулин, после связывания с рецепторами и стимуляции биологической реакции подвергаются интернализации клетками-мишенями. После поглощения клеткой-мишенью гормон отделяется от рецептора и расщепляется цитоплазматическими протеолитическими ферментами.
Механизм действия гормонов
Механизм воздействия на клетки-мишени
Биологическое воздействие, оказываемое гормоном на клетку-мишень, начинается со связывания гормона с клеточным рецептором. Взаимодействие гормона и рецептора лежит в основе функционирования всей эндокринной системы. Благодаря высокой специфичности этого взаимодействия эндокринная железа может выделять гормон в систему кровообращения, которая обеспечивает возможность его доставки ко всем тканям и клеткам организма, однако он будет воздействовать только на те клетки, которые имеют рецепторы, специфичные для этого гормона. Обычно клетка-мишень образует на своей поверхности от 2000 до 100 000 рецепторов для какого-либо одного гормона (Guyton, Hall, 1996).
Рецептор — это белок, иногда гликопротеин, который имеет один или несколько сайтов связывания лиганда (гормона) и эффекторный или активный сайт, который вызывает биологический ответ в клетке, экспрессирующей этот рецептор. Каждый тип рецепторов обладает уникальной трехмерной структурой, которая комплиментарна структуре определенного гормона, благодаря чему и обеспечивается специфичность рецептора. Комплиментарность химических структур гормона и рецептора позволяет им узнавать друг друга и взаимодействовать по принципу “ключ—замок". Однако существует возможность того, что гормоны с очень похожей структурой, например инсулин и инсулиноподобный фактор роста, будут взаимодействовать перекрестным образом с рецепторами своего структурного гомолога. В нормальных условиях при естественных концентрациях гормона такое перекрестное взаимодействие минимально и соответствующая неспецифически индуцированная клеточная активность незначительна.
Сила взаимодействия гормона и рецептора описывается как аффинность (сродство) лиганда к его сайту связывания. Степень сродства гормона и рецептора определяет, насколько легко этот комплекс может быть разрушен. В случае высокоаффинного взаимодействия для разрушения связи гормон—рецептор необходимы значительные изменения внешних условий, например pH, температуры и др. С другой стороны, низкоаффинное взаимодействие нарушить достаточно легко и часто для этого не требуется даже никаких изменений окружающих условий. Перекрестное взаимодействие, описанное выше, представляет собой низкоаффинное связывание, благодаря чему такие комплексы гормон — рецептор обычно оказывают очень слабое стимулирующее воздействие на клетку, на которой они находятся.
Между свободной формой гормона в крови, омывающей ткань-мишень, и его связанной с рецептором формой существует динамическое равновесие. Это равновесие имеет важное значение для осуществления регуляторной функции эндокринной системы. В соответствии с законом действующих масс, чем большее количество гормона доступно для взаимодействия с мишенью (концентрация гормона в крови), тем выше вероятность того, что сайт связывания рецептора будет занят гормоном, и тем более выраженным будет -биологический ответ, выявляемый в клетках ткани-мишени, т. е. изменение биологической активности клетки-мишени пропорционально количеству сформировавшихся комплексов гормон—рецептор, которое непосредственно зависит от концентрации гормона в крови. Насыщение характеризует количество рецепторов клетки-мишени, образовавших комплекс с гормоном, которое с физиологической точки зрения определяет ответ клетки па гормональное воздействие. Степень насыщения сайтов связывания на клеточной мембране определяется двумя основными факторами: концентрацией несвязанного гормона в плазме крови и сродством рецепторов к этому гормону.
При рассмотрении значения насыщения в регуляции ответа клетки-мишени на гормональное воздействие, следует отметить, что даже при максимальной биологической реакции не все клеточные рецепторы связываются с гормоном. Это наблюдение привело к возникновению концепции “резервных рецепторов” (“spare receptors"). Имеется в виду, что для достижения максимального биологического ответа нет необходимости в том, чтобы абсолютно все клеточные рецепторы были связаны с гормоном. Это означает, что клетка экспрессирует рецепторы в избыточном количестве. Однако, если вспомнить о том, что образование и формирование комплексов гормон-рецептор подчиняется законам статистической вероятности, то такая “избыточность” рецепторов в действительности окажется совсем не лишней. Между гормоном и рецептором не существует никаких сил взаимного притяжения, которые бы помогали им найти друг друга, несмотря па то что высокая степень сродства способствует сохранению связи между ними после того как она сформировалась. Образование комплекса зависит только от вероятности встречи гормона, который вместе с кровью перемещается по телу, и соответствующего сайта связывания рецептора, расположенного на клетке-мишени, поэтому для увеличения вероятности такой происходящей по воле случая встречи клетка-мишень экспрессирует рецепторы в количестве, превышающем необходимое даже для стимуляции максимально возможной биологической реакции. Экспрессию таких “избыточных рецепторов” можно считать особо эффективным средством повышения чувствительности, если учесть очень низкое содержание гормонов в крови.
Конкуренция — процесс конкурирования различных лигандов с похожей химической структурой за связывание с одним рецептором. В нормальных физиологических условиях между гормонами, находящимися в крови, конкуренция очень незначительна. Однако потенциальная возможность такой конкуренции делает возможной фармакологическую терапию некоторых эндокринных заболеваний, поскольку лекарственные препараты, действующие в качестве антагонистов, могут конкурировать за сайты связывания с эндогенными гормонами, секретируемыми в избыточном количестве, и предотвращать неадекватно усиленную эндокринную реакцию. Кроме того, существуют методы определения концентрации гормонов в сыворотке или плазме крови, основанные на конкуренции эндогенных гормонов и меченных антигенов за определенное количество мест связывания — антител, специально используемых с этой целью.
Хотя в общем величина биологической реакции, вызываемой гормоном, определяется его концентрацией в крови, клетка-мишень обладает способностью регулировать свою чувствительность к гормону путем изменения количества, а возможно, и сродства рецепторов к этому гормону, т. е. для обеспечения нормального функционирования ткань-мишень может регулировать свою чувствительность к гормону, изменяя количество рецепторов и их сродство, и таким образом поддерживать тонкое гомеостатическое равновесие. Достоинство возможности контроля количества доступных сайтов связывания гормона становится очевидным, если представить, что в организме существует множество различных типов клеток, каждая со своими собственными потребностями и проблемами, обусловленными необходимостью поддержания гомеостаза, и все они обладают чувствительностью к одному и тому же гормону, который циркулирует в системе кровообращения. Например, изменение окружения одного типа клеток может стимулировать увеличение секреции определенного гормона, направленного на компенсацию этих изменений. В этом случае другой тип клеток, также чувствительных к этому гормону, в результате повышения его концентрации будет подвергаться риску нарушения гомеостаза. Для предотвращения подобных ситуаций клетки обладают способностью снижать свою чувствительность, временно уменьшая количество рецепторов, способных связывать гормон. Это позволяет снизить вероятность образования комплекса гормон — рецептор, а также сделать клетку менее чувствительной к гормону и способной поддерживать собственный гомеостаз. Такие изменения количества и/или сродства рецепторов позволяют каждому типу тканей-мишеней реагировать на одну и ту же концентрацию гормона в крови сообразно с собственными потребностями. Более продолжительные изменения экспрессии рецепторов можно наблюдать в случае существенных изменений уровня продукции гормона в результате хирургического удаления эндокринной железы (Dahlberg et al., 1981), заболевания (Potier et al., 2002; Pedersen, Vedickis, 1981) или даже адаптации к хроническим тренировочным занятиям (Tchaikovsky et al., 1986; Deschenes et al., 1994).
Клетки-мишени способны не только экспрессировать рецепторы для связывания различных гормонов, что позволяет эндокринной системе регулировать разнообразные клеточные процессы, но и одна и та же клетка может реагировать сходным образом в ответ на воздействие различных гормонов. Это явление известно под названием избыточности, но не следует рассматривать его как свидетельство чрезмерности или неэффективности средств контроля клеточной физиологии. Например, гепатоциты обладают чувствительностью к различным гормонам, включая глюкагон и адреналин, стимулирующим гликогенолиз и выделение глюкозы в кровь. Однако потребность повышения глюкозы в крови может быть обусловлена различными внешними стимулами. Снижение содержания глюкозы в крови может быть обусловлено пропуском приема пищи, в этом случае поджелудочная железа отреагирует секрецией глюкагона, который стимулирует расщепление запасов гликогена в печени. Адреналин также стимулирует глигогенолиз в клетках печени и выделение глюкозы в кровь. Однако это будет уже составным компонентом общего ответа организма на внешнее стрессовое воздействие, который запускается при выделении адреналина симпатической нервной системой и надпочечниками и включает увеличение ЧСС и артериального давления крови, а также усиление потоотделения. Все эти реакции организма будут неуместны в случае ответа на состояние гипогликемии, индуцированной простым голоданием. При рассмотрении в данном контексте избыточность экспрессии рецепторов гормонов, стимулирующих гликогенолиз, уже не кажется расточительством организма, а воспринимается, скорее, как реализация сложного механизма обеспечения клеточного гомеостаза при воздействии различных внешних факторов.
Гормональные рецепторы
Содержание
 [убрать] 
1 Связывание гормона с рецептором2 Типы рецепторов и способы передачи гормонального сигнала2.1 Внутриклеточные рецепторы2.2 Мембранные рецепторы3 Интеграция ответных реакций клетки-мишени, индуцированных гормональным воздействием4 Заключение5 Читайте также6 ЛитератураСвязывание гормона с рецептором
Возникновению биологической реакции в ответ на гормональное воздействие должно предшествовать связывание гормона с рецептором клетки-мишени. В этом сценарии рецептор лучше рассматривать в качестве посредника, который преобразует внеклеточное сообщение, переданное с гормоном, во внутриклеточный сигнал, итогом которого станет специфический клеточный ответ.
Все гормональные рецепторы, описанные к настоящему времени, содержат только один сайт связывания, так что в любой момент времени комплекс с рецептором может формировать только одна молекула гормона. В отличие от ферментативных реакций, где связывание субстрата с ферментом приводит к изменению его структуры, гормон при связывании с рецептором никаким изменениям не подвергается. Следует также отметить, что взаимодействие гормон — рецептор сводится к образованию нековалентной обратимой связи, т. е. является временным.
После связывания рецептора с гормоном его трехмерная структура претерпевает определенные изменения. Именно эти конформационные изменения приводят к активации эффекторного участка рецептора и запуску цепи событий, приводящих в результате к клеточному ответу, характерному для данного гормона. Важно понимать, что несмотря на обратимость связывания рецептора с гормоном, биологические процессы, которые инициируются вследствие образования комплекса гормон — рецептор, продолжаются еще в течение некоторого времени после диссоциации этого комплекса. С другой стороны, индуцированный клеточный ответ в отсутствие образования дополнительных комплексов гормон — рецептор будет ограниченным, следовательно, для подержания клетки-мишени в активированном состоянии на протяжении продолжительного периода времени с целью сохранения гомеостаза содержание гормона в крови должно оставаться на постоянном уровне, чтобы новые молекулы гормона могли взаимодействовать с освободившимися рецепторами.
Типы рецепторов и способы передачи гормонального сигнала
В случае любой ткани-мишени и любого гормона возникновению биологической реакции, индуцированной гормоном, должно предшествовать его связывание со специфическим рецептором, который экспрессируется гормончувствителыюй клеткой. Несмотря на широкий спектр гормонов, продуцируемых эндокринной системой, и разнообразие типов клеток, чувствительных к этим гормонам, все рецепторы на основании их локализации можно разделить на две обширные группы: 1) мембранные или поверхностные и 2) внутриклеточные рецепторы. Мембранные рецепторы располагаются в плазматической мембране клетки-мишени и взаимодействуют с белково-пептидными гормонами и катехоламинами. Как видно из их названия, внутриклеточные рецепторы находятся внутри клетки и взаимодействуют со стероидными и тиреоидными гормонами, которые представляют собой небольшие липофильные молекулы, с легкостью проникающие в клетку через плазматическую мембрану.
Внутриклеточные рецепторы
Вследствие того что внутриклеточные рецепторы находятся в свободном состоянии, существует некоторая несогласованность в данных об их точной локализации. Первоначально считалось, что свободные внутриклеточные рецепторы находятся в клеточном цитозоле и после взаимодействия с гормоном комплекс гормон — рецептор перемещается в ядро. Однако в настоящее время стало очевидным, что даже в несвязанном состоянии внутриклеточные рецепторы для большинства стероидных гормонов располагаются преимущественно в ядре. Исключение составляет глюкокортикоидный рецептор, который в несвязанном состоянии расположен на внешней части ядерной мембраны (Lazar, 2003). Все рецепторы липофильных гормонов имеют одну общую особенность — до момента связывания с гормоном они остаются неактивными. Отличительной чертой такого неактивного состояния является то, что рецептор обычно находится в комплексе с белками теплового шока (БТШ), в частности БТШ90 (Joab et al., 1984; Catelli et al., 1985). После связывания гормона с рецептором происходит диссоциация его комплекса с белком-шапероном и освободившиеся рецепторы образуют димеры. В таком “активированном” состоянии цитоплазматические и ядерные рецепторы перемещаются к ядерной ДНК, где они взаимодействуют с гормончувствительными элементами (hormone response elements, HREs). Благодаря взаимодействию с гормончувствительными элементами ДНК гормонрецепторный комплекс получает возможность регулировать транскрипцию специфических генов. Внутриклеточные рецепторы, соответственно, принадлежат к большому семейству факторов, осуществляющих регуляцию транскрипции, или транскрипционных факторов.
Определение аминокислотной последовательности внутриклеточных рецепторов позволило понять механизмы их взаимодействия с гормонами и ДНК. На С-концевом участке белка расположена последовательность длиной около 250 аминокислотных остатков, обладающих липофильпыми свойствами и образующих пространственный “карман", способный связывать стероидные и тиреоидные гормоны. Уникальная последовательность аминокислот, формирующих этот карман, определяет специфичность рецептора но отношению к определенному гормону.
Связывание комплекса гормон —рецептор со специфическими гормон-чувствительными элементами, ассоциированными с гормонзависимыми генами, осуществляется ДНК-связывающим компонентом, состоящим примерно из 70 аминокислот, которые также располагаются на С-конце белка-рецептора. Общей чертой всех ДНК-связывающих доменов является наличие двух высококонсервативных участков, которые называются “цинковыми пальцами” (“zinc fingers") и непосредственно отвечают за взаимодействие с ДНК (Scheidereit et al., 1986). Последующая транскрипция осуществляется транскрипционным комплексом, в состав которого входят также “общие факторы транскрипции” и “позитивно действующие кофакторы” (McKenna et al., 1999). Эти коактиваторы усиливают скорость транскрипции, по крайней мере отчасти, за счет раскручивания двойной спирали ДНК и стимуляции РНК-полимеразы (Kuo, Allis, 1998).
Таким образом, цепь последовательных событий, обусловленных воздействием стероидных или тиреоидных гормонов на клетку-мишень, выглядит следующим образом:
проникновение гормона в клетку путем простой диффузии;
формирование комплекса гормон—рецептор;
диссоциация от БТШ и димеризация рецепторов;
перемещение к ДНК;
связывание с гормончувствительными элементами;
образование транскрипционных комплексов;
синтез специфических мРНК;
трансляция в цитозоле белков, кодируемых мРНК.
В качестве иллюстрации эффективности и комплексности гормонального воздействия можно привести действие одного липофильного гормона, который при взаимодействии со своими внутриклеточными рецепторами обладает способностью регулировать транскрипционную активность нескольких генов, изменяя таким образом синтез нескольких белков. Тем не менее все эти события являются хорошо скоординированными, поскольку все синтезированные белки необходимы для реализации единого, общего биологического клеточного ответа. Например, функция альдостерона заключается в поддержании нормального содержания натрия в организме. Для этого альдостерон - стимулирует реабсорбцию натрия в почечных канальцах, когда концентрация натрия в крови уменьшается и становится ниже нормы. Это происходит путем увеличения синтеза не только белков натриевых каналов и натриевых насосов, расположенных в мембранах почечных канальцев, но и ферментов, синтезирующих аденозинтрифосфат (АТФ), необходимый для работы этих насосов. Такая синхронизированная продукция нескольких белков обеспечивает увеличение реабсорбции натрия в почечных канальцах с целью поддержания нормального осмотического давления и водного баланса организма.
Поскольку механизмы действия внутриклеточных эндокринных рецепторов включают регуляцию синтеза белка, биологические эффекты стероидных и тиреоидных гормонов обычно проявляются довольно медленно и сохраняются на протяжении длительного времени. Однако, по последним данным, липофильные гормоны в некоторых случаях вызывают быструю, краткосрочную реакцию, не связанную с изменениями белкового синтеза (Oichinik et al., 1991). Несмотря на то что точный механизм такого быстрого ответа остается неизвестным, создается впечатление, что его инициация происходит при взаимодействии стероидного гормона с плазматическими рецепторами клетки-мишени, а не с внутриклеточными сайтами связывания.
Мембранные рецепторы
В отличие от рецепторов, взаимодействующих с липофильными гормонами, которые легко проникают через мембрану клетки-мишени, рецепторы для липофобных гормонов (белково-пептидных) располагаются на поверхности клеточной мембраны, поскольку эти гормоны не могут попасть в клетку. И, поскольку формирование комплекса гормон — рецептор происходит на внешней поверхности клетки, ответные внутриклеточные события реализуются посредством использования механизма передачи сигнала, обеспечивающего быструю реакцию. Быстрота ответа обеспечивается тем, что мембранный рецептор находится в связанном со вторичным мессенджером состоянии (в роли первичного мессенджера выступает гормон), т. е. система передачи сигнала находится в постоянной готовности, ее необходимо только активировать образованием комплекса гормон — рецептор. Такое взаимодействие обеспечивает быструю активацию клеточного ответа и столь же быстрое его выключение.
Передача внешнего сигнала, который поступает вместе с молекулой гормона, к внутриклеточной цепи передачи сигнала обеспечивается благодаря особому химическому строению мембранных рецепторов. Все они состоят из трех различных частей, несмотря на то, что сам по себе рецептор обычно представлен одной полипептидной цепью (Spiegel et al., 2003). Внеклеточный компонент располагается па N-терминальном конце аминокислотной последовательности и содержит гликозилированные участки. Углеводные остатки, расположенные в этих участках, могут принимать участие в связывании с гормоном, которое специфически происходит в цистеинбогатых карманах. Каждый из трансмсмбранных компонентов рецептора, а мембранные рецепторы обычно имеют несколько трансмембранных участков, состоит примерно из 25 липофильных аминокислот и формирует спиральную структуру. Внутриклеточный компонент располагается на С-концевом участке полипептидной цепи и отвечает за эффекторную функцию рецептора. Как правило, внутриклеточный регион, состоящий из липофобных аминокислот, содержит регуляторные участки, в частности участки фосфорилирования.
Хотя действие мембранных рецепторов опосредовано передачей сигнала по многочисленным путям вторичных мессенджеров, на основании особенностей пострецепторных взаимодействий их можно разделить на следующие классы:
лиганд-чувствительные каналы;
рецепторассоциированные киназы;
рецепторассоциированная гуанилатциклаза;
цитокиновые рецепторы;
G-белок сопряженные рецепторы.
В первых трех классах при связывании гормона рецептор сам непосредственно стимулирует клеточную реакцию, но в случае цитокиновых и G-белок сопряженных рецепторов рецептор для стимуляции специфического клеточного ответа, вызванного гормоном, использует активацию еще одной молекулы — промежуточного мессенджера.
В случае гормончувствительных каналов белок-рецептор формирует не только внеклеточный гормоносвязывающий компонент, но и капал через клеточную мембрану, который при открывании делает возможным транспорт определенных ионов. Открывание канала происходит при связывании лиганда, которое приводит к конформационному сдвигу трансмембранных спиралей и формированию прохода через мембрану для определенных ионов. Такой тип рецепторов встречается на возбудимых клетках, в частности на нейронах и миоцитах, где перенос ионов через мембрану приводит к изменению мембранного потенциала и последующей стимуляции ответа клетки-мишени.
Наиболее изученным и распространенным рецептором, обладающим киназной активностью, является тирозинкиназа. В геноме человека было идентифицировано примерно 100 тирозинкиназных рецепторов (Spiegel et al., 2003). Хотя все они имеют общие особенности организации трансмембранного компонента, внеклеточный компонент характеризуется высокой степенью вариабельности, обеспечивающей возможность специфического взаимодействия с различными лигандами. В отличие от большинства мембранных рецепторов члены семейства тирозинкиназных рецепторов взаимодействуют только один раз. В то же время подобно многим другим рецепторам при связывании с гормоном они димеризуются и это событие является ключевым моментом в активации рецептора. После такой активации специфический участок внутриклеточного компонента рецептора фосфорилирует тирозиновые остатки фермента внутри клетки и таким образом стимулирует необходимые клеточные процессы. Более того, активированный рецептор способен фосфорилировать свои собственные тирозиновые остатки, расположенные в цитоплазме. Такое “аутофосфорилирование" позволяет рецептору сохранить активное состояние и усилить сигнал, переданный гормоном. Прекращение гормониндуцированного клеточного ответа происходит после диссоциации комплекса гормон—рецептор и дефосфорилирования рецептора клеточными фосфатазами.
Другие рецепторассоциированные киназы, представленные меньшим количеством но сравнению с тирозинкиназными рецепторами, имеют сходный механизм передачи сигнала и стимуляции клеточного ответа путем фосфорилирования определенных ферментов в цитоплазме клетки-мишени. Рецепторы, обладающие протеинкиназной активностью, могут осуществлять фосфорилирование остатков треонина и серина ферментов внутри клетки. И точно так же стимуляция клеточного ответа прекращается после диссоциации комплекса гормон — рецептор и дефосфорилирования активного фермента клеточными фосфатазами. Такое сходство поведения демонстрирует общие принципы реализации механизма функционирования мембранных рецепторов: гормон — индуцированная реакция клетки “выключается” как на внеклеточном, так и на внутриклеточном уровне.
Рецепторы, использующие для передачи сигнала гуанилатциклазу, представляют собой еще одно семейство мембранных рецепторов, которые имеют в своем составе каталитический компонент и способны самостоятельно стимулировать клеточную реакцию. По сравнению с другими типами мембранных рецепторов это семейство менее многочисленно, похоже, что только найтрийуретический фактор, продуцируемый клетками сердечной мышцы, использует рецепторы этого типа для осуществления регуляции активности своих клеток-мишеней. В этом случае передача сигнала первичного мессенджера (гормона) внутрь клетки осуществляется с помощью одного мембранного рецептора. После связывания лиганда с внеклеточным компонентом в молекуле рецептора происходят конформационные изменения, которые приводят к активации гуанилатциклазы — фермента, который является частью внутриклеточного компонента рецептора. Активированный фермент превращает гуанозинтрифосфат (ГТФ) в циклический гуанозинмонофосфат (цГМФ), который в свою очередь активирует нуклсотидзависимыс протеинкиназы клетки, которые осуществляют фосфорилирование других цитоплазматических белков.
Цитокиновые рецепторы но механизму действия очень похожи на тирозин киназные: они также используют тирозинкиназы для индукции клеточного ответа. Основным отличием является то, что у цитокиновых рецепторов внутриклеточный компонент не обладает тирозинкиназной активностью. Тирозин-киназа в данном случае представляет собой независимый белок. Представители семейства цитокиновых рецепторов, которое включает рецепторы гормона роста и пролактина, состоят из нескольких субъединиц. После связывания с лигандом эти рецепторы формируют олигомеры и активируют янус тирозинкиназы (janus trosine kinase, JAK), которые располагаются поблизости от рецепторов на внутренней стороне плазматической мембраны клетки (Heim, 1999). Сами по себе цитокиновые рецепторы не проявляют никакой ферментативной активности (Argetsingcr et al., 1993). Создается впечатление, что активация JAK происходит в результате их “стягивания” в одно место с рецепторами после формирования олигомеров комплексов гормон — рецептор и последующего взаимного трансфосфорилирования тирозиновых остатков. После этого активированные киназы осуществляют фосфорилирование ферментов в цитозоле, что в результате приводит к передаче сигнала, поступившего к клетке с гормоном. Как в описанной выше ситуации, прекращение гормониидуцированной клеточной реакции происходит после диссоциации комплекса гормон — рецептор, а также инактивации тирозинкиназ путем их дефосфорилирования клеточными фосфатазами.
Наиболее многочисленной группой мембранных рецепторов является семейство G-белок сопряженных рецепторов. Более тысячи различных лигандов используют эти рецепторы для передачи сигнала (Spiegel et al., 2003). Однако во всех случаях G-белок и ассоциированный с ним рецептор представляют собой два различных белка, которые связаны между собой только функционально, но не структурно. Несмотря на то что рецепторы этого семейства имеют 7 трансмембранных участков, они неспособны самостоятельно регулировать внутриклеточные процессы после связывания с гормоном. Для этого они используют расположенные по соседству на внутренней поверхности мембраны G-белки, которые после образования комплекса гормон — рецептор индуцируют клеточный ответ. G-белки, которые получили свое название из-за потребности в ГТФ для осуществления своих функций, могут оказывать стимулирующее (Gs) или ингибирующее (Gi) действие, при этом более распространенной является первая ситуация.
Все G-белки представляют собой гетеротримеры, т. е. состоят из трех субъединиц, которые называются а, р, у. В неактивном состоянии а-субъединица связана с гуанозиндифосфатом, однако после связывания гормона с рецептором происходит замена ГДФ на ГТФ и активация G-белка. Активный G-белок может стимулировать разнообразные внутриклеточные системы вторичных мессенджеров и, таким образом, регулировать — причем даже одновременно — несколько внутриклеточных процессов. Рассмотрим в отдельности основные системы передачи сигнала, используемые активным G-белком.
Циклический аденозинмонофосфат (цАМФ).
В этой системе вторичной передачи сигнала активный G-белок стимулирует фермент аденилатциклазу, расположенную на внутренней стороне плазматической мембраны клетки и катализирующую реакцию превращения АТФ в цАМФ. Эта реакция обладает некоторым сходством с реакцией превращения ГТФ в цАМФ, осуществляемой гаунилатциклазными рецепторами после стимуляции путем образования комплекса гормон — рецептор. Однако помимо используемого субстрата эти ферментативные системы различаются еще и тем, что аденилатциклаза не является компонентом рецепторного комплекса.
Образовавшиеся молекулы цАМФ способны инициировать разнообразные внутриклеточные процессы главным образом за счет активации разнообразных цАМФ-зависимых протеинкиназ, которые также называют РКА. Как и все другие представители семейства киназ, РКА стимулируют клеточный ответ путем осуществления фосфорилирования ферментов специфических биохимических путей. Поскольку в клетках-мишенях каждого типа экспрессируется собственный набор РКА и кииазактивируе-мых путей, одна система передачи информации может быть использована для контроля специфических биохимических процессов. И в соответствии с механизмами действия гормонов в целом на каждом этапе передачи сигнала, поступившего с гормоном, происходит его усиление.
Продукция цАМФ образуется в пределах секундных интервалов времени и благодаря этому клеточный ответ развивается очень быстро, но если при этом не происходит постоянного обновления комплексов гормон — рецептор этот ответ столь же быстро прекратится. В остановке ответной реакции, индуцированной цАМФ, принимают участие два фермента: фосфодиэстераза расщепляет связи цАМФ и инактивирует это соединение, а фосфатазы дефосфорилируют ферменты, стимулированные РКА. В результате реакции, индуцированные цАМФ, достаточно быстрые и скоротечные.
Вместе с тем не все биологические процессы, ассоциированные с цАМФ, имеют небольшую продолжительность. Известно, что цАМФ может регулировать транскрипцию некоторых белков, имитируя воздействие стероидных и тиреоидных гормонов, и таким образом вносить долговременные изменения в жизнедеятельность клетки.
Гены, регулируемые цАМФ, содержат так называемые цАМФ-чувствительные элементы (сАМР response elements) последовательности, которые при стимуляции действуют в качестве энхансеров транскрипции. Их стимуляция происходит при участии специфической цАМФ-зависимой протеинкиназы, которая фосфорилирует белок, связывающий цАМФ-чувствителъные элементы (cAMP responsive elements binding protein, CREB). После активации CREB выступает в роли транскрипционного фактора и связывается с цАМФ-чувствительпыми элементами ДНК. Гены, транскрибируемые при участии CREB, могут различаться в зависимости от типа клеток. В данном случае мы снова имеем иллюстрацию того, как различные клетки-мишени реагируют на один и тот же механизм передачи сигнала специфическим образом, который предопределен существующими в клетке биохимическими системами.
Фосфатидилинозитольная система.
Это еще одна система вторичных мессенджеров, используемая G-белокассоциированными мембранными рецепторами, которая применяет для передачи сигнала продукты реакции расщепления одного из фосфолипидных компонентов клеточной мембраны — фосфатидилинозитола. Эту реакцию катализирует фосфолипаза С — фермент, который связан с мембраной и активируется под влиянием G-белка. После связывания гормона с рецептором фосфолипаза С расщепляет фосфатидилинозитол на диацилглицерин (ДАГ) и инозитолтрифосфат, каждое из этих веществ индуцирует клеточный ответ. Инозитолтрифосфат переходит в цитоплазму клетки и, взаимодействуя с эндоплазматическим ретикулумом, стимулирует выброс кальция в цитоплазму. Увеличение концентрации кальция в цитоплазме является одним из основных способов стимуляции различных клеточных процессов посредством активации кальцийзависимых ферментов.
В отличие от инозитолтрифосфата диацилглицерин остается в связанном состоянии на внутренней стороне клеточной мембраны, где он активирует мембранную протеинкиназу С (РКС). Активация протеинкипазы С происходит только под воздействием ДАГ в присутствии повышенных концентраций кальция в цитоплазме, т. е. действие инозитолтрифосфата и ДАГ являются синергичными. Как и другие киназы, РКС осуществляет активацию ферментов клетки путем их фосфорилирования.
Процессы, стимулированные фосфатидилинозитольной системой передачи сигнала, затухают после дефосфорилирования инозитолтрифосфата и превращения его в ииозитол, а также инактивации ДАГ путем фосфорилирования этого соединения. Снижение концентрации ионов кальция в цитоплазме к исходному уровню приводит к подавлению активности внутриклеточных ферментов, стимулированных РКС.
Помимо непосредственно сопряженных с рецептором ионных каналов, которые открываются при образовании комплекса гормон — фермент, существуют также ионные каналы, состояние которых регулируется гормончувствительным рецептором при посредничестве G-белка. В этом случае мембранный рецептор и трансмембранный ионный канал представляют собой независимые белки. При формировании комплекса лиганд — рецептор G-белок, расположенный в мембране рядом с рецептором, взаимодействует с белком, образующим канал. Это взаимодействие приводит к конформационным изменениям белка капала, открыванию канала и перемещению ионов через мембрану. Обычно при открывании канала в клетку попадает большое количество ионов и соответственно происходит увеличение их концентрации в цитоплазме (Finn et al., 1996). Возможно, наилучшим примером реализации этого механизма передачи сигнала является гладкомышечная клетка, где G-белки регулируют открывание специфических ионных каналов в плазмалемме, что приводит к резкому увеличению концентрации кальция в цитозоле. В покое концентрация кальция в цитозоле этих клеток составляет 0,1 —0,2 мкмоль-л"1, однако при гормон-индуцированной активации кальциевых каналов концентрация этих ионов быстро повышается до 1 ммоль-л'1. Такое увеличение концентрации ионов кальция намного превышает наблюдаемое в случае открывания каналов, входящих в состав рецептора.
В некоторых случаях повышение концентрации ионов кальция оказывает воздействие на внутриклеточные процессы опосредованно. Существенное увеличение содержания ионов кальция в цитоплазме увеличивает вероятность их взаимодействия со специфическими кальцийсвязывающими белками внутри клетки. Наиболее изученным среди таких белков является кальмодулин, который можно обнаружить практически в любой клетке. Этот белок имеет четыре сайта связывания и обладает высоким сродством к кальцию. После того как кальций, источником которого могут служить и внутренние депо, свяжется со всеми четырьмя сайтами, комплекс кальций — кальмодулин приобретает способность активировать ферменты, чаще всего киназы. Киназы в свою очередь активируют ферменты, которые принимают непосредственное участие в клеточных процессах, индуцированных действием гормона, связавшегося с внешней поверхностью мишени. Клеточный ответ затухает после диссоциации комплекса гормон — рецептор и последующего закрывания каналов. После этого аденозиитрифосфатзависимые кальциевые насосы возвращают ионы кальция в место первоначальной локализации, т. с. в эндоплазмтический ретикулум или за пределы клетки.
Интеграция ответных реакций клетки-мишени, индуцированных гормональным воздействием
Интегративные процессы, которые характеризуют функционирование эндокринной системы, проявляются не только во время синтеза гормонов, но и в ответе тканей-мишеней на эти гормоны. Выражаясь конкретнее, биологический процесс, стимулированный одним гормоном, может быть модифицирован при воздействии другого гормона. Такая интегрированная чувствительность клетки может быть проиллюстрирована феноменами пермиссивности, синергизма и антагонизма. Синергизм, который часто называют еще потенцированием, имеет место, когда два различных гормона стимулируют один и тот же процесс в клетке-мишени. В этом случае клеточная реакция при совместном воздействии двух гормонов превышает ту, которую можно было бы ожидать в случае простого суммирования эффектов индивидуального воздействия каждого из этих гормонов. Чтобы проиллюстрировать это явление, рассмотрим воздействие гормона роста и кортизола на адипоциты. Оба фермента стимулируют липолизв клетках жировой ткани, однако при совместном воздействии скорость расщепления адипоцитов намного выше, чем если бы эти гормоны воздействовали но отдельности и их индивидуальный эффект суммировался простым сложением.
В случае пермиссивности связывание одного гормона с клеткой-мишенью должно предшествовать связыванию другого, чтобы последний мог стимулировать биологический ответ в клетках-мишенях. В этом случае говорят, что первый гормон оказывает на клетку-мишень пермиссивное воздействие, т. е. позволяет ей реагировать на второй гормон. Подобное явление можно наблюдать во многих типах клеток-мишеней, когда связывание тиреоидного гормона обеспечивает возможность воздействия па эти клетки адреналина. И наконец, антагонизм наблюдается в ситуации, когда влияние одного гормона противодействует другому и эффективно ослабляет или даже устраняет последствия его воздействия па клетку-мишень. Примером подобного взаимодействия является гормон роста, который препятствует проявлению эффектов инсулина при совместном воздействии на их общие ткани-мишени, т. е. связывание гормона роста нарушает способность инсулина стимулировать поглощение глюкозы и синтез гликогена в клетках печени и скелетных мышц.
Заключение
Даже краткое описание, данное в этой главе, делает очевидным тот факт, что механизмы, используемые эндокринной системой для регулирования биологических процессов в тканях-мишенях, характеризуются значительной степенью сложности и интегрированности. С целью поддержания гомеостаза в условиях разнообразных изменений внутренней и внешней среды для управления физиологическими процессами, происходящими в каждой отдельной клетке, организм использует стероидные и белково-пептидные гормоны, а также разнообразные внутриклеточные механизмы передачи сигнала. Вместе с тем стало понятно, что многие патологические состояния организма, например сахарный диабет II типа, могут быть непосредственно обусловлены нарушением функции этих механизмов передачи сигнала. Именно поэтому в настоящее время значительное количество исследований направлено на углубление наших знаний о гормонзависимых механизмах передачи сигнала в частности, а также функционирование эндокринной системы в общем.
Литература
Argetsinger, L.S., Campbell, G.S., Yang, X. et al. (1993) Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74, 237-244.
Baulieu, E.E. (1990) Honnones, a complex communications network. In: Hormones: from Molecules to Disease (Baulieu, S.L. & Kelly, P.A., eds.). Chapman & Hall, New York: 3-171.
Bayliss, W.M. & Starling, E.H. (1902) The mechanism of pancreatic secretion. Journal of Physiology 28, 325-353.
Catelli, M.G., Binart, N., Jung-Testas, L et al. (1985) The common 90-kD protein component of non-transformed '8S' steroid receptors is a heat-shock protein. EMBO Journal 4, 3131-3135.
Chretian, M. & Seidah, N.G. (1981) Chemistry and biosynthesis of pro-piomelanocortin. Molecular and Cellular Biochemistry 34, 101-127. Dahlberg, E., Snochowski, M. & Gustafsson, J. (1981) Regulation of the androgen and glucocorticoid receptors in rat and mouse skeletal muscle cytosol. Endocrinology 108, 1431-1440.
Deschenes, M.R., Maresh, CM., Armstrong, L.E. et al. (1994) Endurance and resistance exercise induce muscle fiber type specific responses in androgen binding capacity. Journal of Steroid Biochemical and Molecular Biology 50, 175-179.
Finn, J.T., Greenwald, M.B. & Yau, K.W. (1996) Cyclic nucleotide-gated ion channels: an extended family with diverse functions. Annual Reviews in Physiology 58, 395-426.
Firth, S.M. & Baxter, R.C. (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocrine Reviews 23, 824-854. Goodman, H.M. (1994) Basic Medical Endocrinology, 2nd edn. Raven Press, New York.
Guyton, A.C. & Hall, J.E. (1996) Textbook of Medical Physiology, 9th edn. W.B. Saunders, Co., Philadelphia.
Hedge, G.A., Colby, H.D. & Goodman, R.L. (1987) Clinical Endocrine Physiology. W.B. Saunders, Co., Philadelphia.
Heim, M.H. (1999) The Jak-STAT pathway: cytokine signaling from the receptor to the nucleus. Journal of Receptor and Signal Transduction Research 19, 75-120. lllnerova, H., Sumova, A., Travnickova, Z., Jac, M. & Jelinkova, D. (2000) Hormones, subjective night and season of the year. Physiological Reviews 49 (suppl. 1), S1-S10.
Joab, I., Radanyi, C, Renoir, J.M. et al. (1984) Immunological evidence for a common non hormone-binding component in 'non-transformed' chick oviduct receptors for four steroids. Nature 308, 850-853.
Kelly, R.B. (1985) Pathways of protein in eukaryotes. Science 230, 25-32.
Krieger, D.T., Liotta, A.S., Brownstein, M.J. & Zimmerman, E.A. (1980) ACTH, [5-lipotropin and related peptides in brain, pituitary and blood. Recent Progress in Hormone Research 36, 277-344.
Kronenberg, H., Melmed, S., Larsen, P.R. & Polonsky, K. (2003) Principles of endocrinology. In: Williams Textbookof Endocrinology (Larsen, P.R., Kronenberg, H., Melmed, S. & Polonsky, K, eds.). W.B. Saunders, Co., Philadelphia: 1 -9.
Kuo, M.H. & Allis, CD. (1998) Role of histone a cetyltransferases and deacetylases in gene regulation. Bioessays 20, 615-626.
Lazar, M.A. (2003) Mechanism of action of hormones that act on nuclear receptors. In: Williams Textbook of Endocrinology (Larsen, P.R., Kronenberg, H., Melmed, S. & Polonsky, K., eds.). W.B. Saunders, Co., Philadelphia: 35-44.
Lewy, A.J., Sack, R.L., Miller, S. & Hoban, T.M. (1987) Anti-depressant and circadian phase-shifting effects of light. Science 235, 352-354.
Liotta, A.S., Hough ten, R. & Krieger, D.T. (1982) Identification of a b-endorphin-like peptide in cultured human placental cells. Nature 295, 593-595.
McKenna, N.J., Lanz, R.B. & O'Malley, B.W. (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocrine Reviews 20, 321-344.
Margioris, A.N., Liotta, A.S., Vaudry, N., Boudin, G.W. & Krieger, D.T. (1982) Characterization of immunoreactive propiome-lanocortin-related peptides in rat testes. Endocrinology 113, 463-471.
Oichinik, М., Murray, T.F. & Moore, F.L. (1991) A corticosteroid receptor in neuronal membranes. Science 252, 1848-1851.
Pedersen, K.B. & Vedickis, W.V. (2003) Quantification and glucocorticoid regulation of glucocorticoid receptor transcripts in two human leukemic cell lines. Biochemistry 42, 10978-10990.
Pevet, P., Botherel, B., Slotten, H. & Saboureau, M. (2002) The chronobiotic properties of melatonin. Celt and Tissue Research 309, 183-191.
Porksen, N. (2002) The in vivo regulation of pulsatile insulin secretion. Diabetologia 45, 3-20.
Potier, М., Karl, М., Zhang, F. et al. (2002) Estrogen-related abnor; malities in glomerulo sclerosis-prone mice: reduced mesangial cell estrogen receptor expression and prosclerotic response to estrogens. American journal of Pathology 160, 1877-1885.
Re, R. (2003) The intracrine hypothesis and intracellular peptide hormone action. Bioessays 25, 401-409.
Rhoades, R. & Pflanzer, R. (2003) Human Physiology, 4th edn. Thomson, Brooks/Cole, Pacific Grove, С A.
Scheidereit, C, Westphal, H.M., Carlson, C, Bosshard, H. & Beato, M. (1986) Molecular model of the interaction between the glucocorticoid receptor and the regulatory elements of inducible genes. DNA 5, 383-391.
Sherwood, L. (2004) Human Physiology: from Cells to Systems, 5th edn. Thomson, Brooks/Cole, Belmont, CA.
Short, R.V. (1985) Photoperiodism, melatonin and the pineal: it's only a matter of time. In: Photoperiodism, Melatonin and the Pineal (Short, R.V., ed.). Pitman Press, London: 1-8.
Spiegel, A., Carter-Su, C. & Taylor, S. (2003) Mechanism of hormones that act at the cell surface. In: Williams Textbook of Endocrinology (Larsen, P.R., Kronenberg, H., Melmed, S. & Polonsky, K., eds.). W.B. Saunders, Co., Philadelphia: 45-64.
Tamarkin, L., Baird, C.J. & Almeida, O.F.X. (1985) Melatonin: a coordinating signal for mammalian reproduction. Science 227, 714-720.
Tchaikovsky, V.S., Astratenkova, J.V. & Basharina, O.B. (1986) The effect of exercises on the content and reception of the steroid hormones in rat skeletal muscle. Journal of Steroid Biochemistry 24, 251-253.
Vander, A., Sherman, J. & Luciano, D. (2001) Human Physiology: the Mechanisms of Body Function, 8th edn. McGraw-Hill, Boston.
Yakar, S., Wu, Y., Setser, J. & Rosen, C.J. (2002) The role of circulating IGF-1: lessons from human and animal models. Endocrine 19, 239-248.
Тестирование с использованием физической нагрузки
Содержание
 [убрать] 
1 Применение тестирования с использованием физической нагрузки в клинической медицине2 Технические достижения в тестировании с использованием физической нагрузки3 Методы магниторезонансной томографии и спектроскопии4 Разработка новых технологий: роботы; лица, перенесшие инсульт, и совершенствование двигательного контроля5 Оксид азота в выдыхаемом воздухе и двигательная активность6 Тестирование с использованием физической нагрузки и новая биология7 Заключение8 Читайте также9 ЛитератураПрименение тестирования с использованием физической нагрузки в клинической медицине
Многие исследователи используют функциональную оценку организма человека при выполнении физической работы для изучения патофизиологии и механизмов развития заболеваний. Общая привлекательность оценки состояния организма с использованием физической нагрузки заключается в том, что она позволяет врачам количественно оценивать физиологическую реакцию в контролируемых условиях, которые позволяют имитировать естественные нагрузки, связанные с особенностями образа жизни их пациентов. Измерения различных физиологических показателей, начиная от характеризующих сердечно-сосудистую систему и заканчивая гормональными, сделанные в состоянии покоя, практически не позволяют прогнозировать влияние заболевания на реакцию организма в случае физической нагрузки.
Несмотря на то что такие тесты, как ходьба в течение 6 мин (т. е. определение расстояния, преодолеваемого за 6 мин), по-прежнему остаются удобным средством оценки общей реакции организма, они не позволяют исследовать отдельные физиологические механизмы заболевания. Насколько больше информации можно было бы извлечь из этого простого теста, если бы, например, наряду с преодолеваемым расстоянием мы могли оценивать изменения температуры тела в динамике, количество выполненной механической работы и изменения в количестве внутримышечной воды с применением приспособлений, требующих минимального вмешательства в работу организма.
Технические достижения в тестировании с использованием физической нагрузки
Со времени заметного “рывка” в развитии знаний о работе организма человека, который произошел в первой половине XX в. в таких известных центрах, как Гарвардская лаборатория исследования усталости (Harvard Fatigue Laboratory) (Tipton, 1998), разработка новых, пригодных для использования в клинических условиях технических подходов для оценки функциональных показателей организма в условиях стрессового воздействия, в частности физической нагрузки, заметно отставала в развитии от других областей биомедицинских исследований. С тех пор как в 1920 г. были впервые выполнены измерения максимального потребления кислорода, тредмилы и велоэргометры практически не изменились. Эти приспособления прекрасно подтвердили свою пригодность для тестирования верхних границ газообмена и метаболизма и поэтому подходят для изучения функциональных показателей в спорте, где выполнение работы при максимальных нагрузках имеет определяющее значение. Однако акцент на максимальные нагрузки мало применим в случае уровня и типа двигательной активности, определяющей образ жизни пациентов медицинских учреждений. Кроме того, типичные протоколы тестирования с использованием физической нагрузки утомительны и неудобны и часто просто не пригодны для детей, пожилых людей, а также преобладающего большинства лиц с различными заболеваниями и нарушениями здоровья (Cooper, 1995; Metra et al., 1998) .
Процессы газообмена во время выполнения физических упражнений можно оценивать достаточно точно, однако для этого приходится использовать громоздкие и иногда причиняющие боль маски с загубниками, при вдохе и выдохе через которые нормальный характер дыхания часто изменяется (Lowhagen et al., 1999). За исключением изучения метаболизма кислорода и углекислого газа в таких перспективных направлениях исследования механизмов заболеваний, как непрерывное прямое измерение содержания оксида азота (N0) и летучих органических веществ в выдыхаемом воздухе, сделано мало. Точная неиивазивная оценка двигательной активности и энерготрат в полевых условиях у человека, который ведет естественный образ жизни, по-прежнему остается трудновыполнимой; такие подходы, как использование двууглекислоты, меченой стабильными изотопами углерода (Zanconato et al., 1992; Coggan et al., 1993), могут революционизировать во многих областях прикладные и фундаментальные биомедицинские исследования.
За последние 35 лет развитие технологии способствовало бурному росту знаний в биологии и медицине, в частности в молекулярной биологии и нейробиологии. В то же время осталось далеко позади развитие инструментов для минимально инвазивного изучения адаптации клеточных механизмов передачи сигналов в нервной и мышечной системе, а также изменений сосудистой системы в ответ на физическую нагрузку и другие виды стрессовых воздействий, которые можно было бы легко и безопасно применять для исследований организма человека. Сильнее всего тревожит то, что такое отсутствие прогресса наблюдается несмотря на рост количества исследований, в которых традиционное тестирование с использованием физической нагрузки применяется для изучения механизмов различных заболеваний и разработки новых способов терапии. Более того, все более широкое признание получает тот факт, что количество нарушений здоровья, непосредственно связанных с недостаточным уровнем двигательной активности, увеличивается с тревожной быстротой (Booth ct al., 2000; Cooper et al., 2004).
Значительное отставание в развитии технологии клинического тестирования с использованием физической нагрузки имеет место и, несмотря на ряд технологических и концептуальных прорывов, когда общие технические исследования, казалось, открывали пути для создания новых подходов для клинических исследований. В 1970—1980-х гт. известный инженер из Гарварда Т.А. МкМагон (McMahon, 1984) изменил наши представления о принципах биомеханики, определяющих движения человеческого тела. Предположения МкМагона были проверены с помощью беговой дорожки, сконструированной в его лаборатории так, что механические силы, возникающие во время бега, компенсировались силами, создаваемыми техническими приспособлениями дорожки. Не менее примечательна разработанная МкМагоном система взглядов, которая позволяет представить биомеханические аспекты движения человеческого тела в виде теоретических построений, включающих механизмы контроля на биохимическом уровне, а также на уровне сердечно-сосудистой и нервной систем. Такой новаторский подход к решению базовых проблем заболеваний человека, предполагающий комплексное рассмотрение физиологических процессов, успешно подтвердил свою пригодность в качестве парадигмы клинических исследований.
Методы магниторезонансной томографии и спектроскопии
В этой связи следует упомянуть об успехах, достигнутых при использовании в клинических исследованиях неинвазивных методов получения изображения. Один из них связан с попыткой применения инструментов для дистанционного получения визуальных- изображений о исследованиях физиологических процессов, обусловленных двигательной активностью. Анализ изображений анатомических структур, которые могут быть получены с поразительной точностью с помощью метода магниторезопансной томографии (МРТ), применялся для изучения изменений содержания воды в мышечной ткани, а также других физиологических процессов, происходящих при непродолжительных физических нагрузках. В то же время в одном из последних обзоров Паттена с соавторами, посвященном анализу Т2 изображений мышц, отмечалось, что:
Несмотря на демонстрацию возможностей использования метода магниторезонансной томографии как в спортивной физиологии, так и в медицинских исследованиях, в настоящее время применение метода анализа Т2 изображений мышц в клинических исследованиях поразительно ограничено. Благодаря своей неинвазивпости МРТ обладает рядом преимуществ перед такими традиционными методами исследований, как биопсия мышечной ткани или ЭМГ, при осуществлении диагностики метаболических и нейромышечных нарушений в спортивной и производственной медицине, а также нейрореабилитации. Метод МРТ обеспечивает быстрое получение результатов как при постановке диагноза, так и при оценке результатов терапевтического вмешательства с применением лекарственных препаратов или физических упражнений. При этом пациент не подвергается никакому риску или дискомфорту, связанному с проведением повторных исследований (Patten et al., 2003).
В своем обзоре Паттеи с соавторами делают вывод, что изменения в Т2-томограммах, которые наблюдаются после двигательной активности, могут быть результатом двух процессов: перемещения воды в мышцах, которое обусловлено возникновением осмоса и приводит к увеличению внутриклеточного пространства, а также окисления внутриклеточной среды, вызванного накоплением конечных продуктов метаболизма.
Метод дистанционного биохимического анализа (а именно, 3,Р магниторезонансная спектроскопия), впервые примененный Бриттоном Чансом с коллегами (Chance, 1994), также позволяет исследователям проводить в реальном времени измерения внутримышечных высокоэнергетических фосфорсодержащих соединений во время выполнения физической нагрузки (Zanconato et al., 1993). Например, LLIeep-маи-Фристоун с соавторами (Scheuermann-Freestone et al., 2003) недавно провели исследование энергетики сердечной и скелетной мышцы при выполнении физических упражнений у лиц, больных сахарным диабетом II типа. Следует отметить, что несмотря на внешне нормальную морфологию, массу и функцию сердца, у пациентов с диабетом наблюдается значительно более низкое соотношение креатин-фосфат/аденозинтрифосфат (КрФ/АТФ) по сравнению со здоровыми добровольцами. Соотношение КрФ/АТФ негативно коррелировало с концентрацией свободных жирных кислот в плазме крови на голодный желудок. И хотя у больных диабетом в состоянии покоя энергетика скелетной мышцы и pH были близки к норме, при физической нагрузке у них наблюдалось более быстрое истощение КрФ и понижение pH, наряду с повышенной утомляемостью и более медленным восстановлением запасов КрФ. Эти исследователи сделали вывод о том, что у больных сахарным диабетом II типа с предположительно нормальной функцией сердца наблюдается нарушение процессов энергетического метаболизма миокарда и скелетных мышц, которое обусловлено изменениями содержания метаболических субстратов в крови.
Значительный успех в понимании реакции организма на физическую нагрузку и особенности ее изменений при различных заболеваниях был достигнут в результате еще одного плодотворного сотрудничества медиков и разработчиков технического оборудования. Первоначальная разработка метода измерения состава выдыхаемого воздуха в реальном времени была проделана главным образом в лаборатории Брайана Виппа и Карлмена Вассермана (Wasserman et al., 1973) Харбор-университета Калифорнии, находящегося в Лос-Анджелесе. Вассерман — доктор медицины, доктор философии по физиологии, в 1960-е годы работал в известном Исследовательском институте сердечно-сосудистой системы (Cardiovascular Research Institute) в Университете Калифорнии в Сан-Франциско. Випп и Вассерман сотрудничали главным образом с двумя инженерами-разработчиками — Вильямом Бивером и позднее с Норманом Ламарра. Ламарра получил степень доктора философии в Университете Калифорнии в Лос-Анджелесе по авиационно-космической технике за докторскую работу, посвященную, что достаточно забавно, целиком и полностью анализу быстрой кинетики потребления кислорода во время двигательной активности у человека (Lamarra, 1982)! Исследования влияния заболеваний па кинетику потребления кислорода, а также получение данных, которые бы подтвердили значение этих оценок в качестве признаков заболевания и средства контроля терапевтического воздействия, продвигались довольно медленно.
Основоположники физиологии спорта и двигательной активности прекрасно понимали, что изучение биологической реакции организма на физическую нагрузку может быть использовано для углубления нашего понимания фундаментальных процессов, происходящих на клеточном и субклеточном уровне. Упрощенная схема сцепленных шестеренок, изображающих взаимосвязь клеточных процессов с оценками газообмена на основании состава выдыхаемого воздуха, предложенная Вассерманом в 1975 г., как нельзя лучше иллюстрирует эту концепцию. Однако несмотря на это, тестирование с использованием физической нагрузки по-прежнему продолжали применять главным образом для оценки- функциональных показателей сердечно-сосудистой системы.
Вассерман и его коллеги в своей работе указывали: “Нам хотелось бы развеять сформировавшиеся в медицине убеждения о том, что необходимо только тестирование сердечно-сосудистой системы при физической нагрузке и тестирование только дыхательной системы при нагрузке. Невозможно подвергнуть нагрузке только сердце или только легкие. Выполнение физической нагрузки требует скоординированной работы сердца, легких, периферической и легочной систем кровообращения, направленной на удовлетворение возросших потребностей клеток организма в кислороде” (Wasserman et al., 1987).
К этому следует добавить только то, что “такая скоординированная деятельность включает также адаптивные механизмы нейромышечной и внутриклеточной передачи сигнала”.
Разработка новых технологий: роботы; лица, перенесшие инсульт, и совершенствование двигательного контроля
В некоторых случаях существующие технические приспособления просто не позволяют производить оценку функциональных показателей и двигательного контроля у некоторых лиц, что обусловливает необходимость разработки новых приспособлений. Так, если Вы работаете с пациентами, которые перенесли инсульт, ограничения и нарушения двигательного контроля, обусловленные повреждениями головного мозга, значительно ограничивают возможности использования традиционных тредмилов и велоэргомстров как для диагностических, так и для терапевтических целей. Чтобы преодолеть такую ограниченность, были созданы различные механотронные устройства и роботы с сенсорным управлением. Применение этих приспособлений позволило по-новому взглянуть на процессы, управляющие двигательной активностью лиц, перенесших инсульт (Lum et al., 2002).
Последние данные свидетельствуют о том, что повреждение мозга может приводить к нарушению способности независимой активации мышц плечевого и локтевого суставов. Было высказано предположение (Reinkensmeyer et al., 2002), что в случае существования ограничений произвольной активации мышц у лиц с повреждениями головного мозга будут наблюдаться нарушения способности к выполнению точных движений в определенном направлении при движениях в широком диапазоне направлений. Для проверки этого предположения был использован механотронный сенсорный робот, при помощи которого производилась регистрация трехмерной траектории движения руки в направлении 75 объектов, располагавшихся в различных точках пространства, у 16 пациентов с гемипаретическим инсультом.
Результаты этих новаторских исследований свидетельствуют о том, что у больных в послеинсультном состоянии выявляются два основных состояния контроля произвольных движений: преимущественно сохранившийся и очень ограниченный. Поскольку считается, что после инсульта поврежденные кортикоспинальные пути могут замещаться нижними путями передачи нервного возбуждения, полученные результаты можно объяснить тем, что в случае сохранения после инсульта некоторой необходимой части кортикоспинальных путей, существенных нарушений контроля направленности движений не происходит. Эта гипотеза требует дополнительной дальнейшей проверки путем детального функционального анализа основных нервных путей.
Применение роботов для оценки контроля двигательных функций не ограничивается пациентами с повреждениями головного мозга. Интересно, что в ходе случайного общения автора этой статьи с группой Рейнкенсмейера родилась идея о возможности использования механотронных сенсорных роботов для оценки двигательного контроля в ходе развития нормальных детей. Для движений детей обычно не характерны быстрота и ловкость, присущие взрослым, хотя при практической тренировке они обладают значительными возможностями для совершенствования своих двигательных навыков, необходимых для выполнения конкретных практических задач.
Одним из возможных объяснений является то, что двигательные качества детей ограничены характерным для них более высоким уровнем вариабельности движений и их способность к двигательным адаптациям состоит в ограничении этой вариабельности. Для проверки этой гипотезы была проведена оценка двигательных адаптаций у 43 детей (в возрасте от 6 до 17 лет) и 12 взрослых при перемещении датчика робота по заданной траектории рукой (Takahashi et al., 2003). В отдельных сериях экспериментов робот прикладывал к датчику либо предсказуемое, определяющееся скоростью движения усилие (“усредненное воздействие”), либо аналогичное усилие, на которое накладывались случайные вариации (“случайное воздействие"), что способствовало увеличению вариабельности траектории движения руки испытуемого. У детей обнаружена более высокая начальная вариабельность в случае выполнения движения без постороннего воздействия. Вместе с тем они, как и взрослые, были способны адаптироваться к выполнению движения в условиях усредненного и случайного воздействия. Более того, оказалось, что дети самого младшего возраста (6 — 8 лет) могут при практической тренировке снизить вариабельность траектории движения руки до уровня, сопоставимого с установленным для детей других возрастных групп, хотя и не столь низкого, как у взрослых. Эти результаты свидетельствуют о том, что у детей в возрасте 6 лет, как и у взрослых, уже существуют системы, обеспечивающие способность к двигательным адаптациям и формированию внутренних моделей, которые позволяют им в среднем, как и взрослым, адаптироваться к новым динамическим условиям, несмотря на более высокие помехи в нервно-мышечной системе или окружающей среде.
Характер движений после адаптации у детей по-прежнему остается более вариабельным по сравнению со взрослыми, и это говорит о том, что именно непостоянство движений, а не отсутствие способности к двигательным адаптациям, ограничивает уровень двигательных способностей у детей и может быть причиной кажущейся нескоординированности движений и более высокой частоты травм, связанных с двигательной активностью (падений, спотыканий и др.). Результаты данного исследования свидетельствуют также о том, что причиной повышенной вариабельности движений у детей могут быть два источника: относительно устойчивый внутренний источник, имеющий отношение к фундаментальным физиологическим ограничениям формирующейся двигательной системы и способный к более быстрым изменениям источник, который модулируется в зависимости от текущей двигательной активности.
Оксид азота в выдыхаемом воздухе и двигательная активность
У медиков все чаще возникает вопрос о ценности традиционных оценок функционального состояния органов дыхания, таких, как максимальный выдыхаемый объем воздуха за 1 с (forced expiratory volume in 1 s, FEV1), столь часто используемый для диагностики астмы в детском возрасте (Spahn et al., 2004). Все больше исследований направлено на предположительно более прямые оценки воспалительных процессов в легких, например на содержание NO в выдыхаемом воздухе (Paredi et al., 2002). Однако динамика выделения организмом оксида азота в значительной степени отличается от газообмена дыхательных газов (кислорода и углекислого газа), который происходит преимущественно в альвеолах. В отличие от них выделение NO происходит как в альвеолах, так и в остальных отделах дыхательных путей и поэтому сильно зависит от скорости выдоха. Эта особенность газообмена NO очень часто приводит к путанице при интерпретации результатов в медицинских и научно-исследовательских учреждениях. Так, по одним сообщениям, концентрация N0 в выдыхаемом воздухе после занятий физическими упражнениями возрастает (Bauer et al., 1994), по другим — остается неизменной (Iwamoto et al., 1994) или даже снижается (Maroun et al., 1995). Принимая во внимание динамичный характер газообмена NO и многоплановость физиологического ответа на физическую нагрузку, нет ничего удивительного в противоречиях, которые обнаруживаются в сообщениях, посвященных исследованиям влияния двигательной активности на содержание N0 в выдыхаемом воздухе.
Недавно группой исследователей была разработана принципиальная модель, которая позволяет различать вклад альвеол и дыхательных путей в содержание N0 в выдыхаемом воздухе (George, 2004). Этот подход обеспечивает гораздо более высокую специфичность оценки по сравнению с обычным определением концентрации N0 в выдыхаемом воздухе и благодаря этому может помочь в поиске ответа па ряд нерешенных вопросов относительно влияния двигательной активности на газообмен N0. Шин с соавторами (Shin et al., 2003) недавно воспользовались предложенной моделью, чтобы разделить вклад альвеолярной области и дыхательных путей в содержание N0 в выдыхаемом воздухе и обеспечить более высокую специфичность оценки по сравнению с простым анализом содержания N0 в выдыхаемом воздухе.
Несмотря на отсутствие существенных изменений в концентрации NO в выдыхаемом воздухе (СNOplat), через 3 мин после применения физической нагрузки наблюдали существенные изменения в JawNO, DawNO, CawNO. Значение D (среднее ± стандартное отклонение) увеличивалось (37,1 ± 44,4 %), в то время JawNO и CawN0 снижались (-7,27 ± 11,1 % и -26,1 ± 24,6 % соответственно) через 3 мин после физической нагрузки. Авторы исследования (Shin et al., 2003) сделали вывод о том, что независимые от скорости прохождения воздуха параметры оценки N0 предоставляют возможность для более детального анализа газообмена этого соединения. Создается впечатление, что физическая нагрузка приводит к значительному росту выделения NO, содержащегося в тканях дыхательных путей. Этот эффект может быть обусловлен усилением вентиляции либо увеличением диффузионной способности перехода N0 из тканей дыхательных путей в газообразную фазу. Последнее предполагает, что эндогенный N0 может быть использован для оценки функциональных и структурных особенностей дыхательных путей при воздействии физической нагрузки.
Тестирование с использованием физической нагрузки и новая биология
Последние технологические достижения в области геномики, протеомики и воздушной цитометрии открывают новые перспективы для исследований в физиологии спорта и двигательной активности. Недавние открытия влияния двигательной активности па стрессовые, воспалительные и иммунные процессы (Fleshner et al., 2003; Pedersen et al., 2003; Shepard, 2003) послужили толчком к изменению наших взглядов на взаимосвязь между двигательной активностью и здоровьем. Например, Ферепбах с соавторами (Fehrenbach et al., 2003) недавно исследовали влияние двигателыюй активности па экспрессию в лейкоцитах ключевых иммуномодуляторов — белков теплового шока (БТШ). Обнаружено существенное увеличение содержания некоторых БТШ в лейкоцитах после двигательной активности. Белки теплового шока ингибируют ядерный фактор кВ и это может объяснить кардиопротекторный эффект БТШ, отмечавшийся ранее (Joyeux et al., 1999; Powers et al., 2002).
Заключение
Исследователи испытывают постоянно возрастающую потребность в подходах к изучению функциональных показателей человеческого организма в условиях физической нагрузки, которые могут быть использованы для тех популяций, для которых непригодны традиционные методы оценки с использованием физических упражнений, а именно: дети, пожилые люди и лица с различными нарушениями здоровья. Возникшая перед нами проблема заключается в том, чтобы на основании достижений, сделанных в области физиологии спорта и двигательной активности за прошедшее столетие, создать новые подходы, которые помогли бы нам понять взаимосвязь двигательной активности с фундаментальными процессами, лежащими в основе развития различных заболеваний. Более того, эти новые подходы и технологии должны быть использованы для иитеграции тестирования с использованием физической нагрузки с новыми, междисциплинарными методами биологических исследований, что позволило бы по-новому взглянуть на механизмы развития заболеваний на системном и клеточном уровнях.
Работа была выполнена при частичной финансовой поддержке Национального Института здоровья США (NIH Grant HD26939) и UCI Satellite GCRC MOl RR00827.
Литература
Bauer, J.A., Wald, J.A., Doran, S. & Soda, D. (1994) Endogenous nitric oxide in expired air: effects of acute exercise in humans. Life Sciences 55, 1903-1909.
Booth, F.W., Gordon, S.E., Carlson, CJ. & Hamilton, M.T. (2000) Waging war on modem chronic diseases: primary prevention through exercise biology. Journal of Applied Physiology 88, 774-787.
Chance, B. (1994) Non-invasive approaches to tissue bioenergetics. Biochemical Society Transactions 22, 983-987.
Coggan, A.R., Habash, D.L., Mendenhall, L.A., Swanson, S.C. & Kien, C.L. (1993) Isotopic estimation of COz production during exercise before and after endurance training. Journal of Applied Physiology 75, 70-75.
Cooper, D.M. (1995) Rethinking exercise testing in children: a challenge. American Journal of Respiratory and Critical Care 152, 1154-1157.
Cooper, D.M., Nemet, D. & Galassetti, P. (2004) Exercise, stress, and inflammation in the growing child: from the bench to the playground. Current Opinions in Pediatrics 16(3), 286-292.
Fehrenbach, E., Niess, A.M., Schlotz, E. et ah (2000) Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. Journal of Applied Physiology 89(2), 704—710.
Fleshner, М., Campisi, J. & Johnson, J.D. (2003) Can exercise stress facilitate innate immunity? A functional role for stress-induced extracellular Hsp72. Exercise Immunology Review 9, 6-24.
George, S.C, Hogman, М., Permutt, S. & Silkoff, P.E. (2004) Modeling pulmonary nitric oxide exchange. Journal of Applied Physiology 96, 831-839.
Iwamoto, J., Pendergast, D.R., Suzuki, H. & Krasney, J.A. (1994) Effect of graded exercise on nitric oxide in expired air in humans. Respiration Physiology 97, 333-345.
Joyeux, М., Godin-Ribuot, D., Yellon, D.M., Demenge, P. & Ribuot,C. (1999) Heat stress response and myocardial protection. Fundamental and Clinical Pharmacology 13, 1-10.
Lamarra, N. (1982) Ventilatory control, cardiac output, and gas exchange dynamics during exercise transients in man. PhD thesis. UCLA, Los Angeles.
Lowhagen, О., Arvidsson, М., Bjarneman, P. & Jorgensen, N. (1999) Exercise-induced respiratory symptoms are not always asthma. Respiratory Medicine 93, 734-738.
Lum, P., Reinkensmeyer, D., Mahoney, R., Rymer, W.Z. & Burgar, C. (2002) Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Topics in Stroke Rehabilitation 8, 40-53.
McMahon, T.A. (1984) Muscles, Reflexes, and Locomotion. Princeton University Press, Princeton, NJ.
Maroun, M.J., Mehta, S., Turcotte, R., Cosio, M.G. & Hussain, S.N. (1995) Effects of physical conditioning on endogenous nitric oxide output during exercise. Journal of Applied Physiology 79, 1219-1225.
Metra, М., Nodari, S., Raccagni, D. et al. (1998) Maximal and sub-maximal exercise testing in heart failure. Journal of Cardiovascular Pharmacology 32 (suppl. 1), S36-S45.
Paredi, P., Kharitonov, S.A. & Barnes, PJ. (2002) Analysis of expired air for oxidation products. American Journal of Respiratory and Critical Care Medicine 166, S31-S37.
Patten, C, Meyer, R.A. & Fleckenstein, J.L. (2003) T2 mapping of muscle. Seminars in Musculoskeletal Radiology 7, 297-305.
Pedersen, B.K., Steensbeig, A., Keller, P. et al. (2003) Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pfingers Archiv 446, 9-16.
Powers, S.K., Lennon, S.L., Quindry, J. & Mehta, J.L. (2002) Exercise and cardioprotection. Current Opinion in Cardiology 17, 495-502.
Reinkensmeyer, D.J., McKenna, C.A., Kahn, L.E. & Kamper, D.G. (2002) Directional control of reaching is preserved following mild/moderate stroke and stochastically constrained following severe stroke. Experimental Brain Research 143, 525-530.
Scheuermann-Freestone, М., Madsen, P.L., Manners, D. et al. (2003)Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107, 3040-3046.
Shephard, R.J. (2003) Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Reviews on Environmental Health 33, 261-284.
Shin, H.W., Rose-Gottron, C.M., Cooper, D.M., Hill, M. & George, S.C. (2003) Impact of high-intensity exercise on nitric oxide exchange in healthy adults. Medicine and Science in Sports and Exercise 35, 995-1003.
Spahn, J.D., Chemiack, R., Pauli, K. & Gelfand, E.W. (2004) Is forced expiratory volume in 1 second the best measure of severity in childhood asthma? American Journal Respiratory and Critical Care Medicine 169, 784-786.
Takahashi, C.D., Nemet, D., Rose-Gottron, CM. et al. (2003) Neuromotor noise limits motor performance, but not motor adaptation, in children. Journal of Neurophysiology 90, 703-711.
Tipton, CM. (1998) Contemporary exercise physiology: fifty years after the closure of Harvard Fatigue Laboratory. Exercises and Sport Science Review 26, 315-339.
Wasserman, K., Whipp, B.J., Koyal, S.N. & Beaver, W.L. (1973) Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology 35, 236-243.
Wasserman, K., Hansen, J.E., Sue, D.Y. & Whipp, B.J. (1987) Principles of Exercise Testing and Interpretation. Lea & Febiger, Philadelphia, PA.
Zanconato, S., Cooper, D.M., Barstow, T.J. & Landaw, E. (1992) ,3C02 washout dynamics during intermittent exercise in children and adults. Journal of Applied Physiology 73, 2476-2482.
Zanconato, S., Buchthal, S., Barstow, T.J. & Cooper, D.M. (1993) 3,P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. Journal of Applied Physiology 74, 2214-2218.
Определение (тесты и допинг-контроль) пептидных гормонов
Содержание
 [убрать] 
1 Определение (тесты и допинг-контроль) пептидных гормонов2 Общие аспекты применения методов иммуноанализа3 Технические аспекты применения методов иммуноанализа и их последствия4 Стандартизация иммуноанализа5 Заключение6 Читайте также7 ЛитератураОпределение (тесты и допинг-контроль) пептидных гормонов
Методы количественной оценки содержания пептидных гормонов в биологических жидкостях представляют собой базовую потребность для прикладных медицинских и биомедицинских исследований в области эндокринологии. В идеале такие методы должны обладать высокой специфичностью и позволять точно идентифицировать и оценивать количество интересующего исследователя гормона, избегая помех со стороны похожих пептидных молекул или других биологических веществ. Они должны быть чувствительными настолько, чтобы позволять детектировать пептидные гормоны при естественных низких концентрациях, наблюдаемых в физиологически нормальных и патофизиологических ситуациях. Обычно концентрация гормонов в крови колеблется в пределах нано- или пикомолей, что придает чувствительности метода решающее значение. Наконец, методы определения должны быть простыми и быстрыми, позволяя обрабатывать большие серии образцов за разумное время. Такие методологические аспекты определения гормонов приобретают еще большее значение, когда анализы выполняются в рамках системы контроля применения допинговых препаратов в спорте. Учитывая возможные серьезные последствия для спортсмена, затрагиваемые финансовые и политические интересы, а также потенциальные этические и юридические проблемы, уровень точности, специфичности и надежности методов определения гормонов в этой области должен быть чрезвычайно высоким. Например, для коммерческих наборов для анализа, часто используемых в клинической практике, очень редко указывается кросс-реактивность специфических молекулярных изоформ пептидных гормонов, тогда как эта характеристика имеет критическое значение в случае проведения допинг-контроля на наличие веществ, описываемых ниже (хорионический гонадотропин [hCG],эритропоэтин [ЕРО], гормон роста человека [hGH]). Наконец, во время проведения соревнований часто приходится проводить крупномасштабный анализ образцов за короткий промежуток времени, что также обостряет потребность в быстрых методах анализа.
За последние 30 лет в разработке аналитических методов количественного определения пептидных гормонов был достигнут значительный прогресс, который позволил выполнить упомянутые выше требования. Однако, начиная со времени зарождения радио-иммунологического анализа и заканчивая последними разработками методов масс-спектрометрии, остается знание недостатков и ограничений каждого метода, при наличии которого можно избежать неверной интерпретации полученных данных. В некоторых случаях один метод просто не позволяет одновременно добиться выполнения нескольких целей. Например, нет никаких сомнений в том, что масс-спектрометрия является единственным методом, позволяющим с чрезвычайно высокой степенью точности идентифицировать молекулы химического вещества (Binz et al., 2003; Gam et al., 2003; Kast et al., 2003). Однако современные методы масс-спектрометрии по-прежнему остаются сложными, требуют значительного времени для проведения анализа и в некоторых случаях очень сложной подготовки образца. Прогресс, который был достигнут в применении техники масс-спектрометрии для анализа очищенных препаратов пептидных гормонов, не сопровождался аналогичным развитием подходов исследования смесей гормонов в более сложных биологических образцах, например в сыворотке (Liu, Bowers, 1997; Black, Bowers, 2000; Wu S.L. et al., 2002), а высокая степень точности анализа, которая достигается в оптимальных условиях, отнюдь не означает, что масс-спектрометрия полностью исключает возможность ошибки (Annesley, 2003). Наконец, стоимость необходимого для данного метода оборудования все еще остается гораздо более высокой по сравнению с иммунологическими методами определения гормонов. Быстрое развитие новых методов в области масс-спектрометрии наряду с разработкой приборов, предназначенных для высокопроизводительного анализа, внедрением автоматизированных систем подготовки образцов, а также увеличение чувствительности, недавно достигнутое рядом исследователей, может существенно изменить положение в будущем (см. обзор Binz et al., 2003). Однако сегодня основная масса анализов гормонов в клинике и исследовательской работе проводится “традиционными методами иммуноанализа, поэтому в этой статье основное внимание будет уделено потенциальным возможностям и ошибкам определения пептидных гормонов методами иммунноанализа.
Общие аспекты применения методов иммуноанализа
В иммуноанализе используется уникальная способность специфических иммуноглобулинов (антител) узнавать и связывать определенные трехмерные структуры на поверхности молекулы (так называемые “эпитопы”). Взаимодействие антиген—антитело характеризуется высокой степенью специфичности. Использование мощных метящих веществ для антител или гормонов позволяет значительно расширить динамический диапазон применения иммуноанализа. Традиционно в качестве системы детекции при проведении анализа гормонов использовали радиоактивные изотопы. Однако экологические и экономические аспекты их использования, а также вред для здоровья стимулировали разработку различных неизотопных методов детекции. В этих новых системах для детекции сигнала используют либо ферментативную колориметрическую или хемилюминесцентную реакцию, либо — в качестве альтернативы — флуоресцентный краситель. Среди преимуществ неизотопных методов детекции — стабильность метящего вещества, поскольку радиоактивная метка со временем подвергается распаду и это обусловливает значительную вариабельность результатов при использовании различных партии радиоактивного вещества. В отдельных случаях современные неизотопные системы детекции сигнала превосходят по чувствительности радиоактивную метку, что еще больше увеличивает их привлекательность. Однако в целом чувствительность метода иммуноанализа зависит преимущественно от степени сродства используемых специфических антител и часто выбор того или иного типа метки определяется только наличием в исследовательской лаборатории определенных приспособлений для ее количественной оценки.
Технические аспекты применения методов иммуноанализа и их последствия
С методологической точки зрения приемы иммуноанализа могут быть разделены на две основные подгруппы: классический “конкурентный” иммуноанализ и“сэндвич-анализ" . В случае “конкурентного” иммуноанализа гормон, присутствующий в образце, “конкурирует” за связывание с антителами с меченой формой того же гормона, добавленного в реакционную смесь. Чем выше концентрация эндогенного гормона, тем ниже вероятность связывания с антителом меченой молекулы гормона, т. е. величина сигнала, получаемого в ходе анализа, обратно пропорциональна содержанию гормона в образце. В зависимости от типа используемой метки методы конкурентного анализа называются радиоиммунологическим анализом (RIA), иммуноферментным анализом (ИФА или EIA), люминесцентным иммуноанализом (LIA) или флуоресцентным иммуноанализом (FIA). С другой стороны, в случае “сэндвич-иммуноанализа” в реакционной смеси находятся иммобилизованные антитела, которые связывают гормон из образца, а также меченые детектирующие антитела, которые взаимодействуют с другим эпитопом на поверхности молекулы гормона, что позволяет визуализировать молекулы гормона, связавшиеся с иммобилизованными антителами: чем больше количество гормона связывается с иммобилизованными антителами, тем выше интенсивность сигнала, который дают связавшиеся с ним меченые антитела. Таким образом, величина детектируемого сигнала прямо пропорциональна количеству гормона, содержащегося в образце. Как и в случае упоминавшейся выше номенклатуры конкурентного иммуноанализа, названия разновидностей “сэндвич-анализа” происходят от типа используемой системы детекции: радиоизотопный метод (radioimmunometric assay (IRMA)), иммуноферментный (enzyme linked immunosorbent assay (ELISA)), люминесцентный (luminometric assay (ILMA)) и флуоресцентный (fluorometric assay (IFMA)).
Различия в технике выполнения конкурентного иммуноанализа и “сэндвич-иммуноанализа” определяют возможности их применения и особенности интерпретации результатов. Тогда как для проведения конкурентного иммуноанализа требуется только одно антитело и, соответственно, один эпитоп, для “сэндвич-аиализа” необходимы два антитела и два различных эпитопа. Эти эпитопы должны быть пространственно разобщены, поскольку в ином случае связывание с иммобилизованным антителом будет препятствовать связыванию с мечеными антителами, используемыми для детекции, следовательно, “сэндвич-метод” применим только в случае “крупных” молекул и может быть использован для определения больших пептидных гормонов, таких, как инсулин, соматотропный гормон (СТГ) или (ЕРО). В то же время небольшие пептиды (адренокортикотропный гормон (АКТГ), кортиколиберин, соматолиберин и стероидные гормоны часто определяются с использованием конкурентного иммуноанализа. Преимущество “сэндвич-иммуноанализа” заключается в том, что для узнавания молекулы гормона требуется наличие двух независимых эпитопов, и это делает метод, по крайней мере теоретически, более специфическим и менее подверженным ошибкам, обусловленным кросс-реактивностью пептидов, имеющих похожую структуру. Кроме того, в этом случае анализируемый гормон и гормон, используемый в качестве стандарта или для калибровки системы, химически идентичны, тогда как в конкурентном иммуноанализе используемый в качестве стандарта гормон является химически модифицированным за счет связывания метки. Подобная модификация может приводить к возникновению различий в сродстве антител к естественному гормону, содержащемуся в образце, и модифицированному гормону, используемому в случае проведения анализа как конкурента.
Стандартизация иммуноанализа
Важно отметить, что все методы иммуноанализа являются “относительными” по своей сущности. Это означает, что концентрация интересующего нас вещества в образце оценивается по сравнению с концентрацией стандарта, точнее концентрация оценивается путем сравнения способности используемых антител связываться с гормоном в биологическом образце (например, в сыворотке пациента) и в образце стандарта соответственно. С точки зрения теории в основе такой техники количественного анализа лежат три фундаментальных допущения: 1) стандарт идентичен по своим физико-химическим свойствам и трехмерной структуре с интересующим нас веществом; 2) эпитопы на поверхности интересующей нас молекулы свободно доступны антителам как в биологическом образце, так и в образце стандарта; 3) вещество в образце стандарта и исследуемом образце находится в одинаковых условиях (одном и том же рабочем растворе). Очевидно, что реализовать все эти три допущения при анализе пептидных гормонов достаточно сложно. Для одних веществ не существует международных стандартных образцов (international reference preparation, IRP), для других имеется по несколько стандартных образцов. Так, например, для соматотропного гормона человека IRP 80/505 получен из экстракта гипофиза, a IRP 88/624 и IRP 98/574 представляют собой рекомбинантные белки. Кроме того, некоторые стандартные образцы имеют очень низкое качество и невысокую степень чистоты (например, IRP инсулиноподобного фактора роста I (ИФР-1) содержит всего 40 % ИФРТ (Quarmby et al., 1998)). Еще более осложняет ситуацию то, что многие природные гормоны в организме человека представлены смесью разнообразных изоформ, а не однотипными молекулами (Nagy et al., 1994). Этот факт был продемонстрировал достаточно детально, в частности для кортикотропного гормона человека (Birken et al., 2003; Lottersberger et al., 2003), а также соматотропного гормона человека (Baumann, 1999; Boguszewsky, 2003). Выбор конкретной изоформы или смеси изоформ, которые могут быть использованы как стандартный образец, будет в значительной мере определяться конкретной задачей, которую пытаются решить исследователь или врач при определении концентрации гормона. В 1991 г. Роджер Экинс, один из создателей метода иммуноанализа, писал, что стандартизация иммуноанализа для гетерогенного по составу антигена невозможна (Ekins, 1991), и непрекращающаяся дискуссия по вопросу стандартизации количественной оценки явно демонстрирует, что мы еще достаточно далеки от момента достижения консенсуса (Roger, Lalhou, 1994; Quarmby et al., 1998; Ranke et al., 2001).
Что касается второго допущения, следует иметь в виду, что для многих пептидных гормонов в системе кровообращения можно найти ряд естественных “связывающих белков”, обладающих большим или меньшим сродством (Baumann et al., 1988). Присутствуя в образце, эти связывающие белки могут затруднять количественную оценку гормона либо за счет связывания молекул конкурентного меченого пептида, либо препятствуя взаимодействию гормона с антителами (Fisker, Orskov, 1996). В зависимости от метода иммуноанализа наличие связывающих белков в анализируемом образце может приводить к завышенным или заниженным оценкам концентрации гормона. Источником ошибки, не имеющим никакого отношения к анализируемому гормону, могут стать также присутствующие в образце гетерофильные антитела] Такие антитела могут связываться одновременно с иммобилизованными и мечеными антителами, что приведет к усилению сигнала и завышенной оценке гормона (Kricka, 1999). Было показано, что образование таких антител может происходить у лиц, которые держат домашних животных (Park et al., 2003), однако точная причина их появления остается неизвестной. Была предпринята попытка разработки модифицированных методик, которые бы позволили избежать подобных ошибок, однако проблема по-прежнему окончательно не решена (Emerson et al. 2003; Preissner ct al., 2003). Наконец, буферная смесь, используемая для приготовления стандартного раствора, редко является идентичной сыворотке человека — в большинстве случаев для этой цели используют сыворотку животного происхождения или буфера, в состав которых включен альбумин. В некоторых случаях компоненты буферной смеси могут оказывать влияние на повеление антител, что также будет приводить к возникновению различий при проведении анализа с использованием растворов стандартных образцов различного состава.
Поскольку все упомянутые выше факторы могут оказывать заметное влияние на результаты количественного анализа гормона, необходимо очень внимательно интерпретировать данные, полученные методом иммуноанализа. Каждый метод должен оцениваться с точки зрения возможности перекрестного взаимодействия между используемыми в ходе анализа веществами, в идеальном случае желательно иметь точную характеристику эпитопа, распознаваемого антителами. Очевидно, что каждая разновидность иммуноанализа будет иметь свои особенности зависимости величины сигнала от концентрации того или иного гормона (Strasbuiger et al., 1996, 2001; Stenman et al., 1997; Quarmby et al., 1998; Wood, 2001: Sharpe et al., 2002), поэтому следует избегать простых ссылок на "общеизвестные" нормативные данные, представленные в руководствах. Наконец, как и раньше, остается актуальной потребность создания IRP для многих пептидных гормонов. Как недавно было показано для хорионического гонадотропина (hCG) (Birken et al., 2003), разработка стандартных образцов является достаточно сложной задачей, которая вместе с тем помогает исключить некоторые причины, вносящие неопределенность в результаты иммуноанализа.
Заключение
Методы иммуноанализа, применяемые для определения пептидных гормонов, представляют собой чрезвычайно чувствительное средство количественной оценки концентраций гормонов в различных биологических жидкостях. Правильный выбор антител, характеристика их эпитопов, определение степени сродства к исследуемому гормону и выявление пептидов, которые могут давать перекрестные реакции, обеспечивает высокую степень специфичности при определении гормонов и делает эти методы пригодными лаже для применения в качестве основы тестов на допинг. Благодаря своей простоте, экономичности и быстроте, отличающими их от других методов исследований пептидных гормонов, методы иммуноанализа обладают высоким потенциалом особенно в случае проведения крупномасштабных исследований. Вместе с тем для каждого вида иммуноанализа должны быть получены метод-специфические нормативные данные. Кроме того, следует выявить все факторы, которые могут увеличивать погрешность метода, и разработать соответствующие процедуры, направленные на их устранение. Соблюдение всех этих мер предосторожности позволит добиться чрезвычайно высокой точности результатов иммуноанализа и обеспечить возможность использования этого метода в качестве средства экспертизы.
Литература
Annesley, Т.М. (2003) Ion suppression in mass spectrometry. Clinical Chemistry 49(7), 1041-1044.
Armanini. D., Faggian, D., Scaroni, C. & Plebani, M. (2002) Growth hormone and insulin-like growth factor I in a Sydney Olympic gold medallist. British Journal of Sports Medicine 36(2), 148-149.
Ashenden, M.J., Gore, C.J., Parisotto, R. et al. (2003) Effect of altitude on second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 88(9), 1053-1062.
Baumann, G. (1999) Growth hormone heterogeneity in human pituitary and plasma. Hormone Research SI (suppl. 1), 2-6.
Baumann, G., Ambum, K. & Shaw, M.A. (1988) The circulating growth hormone (GH)-binding protein complex: a major constituent of plasma GH in man. Endocrinology 122(3), 976-984. *Bidlingmaier, М., Wu, Z. & Strasburger, C.J. (2000) Test method: GH. Bailliere's Best Practice and Research. Clinical Endocrinology and Metabolism 14(1), 99-109.
Bidlingmaier, М., Wu, Z. & Strasburger, C.J. (2003) Problems with GH doping in sports. Journal of Endocrinological Investigation 26, 924-931.
Binz, P.A., Hochstrasser, D.F. & Appel, R.D. (2003) Mass spectrometry-based proteomics: current status and potential use in clinical chemistry. Clinical Chemistry and Laboratory Medicine 41(12), 1540-1551.
Birkeland, K.I. & Hemmersbach, P. (1999) The future of doping control in athletes. Issues related to blood sampling. Sports Medicine (Auckland, NZ) 28(1), 25-33.
Birken, S., Kovalevskaya, G. & O'Connor, J. (1996) Metabolism of hCG and hLH to multiple urinary forms. Molecular and Cellular Endocrinology 125(1-2), 121-131.
Birken, S., Berger, P., Bidart, J.M. et al. (2003) Preparation and characterization of new WHO reference reagents for human chorionic gonadotropin and metabolites. Clinical Chemistry 49(1), 144-154.
Black, R.S. & Bowers, L.D. (2000) Mass spectrometric characterization of the [3-subunit of human chorionic gonadotropin. Methods in Molecular Biology 146, 337-354.
Boguszewski, C.L. (2003) Molecular heterogeneity of human GH: from basic research to clinical implications. Journal of Endocrinological Investigation 26(3), 274-288.
Bowers, L.D. (1997) Analytical advances in detection of performance-enhancing compounds. Clinical Chemistry 43(7), 1299-1304.
Breidbach, A., Cat 1 in, D.H., Green, G.A. et al. (2003) Detection of recombinant human erythropoietin in urine by isoelectric focusing. Clinical Chemistry 49(6 Pt. 1), 901-907.
Catlin, D.H., Breidbach, A. Elliott, S. & Glaspy, J. (2002) Comparison of the isoelectric focusing patterns of darbepoetin alfa, recombinant human erythropoietin, and endogenous erythropoietin from human urine. Clinical Chemistry 48(11), 2057-2059.
Cole, L.A. (1997) Immunoassay of human chorionic gonadotropin, its free subunits, and metabolites. Clinical Chemistry 43(12), 2233-2243.
Cole, L.A. & Kardana, A. (1992) Discordant results in human chorionic gonadotropin assays. Clinical Chemistry 38(2), 263-270.
Cole, L.A., Shahabi, S., Butler, S.A. et al. (2001) Utility of commonly used commercial human chorionic gonadotropin immunoassays in the diagnosis and management of trophoblastic diseases. Clinical Chemistry 47(2), 308-315.
Dali, R., Longobardi, S., Ehmborg, C. et al. (2000) The effect of 4 weeks of supraphysiological growth hormone administration on the insulin-like growth factor axis in women and men. GH-2000 Study Group. Journal of Clinical Endocrinology and Metabolism 85(11), 4193-4200.
De Frutos, М., Cifuentes, A. & Diez-Masa, J.C. (2003) Differences in capillary electrophoresis profiles of urinary and recombinant erythropoietin. Electrophoresis 24(4), 678-680.
Ehrnborg, C, Lange, K.H., Dali, R. et al. (2003) The growth hor-mone/insulin-like growth factor-1 axis hormones and bone markers in elite athletes in response to a maximum exercise test. Journal of Clinical Endocrinology and Metabolism 88(1), 394-401.
Ekins, R. (1991) Immunoassay standardization. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum 205, 33-46.
Emerson, J.F., Ngo, G. & Emerson, S.S. (2003) Screening for interference in immunoassays. Clinical Chemistry 49(7), 1163-1169.
Fisker, S. & Orskov, H. (1996) Factors modifying growth hormone estimates in immunoassays. Hormone Research 46(4-5), 183-187.
Gam, L.H., Tham, S.Y. & Latiff, A. (2003) Immunoaffinity extraction and tandem mass spectrometric analysis of human chorionic gonadotropin in doping analysis. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 792(2), 187-196.
Gore, CJ., Parisotto, R. Ashenden, MJ. et al. (2003) Second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 88(3), 333-344.
Hashimoto, Y., Ikeda, I., Ikeda, M. et al. (1998) Construction of a specific and sensitive sandwich enzyme immunoassay for 20 kDa human growth hormone. Journal of Immunological Methods 221(1-2), 77-85.
Hilderbrand, R.L., Wanninger, R. & Bowers, L.D. (2003) An update on regulatory issues in antidoping programs in sport. Current Sports Medicine Reports 2(4), 226-232.
Kast, J., Parker, C.E., van der Drift, K. et al. (2003) Matrix-assisted laser desorption/ionization directed nano-electrospray ionization tandem mass spectrometric analysis for protein identification. Rapid Communications in Mass Spectrometry 17(16), 1825-1834.
Kazlauskas, R., Howe, C. & Trout, G. (2002) Strategies for rhEPO detection in sport. Clinical Journal of Sport Medicine 12(4), 229-235.
Kricka, LJ. (1999) Human anti-animal antibody interferences in immunological assays. Clinical Chemistry 45(7), 942-956.
Lasne, F. (2001) Double-blotting: a solution to the problem of nonspecific binding of secondary antibodies in immunoblotting procedures. Journal of Immunological Methods 253(1-2), 125-131.
Lasne, F. (2003) Double-blotting: a solution to the problem of nonspecific binding of secondary antibodies in immunoblotting procedures. Journal of Immunological Methods 276(1-2), 223-226.
Lasne, F. & de Ceaurriz, J. (2000) Recombinant erythropoietin in urine. Nature 405(6787), 635.
Lasne, F., Martin, L., Crepin, N. & de Ceaurriz, J. (2002) Detection of isoelectric profiles of erythropoietin in urine: differentiation of natural and administered recombinant hormones. Analytical Biochemistry 311(2), 119-126.
Le Roith, D., Bondy, C, Yakar, S., Liu, J.L. & Butler, A. (2001) The somatomedin hypothesis: 2001. Endocrine Reviews 22(1), 53-74.
Leung, K.C., Howe, C, Gui, L.Y. et al. (2002) Physiological and pharmacological regulation of 20-kDa growth hormone. American Journal of Physiology. Endocrinology and Metabolism 283(4), E836-843.
Liu, C. & Bowers, L.D. (1997) Mass spectrometric characterization of nicked fragments of the (3-subunit of human chorionic gonadotropin. Clinical Chemistry 43(7), 1172-1181.
Longobardi, S., Keay, N., Ehmborg, C. et al. (2000) Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sports: a double blind, placebo-controlled study. The GH-2000 Study Group. Journal of Clinical Endocrinology and Metabolism 85(4), 1505-1512.
Lottersberger, O, Hoermann, R., Mann, K., Schwarz, S. & Berger, P. (2003) Tumor-and pregnancy-derived isoforms of human chorionic gonadotropin: biological and diagnostic relevance. Hormone Research 59(3), 125-134.
Nagy, A.M., Meuris, S. & Robyn, C. (1994) Origin and significance of the heterogeneity of protein hormones. Nuclear Medicine and Biology 21(3), 317-330.
O'Connor, J.F., Kovalevskaya, G. & Birken, S. (1999) Interference of luteinizing hormone (3-core fragment in urinary gonadotropin assays. Clinical Chemistry 45(12), 2290-2292.
Parisotto, R., Wu, М., Ashenden, M.J. et al. (2001) Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica 86(2), 128-137.
Parisotto, R., Ashenden, M.J., Gore, CJ. et al. (2003) The effect of common hematologic abnormalities on the ability of blood models to detect erythropoietin abuse by athletes. Haematologica 88(8), 931-940.
Park, A., Edwards, М., Donaldson, М., Ghatei, M. & Meeran, K.(2003) Lesson of the week: interfering antibodies affecting immunoassays in woman with pet rabbits. BMJ (Clinical Research Ed.) 326(7388), 541-542.
Preissner, C.M., O’Kane, D.J., Singh, R.J., Morris, J.C. & Grebe, S.K.G. (2003) Phantoms in the assay tube: heterophile antibody interferences in serum thyroglobulin assays. Journal of Clinical Endocrinology and Metabolism 88(7), 3069-3074.
Quarmby, V., Quan, C, Ling, V., Compton, P. & Canova-Davis, E. (1998) How much insulin-like growth factor I (IGF-I) circulates? Impact of standardization on IGF-I assay accuracy. Journal of Clinical Endocrinology and Metabolism 83(4), 1211-1216.
Ranke, M.B., Feldt-Rasmussen, U., Bang, P. et al. (2001) How should insulin-like growth factor I be measured? A consensus statement. Hormone Research 55 (suppl. 2), 106-109.
Rice, K.G., Takahashi. N.. Namiki, Y. et al. (1992) Quantitative mapping of the N-linked sialyloligosaccharides of recombinant erythropoietin, combination of direct high-performance anion-exchange chromatography and 2-aminopyridine derivatization. Analytical Biochemistry 206(2), 278-287.
Roger, M. & Lalhou, N. (1994) Heterogeneity of plasma gonadotropins. Consequences on immunological properties of LH. Nuclear Medicine and Biology 21(3), 349-357.
Sasaki, H., Bothner, B., Dell, A. & Fukuda, M. (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. Journal of Biological Chemistry 262(25), 12 059-12 076.
Saugy, М., Cardis, C, Schweizer, C, Veuthey, J.L. & Rivier, L. (1996) Detection of human growth hormone doping in urine: out of competition tests are necessary. Journal of Chromatography. B, Biomedical Applications 687(1), 201-211.
Sharpe, K., Hopkins, W., Emslie, K.R. et al. (2002) Development of reference ranges in elite athletes for markers of altered erythropoiesis. Haematologica 87(12), 1248-1257.
Souillard, A., Audran, М., Bressolle, F. et al. (1996) Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in athletes. Blood sampling and doping control. British Journal of Clinical Pharmacology 42(3), 355-364.
Stenman, U.H., Unkila-Kallio, L., Korhonen, J. & Alfthan, H. (1997) Immunoprocedures for detecting human chorionic gonadotropin: clinical aspects and doping control. Clinical Chemistry 43(7), 1293-1298.
Strasburger, C.J., Wu, Z., Pflaum, CD. & Dressendorfer, R.A. (1996) Immunofunctional assay of human growth hormone (hGH) in serum: a possible consensus for quantitative hGH measurement. Journal of Clinical Endocrinology and Metabolism 81(7), 2613-2620.
Strasburger, CJ., Bidlingmaier, М., Wu, Z. & Morrison, K.M. (2001) Normal values of insulin-like growth factor I and their clinical utility in adults. Hormone Research 55 (suppl. 2), 100-105.
Tsushima, Т., Katoh, Y., Miyachi, Y. et al. (1999) Serum concentration of 20 К human growth hormone (20 К hGH) measured by a specific enzyme-linked immunosorbent assay. Study Group of 20 KhGH. Journal of Clinical Endocrinology and Metabolism 84(1), 317-322.
Wallace, J.D., Cuneo, R.C, Baxter, R. et al. (1999) Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. Journal of Clinical Endocrinology and Metabolism 84(10), 3591-3601.
Wallace, J.D., Cuneo, R.C, Lundberg, P.A. et al. (2000). Responses
of markers of bone and collagen turnover to exercise, growth hormone (GH) administration, and GH withdrawal in trained adult males. Journal of Clinical Endocrinology and Metabolism 85(1), 124-133.
Wallace, J.D., Cuneo, R.C, Bidlingmaier, M. (2001a) Changes in non-22-kilodalton (kDa) isoforms of growth hormone (GH) after administration of 22-kDa recombinant human GH in trained adult males. Journal of Clinical Endocrinology and Metabolism 86(4), 1731-1737.
Wallace, J.D., Cuneo, R.C, Bidlingmaier, M. (2001b) The response of molecular isoforms of growth hormone to acute exercise in trained adult males. Journal of Clinical Endocrinology and Metabolism 86(1), 200-206.
Wide, L., Bengtsson, C, Berglund, B. & Ekblom, B. (1995) Detection in blood and urine of recombinant erythropoietin administered to healthy men. Medicine and Science in Sports and Exercise 27(11), 1569-1576.
Wood, P. (2001) Growth hormone: its measurement and the need for assay harmonization. Annals of Clinical Biochemistry 38(Pt. 5), 471-482.
Wu, S.L., Amato, H., Biringer, R. et al. (2002) Targeted proteomics of low-level proteins in human plasma by LC/MSn: using human growth hormone as a model system. Journal of Proteome Research 1(5), 459-465.
Wu, Z., Bidlingmaier, М., Dali, R. & Strasburger, CJ. (1999) Detection of doping with human growth hormone. Lancet 353(9156), 895.
Количественный допинг-тест пептидных гормонов
Количественная оценка пептидных гормонов в допинг-тестах
Всемирный антидопинговый кодекс олимпийского движения от 1 января 2003 г. содержит следующую формулировку: “присутствие повышенной концентрации эндогенного гормона в классе (Е) или его диагностического маркера (маркеров) в моче спортсмена считается нарушением, если только не будет доказано, что это обусловлено его особым физиологическим или патологическим состоянием” (см. www.wada-ama.org). К сожалению, в случае пептидных гормонов определение“повышенной концентрации" гормона в ряде случаев является чрезвычайно сложным или даже невозможным. Секреция некоторых пептидных гормонов в организме человека происходит ритмично, т. е. содержание гормона в крови подчиняется циркадному ритму. Более того, уровень секреции гормона зависит не только от возраста и пола человека, но и от внешних условий (температура, атмосферное давление), стресса (психологического или физиологического), режима сна, характера питания или режима тренировки. Время жизни большинства пептидных гормонов чрезвычайно непродолжительно и это также приводит к значительным колебаниям их концентрации в крови. Таким образом, простое определение содержания гормона лишь в отдельных случаях (хорионический гонадотропин у мужчин) позволяет показать злоупотребление гормональными препаратами. Несмотря на заявления, которые появляются иногда в общественной прессе, высокая концентрация соматотропного гормона человека, например, ни в коей мере не может считаться достаточным доказательством использования спортсменом рекомбинантного СТГ (Armanini et al., 2002).
Еще одна проблема заключается в детекции пептидных гормонов рекомбинатного происхождения, используемых в качестве допинга. Полученные путем экспрессии в системе in vitro белка, кодируемого последовательностью гена человека, гормоны искусственного происхождения идентичны природным гормонам по своей аминокислотной последовательности, а значит, и по физико-химическим свойствам. После инъекции гормона в организм выяснить происхождение отдельной молекулы гормона представляется уже невозможным.
Проведение детекции пептидных гормонов с целью допинг-контроля осложняется еще и тем, что в отличие от простых, небольших и стабильных молекул стероидных гормонов пептидные гормоны — это большие молекулы с очень сложной и лабильной трехмерной структурой. Во многих случаях пептидные гормоны очень быстро деградируют, вовлекаются в процессы метаболизма и расщепляются. Процессы выведения с мочой очень сложны и многие из них до сих пор остаются непонятыми. Кроме того, концентрация пептидных гормонов в моче часто намного ниже их содержания в крови. Это означает, что моча — биологический материал, который традиционно используется при проведении анализов для допинг-контроля, — в случае большинства тестов на пептидные гормоны обладает ограниченной ценностью. Необходимо проведение анализов крови со всеми вытекающими отсюда этическими и правовыми проблемами (Birkeland, Hem-mersbach, 1999).
Наконец, проблемы, связанные с созданием тестов для допинг-контроля пептидных гормонов, обусловлены методическими различиями в определении пептидных и стероидных гормонов, описанных выше. Стероидные гормоны в течение ряда лет определяются методами газовой хроматографии и масс-спектрометрии (ГХ/МС), благодаря чему в аккредитованных Международным олимпийским комитетом (МОК) лабораториях имеется соответствующее аналитическое оборудование и накоплен достаточный опыт. Во многих случаях ГХ/МС рассматривается в качестве эталона или “золотого стандарта” при определении гормонов. К сожалению, эти методы никогда не применялись для анализа пептидных гормонов, и в настоящее время все еще не разработан протокол, который можно было бы применять при проведении допинг-контроля (Bowers, 1997; Hilderbrand et al., 2003). Все методы определения пептидных гормонов, которые существуют в настоящее время или, как предполагается, будут разработаны в ближайшем будущем, основаны на методе иммуноанализа, в случае эритропоэтина, дополненного подтверждением с использованием изоэлектрофокусироваиия (ИЭФ).
Хорионический гонадотропин: допинг-контроль, тесты
Хорионический гонадотропин: допинг-контроль, тесты
Хорионический гонадотропин (hCG) представляет собой важный гормон, который секретируется в организме человека в период беременности и стимулирует продукцию эндогенных стероидных гормонов. Описаны случаи злоупотребления hCG у спортсменов-мужчин с целью усиления секреции эндогенных стероидных гормонов при сохранении соотношения тестостерон/эпитестостерон (Stenman et al., 1997). Обычно концентрация хорионического гонадотропина у небеременных женщин, и особенно у мужчин, крайне низкая. У мужчин повышенная концентрация этого гормона наблюдается лишь в редких случаях, например при раке семенников (Lottersberger et al., 2003), поэтому определение hCG при допинг-контроле пептидных гормонов представляет собой достаточно простой случай: присутствие гормона у спортсмена-мужчины в высокой концентрации с высокой степенью вероятности предполагает его использование в качестве стимулятора. Вместе с тем, несмотря на частое применение в клинических исследованиях, количественное определение hCG остается достаточно сложной задачей. Как представитель семейства гормонов гликопротеидов hCG является гетеродимером и состоит из двух различных субъединиц (а и β): а-субъединица является общей для всех остальных представителей этого семейства, тогда как β-субъединица отвечает за связывание с рецептором и определяет специфическую биологическую активность гормона. Карбоксильный конец молекулы hCG содержит регион, который подвергается интенсивному гликозилированию. Установлено существование нескольких изоформ hCG и выявляемая в составе гормона гетерогенность в значительной мере зависит от особенностей используемого в исследовании метода иммуноанализа (Cole, Kardana, 1992; Cole, 1997; Cole et al., 2001). В случае определения содержания hCG в моче ситуация еще хуже, поскольку спектр изоформ и продуктов распада здесь еще сложнее, чем в случае сыворотки крови (Birken et al., 1996; O’Connor et al., 1999).
Кроме гетерогенности анализируемого вещества многие стандарты, используемые для калибровки систем оценки hCG, содержали примеси значительного количества посторонних вариантов гормона, которые с различной эффективностью взаимодействовали с антителами в различных типах иммуноанализа. И только недавно международной группе исследователей удалось создать шесть стандартов IRP для наиболее важных изоформ hCG (Birken et al., 2003), использование которых должно повысить воспроизводимость и точность результатов анализа.
Недавно был описан комплексный метод с использованием масс-спектрометрического анализа, позволяющий подтвердить позитивные результаты тестов на hCG (Cam et al., 2003). После трипсинового гидролиза обнаружен маркерный пептид ((ЗТ5), который позволяет получить для hCG очень характерный спектр. В сочетании со специальной процедурой иммуноэкстракции предложенный метод позволяет оценивать концентрации hCG до 5 IU-мл"1. Насколько предложенный метод анализа с использованием масс-спектрометрии окажется надежным и применимым для проведения допинг-контроля покажут дальнейшие крупномасштабные исследования.
Эритропоэтин: допинг-контроль, тесты
Эритропоэтин: допинг-контроль, тесты
Введение теста на рекомбинантный эритропоэтин в рамках допинг-контроля на Олимпийских играх в Сиднее в 2000 г. стало значительным шагом вперед в борьбе с применением стимулирующих препаратов (Kazlauskas et al., 2002). Это был первый случай, когда в официальной программе допинг-контроля применен тест, позволяющий обнаружить разницу между рекомбинантной и эндогенной формой гормона. В настоящий момент определение рекомбинантного эритропоэтина человека основано на применении двух различных методов. Первый — это анализ образца мочи (Lasne, Ceaurriz, 2000; Lasne et al., 2002), в котором использован метод ИЭФ в сочетании с методом “двойного блоттинга", обеспечивающего визуализацию полос белка наряду со значительно сниженным фоновым окрашиванием (Lasne, 2001, 2003). Суть этого метода заключается в анализе набора изоформ ЕРО в образце, который будет различаться в случае рекомбинантного и эндогенного гормонов (Lasne et al., 2002; De Frutos ct al., 2003). Причина этих различий заключается в том, что гликозилирование белка в значительной степени зависит от того, в каких клетках происходит его экспрессия. Поскольку рекомбинантный эритропоэтин получают главным образом с использованием клеток яичника китайского хомячка, характер гликозилирования белка будет отличаться от такового в почках человека (Sasaki et al., 1987; Rice et al., 1992). Данная методика определения рекомбинантного эритропоэтина применяется в нескольких аккредитованных лабораториях МОК, а также используется для допинг-контролямногими спортивными ассоциациями (Catlin et al., 2002; Breidback et al., 2003).
Основным недостатком данной методики являются относительно высокая стоимость анализа и необходимость значительного времени для его проведения. Кроме того, применение допинга у спортсмена может быть обнаружено только в течение 3—4 дней после инъекции (Wide et al., 1995; Souillard et al., 1996). Попытки избавиться от этих недостатков привели к созданию методов, основанных на обнаружении изменений гематологических параметров, обусловленных введением эритропоэтина. Было показано, что уровень этих изменений заметно превышает естественную вариабельность и некоторые из них наблюдаются в течение четырех недель после применения рекомбинантного гормона (Parisotto et al., 2001; Gore et al., 2003). Так называемый “анализ крови второго поколения” включает определение ЕРО и растворимого рецептора трансферина с помощью методов иммуноанализа. Несмотря на то что этот тест более простой, требует значительно меньше затрат и позволяет с гораздо большей вероятностью обнаружить случаи злоупотребления рекомбинантным эритропоэтином, для его проведения требуется забор образца крови и, кроме того, при снижении пороговой границы до уровня, который позволяет отсеивать большую часть лиц, злоупотребляющих гормональными препаратами, происходит увеличение количества фальшивых позитивных результатов. Поэтому в настоящее время тесты на основе анализа крови применяются в качестве средства первичного скрининга для обнаружения образцов, с высокой вероятностью содержащих рекомбинантный эритропоэтин, а результаты ИЭФ белков, содержащихся в моче, используются в качестве подтверждения только для подозрительных образцов.
Было продемонстрировано, что использование “анализа крови второго поколения” для первичного скрининга позволяет существенно снизить затраты на выявление позитивных образцов с помощью анализа гормона в моче (Gore et al., 2003). Кроме того, была проделана обширная работа, направленная на определение нормативных данных и поиск факторов, которые могут оказывать влияние на результаты теста (Sharpe et al., 2002; Ashcnden et al., 2003; Parisotto et al., 2003). Вместе с тем не стоит забывать о том, что рекомбинантное происхождение эритропоэтина, обнаруженного в моче, может быть доказано только с помощью ИЭФ, выявляющего специфический характер гликозилирования.
Гормон роста: допинг-контроль, тесты
Гормон роста: допинг-контроль, тесты
Проведение допинг-контроля на рекомбинантный соматотропный гормон (СТГ) человека на протяжении многих лет считалось невыполнимой задачей. Однако недавно было показано, что по крайней мере два независимых подхода позволяют установить применял спортсмен рекомбинантный СТГ или нет. Разработанные методы анализа в настоящее время проходят проверку и можно надеяться уже в скором будущем будут применяться в качестве официального теста на допинг.
Основная проблема заключается в том, что в отличие от эритропоэтина ни один из предложенных методов не позволяет определять СТГ в моче. Это обусловлено в первую очередь чрезвычайно низкими концентрациями гормона в моче, которые не позволяют его обнаружить существующими методами. Помимо того, выделение соматотропина с мочой представляет сложный процесс, который характеризуется значительной вариабельностью и до сих пор остается плохо изученным (Saugy et al., 1996). Метод ИЭФ, применяемый в случае ЕРО в пробах мочи, непригоден для анализа СТГ, поскольку последний не имеет сайтов гликозилирования. По современным данным, молекулы СТГ рекомбинантного происхождения практически полностью идентичны основной фракции молекул СТГ, секретируемых гипофизом, и никаких физико-химических отличий между ними не выявлено.
Тем не менее, даже несмотря на отсутствие сайтов гликозилирования, СТГ в системе кровообращения представлен смесью молекулярных изоформ (Baumann, 1999). Исследование этих изоформ продвинулось не столь далеко, как в случае хорионического гонадотропина, однако на протяжении последних лет стало возможным идентифицировать некоторые основные компоненты. Наряду с основной изоформой, имеющей молекулярную массу 22 кДа и состоящей из 191 аминокислотного остатка, в крови обнаружена вторая по количественной представленности, более короткая изоформа с молекулярной массой 20 кДа, в последовательности которой отсутствуют аминокислоты 32—46 (Hashimoto et al., 1998; Tsushima et al., 1999; Leung et al., 2002). Существуют также еще более короткие формы СТГ, одпако они выявляются непостоянно и полностью еще не проанализированы. Некоторые из них представляют продукты гидролиза или деградации молекул СТГ. Изоформы СТГ могут существовать в виде мономеров, димеров и мультимеров, состоящих из идентичных (гомодимеры) или различных (гетеродимеры) изоформ.
Во многих случаях воздействие СТГ на организм человека опосредует фактор, получивший название инсулиноподобпый фактор роста I (ИФР-1), продуцируемый главным образом в печени, и также локально в хрящевой, костной и многих других тканях, ИФР-1 секретируется в систему кровообращения, где он связывается со специфическими связывающими белками (Le Roith ct al., 2001). Наибольшим значением из них обладает ИФР-связывающий белок 3 (IGFBP-3), а также кислотно-лабильная субъединица (ALS), продукция которых также находится под контролем СТГ. По крайней мере, для IGFBP-3 показано, что этот белок может оказывать собственное воздействие независимо от связывания с ИФР-1 и поэтому может рассматриваться в качестве самостоятельного пептидного гормона. Вместе ИФР-1, IGFBP-3 и ALS формируют тройной комплекс, который обладает большей продолжительностью жизни, по сравнению с формирующими его молекулами по отдельности.
Одна из стратегий поиска подходящего теста для обнаружения применения СТГ в качестве стимулятора заключалась в оценке количественных изменений продуктов фармакодинамического воздействия СТГ, в частности возможного увеличения количества компонентов тройного комплекса, превосходящего по уровню диапазон естественной вариабельности (Dali et al., 2000). Одно из достоинств такого теста состояло бы в том, что время жизни продуктов фармакодинамического воздействия СТГ превышает время жизни самого гормона, что позволяет увеличить временной диапазон, в течение которого существует возможность обнаружения злоупотребления соматотропным гормоном. Международный научный консорциум провел серию крупномасштабных исследовании, направленных на изучение повеления продуктов фармакодинамичсского воздействия СТГ в зависимости от различных факторов, включая острые и хронические физические нагрузки, возраст, пол, этническую принадлежность и травмы (Wallace ct al., t999, 2000; Longobardi ct al., 2000; Ehmborg ct al., 2003). Основным достижением проведенных исследований стало подтверждение факта индукции изменений в составе фармакодинамического воздействия, происходящих при продолжительном регулярном применении СТГ и обладающих характерными особенностями, позволяющими отличить их от изменений, индуцированных тренировочными занятиями или другими стимуляторами. В частности, была создана статистическая модель, описывающая повеление ряда продуктов фармакодинамического воздействия гормона и учитывающая половые различия. Важное значение имеет также тот факт, что в ходе определения определяющих факторов была произведена оценка использованных для этого методов иммуноанализа и для каждого из них были установлены конкретные диапазоны чувствительности. Не все доступные коммерческие методы удовлетворяют установленным в ходе исследований требованиям, что обусловливает необходимость проведения тщательного отбора систем иммуноанализа, которые предполагается использовать в дальнейшем. Кроме того, поскольку в основу данного метода тестирования положена очень сложная статистическая модель, необходимо представлять себе пределы вариабельности результатов используемых методик и гарантировать постоянное использование в тестах идентичных антител. Это может представлять проблему, поскольку многие виды иммуноанализа в настоящее время основаны на использовании поликлональных, а не моноклональных антител. Однако поликлональные антитела не могут быть получены в больших количествах и после окончания одной партии нельзя гарантировать, что следующая партия окажется идентичной первой. Все это позволяет понять, почему международные антидопинговые организации уделяют столь значительное внимание разработке технологий получения пригодных для использования моноклональных антител. После уточнения всех методических подробностей, этот метод тестирования может оказаться очень эффективным но сравнению с анализом крови, применяемым для допинг-контроля на ЕРО.
Еще один подход направлен на анализ непосредственно СТГ. В отличие спектра изоформ гормона, секретируемого гипофизом, рекомбинантный гормон всегда представлен единственной формой с молекулярной массой 22 кДа. Описано также производство рекомбинантной формы с молекулярной массой 20 кДа, но до настоящего времени этот белок был использован лишь в нескольких клинических испытаниях. Рекомбинантный соматотропин, применяемый для лечения дефицита гормона роста у детей, подростков и лиц зрелого возраста, имеет молекулярную массу 22 кДа, очевидно, что те же самые препараты используют в качестве стимуляторов в спорте. Такая гомогенность или “отсутствие гетерогенности” у рекомбинантных форм гормона, отличающие его от естественного разнообразия изоформ СТГ, секретируемых гипофизом, и составляет основу для так называемого “метола дифференциального иммуноанализа", применяемого для допинг-контроля на рекомбинантный СТГ (Z. Wu et al., 1999): введение в организм рекомбинантного мономерного СТГ с молекулярной массой 22 кДа приводит к увеличению относительного содержания этой изоформы в крови. Это изменение в спектре изоформ гормона в дальнейшем становится еще более заметным при продолжительном применении СТГ, поскольку включение механизма негативной обратной регуляции в этой ситуации приводит к снижению секреции эндогенного гормона гипофизом (Wallace et al., 2001а). Скрининг моноклональных антител, полученных при использовании различных препаратов эндогенного СТГ человека, позволил разработать два варианта иммуноанализа. В первом варианте иммобилизованные антитела связывают преимущественно 22 кДа изоформу гормона роста, а во втором — главным образом соматотропин “гипофизарного происхождения”, представленный различными но размеру изоформами (Bidlingmaier et al., 2000). Анализ образцов сыворотки с помощью обоих вариантов иммуноанализа позволяет определить относительное содержание изоформы гормона с молекулярной массой 22 кДа, но сравнению с остальными (“суммарный СТГ”) и благодаря этому выявить образцы с аномально высоким содержанием 22 кДа СТГ. Было подтверждено, что изменения в спектре изоформ гормона роста обусловлены исключительно применением рекомбинантного СТГ, в то время как при стимуляции секреции после двигательной активности наблюдается увеличение количества всех форм гормона (Wallace et al., 2001b). Помимо всего прочего, была существенно повышена чувствительность первоначального метода (Bidlingmaicr et al., 2003). Эго стало возможным благодаря получению новых моноклональных антител. Наряду с этим был разработан комплекс независимых подтверждающих тестов, также основанных на применении новых моноклональных антител, обладающих сродством к разграниченным эпитопам. Последнее является обязательным условием приемлемости иммуноанализа для проведения допинг-контроля: каждый вид анализа должен быть подтвержден другим анализом, направленным на альтернативный эпитоп интересующей насмолекулы, что позволит получить дополнительные данные, необходимые для идентификации молекулы.
Особенности метода дифференциального иммуноанализа ограничивают его применение лишь проведением тестов на допинг — он не позволяет отличить по составу естественный спектр изоформ СТГ и препараты гормона, экстрагированные из гипофиза мертвых людей. Кроме того, вследствие чрезвычайно короткого периода полураспада СТГ в системе кровообращения (около 15 мин) возможность обнаружения применения гормона роста в качестве стимулятора остается ограниченной 24—36 часами. Очевидно, что даже разработка более чувствительных методов не позволит преодолеть этого ограничения, поскольку было показано, что после распада рекомбинантного белка и прекращения негативного ответа системы обратной связи, гипофиз начинает снова секретировать обычный спектр изоформ гормона. С другой стороны, тот факт, что для достижения стимулирующего воздействия гормон необходимо принимать ежедневно, увеличивает вероятность выявления применяющего допинг спортсмена в ходе внеплановых тестов, не связанных с участием в соревнованиях.
Применение метода дифференциального иммуноанализа требует также безоговорочного обоснования правомочности используемых видов иммуноанализа. Кроме того, поскольку проводится расчет соотношения, необходимо точно определить степень воспроизводимости результатов отдельных методов и самого отношения с учетом потенциального влияния вариабельности результатов на величину рассчитываемого соотношения. Существенного снижения вариабельности результатов можно добиться, если использовать одну и ту же микротитровальную пластинку с иммобилизованными антителами для обоих анализов: одна половина пластинки покрыта моноклональными антителами для изоформы СТГ с молекулярной массой 22 кДа, а другая половина — моноклональными антителами для суммарного гормона роста человека. После добавления калибраторов, контролей и образцов к каждой половине пластинки, всю се покрывают одними и теми же детектирующими моноклональными антителами. Такой порядок проведения иммуноанализа позволяет существенно снизить вариабельность, которая обязательно будет возникать при неравномерном распределении материала образца между двумя различными пластинками (Bidlingmaicr et al., 2000).
Допинг-контроль: методы и тесты
Содержание
 [убрать] 
1 Исторические аспекты анализа низкомолекулярных веществ в допинг-контроле2 Классификация стимулирующих препаратов2.1 Запрещенные субстанции3 Методы анализа3.1 Газовая хроматография3.2 Жидкостная хроматография3.3 Детекторы4 Способы ионизации5 Масс-анализаторы6 Очистка и приготовление образцов6.1 Жидкостная экстракция6.2 Твердофазная экстракция6.3 Иммуноаффинная хроматография6.4 Метод дериватизации7 Читайте также8 ЛитератураИсторические аспекты анализа низкомолекулярных веществ в допинг-контроле
Желание искусственным путем увеличить свою силу, способности и выносливость возникло одновременно с появлением первых спортивных соревнований. Уже в сочинениях Филострата и Галена имеются упоминания о попытках атлетов на античных Олимпийских играх увеличить свою силу и выносливость с помощью отваров из грибов и семян растений, а также специальных диет, в частности, предусматривавших употребление в пищу яичек быка (Burstin, 1963; Prokop, 1970, 2002). Более того, спортсмены Древнего Рима проделывали аналогичные манипуляции с животными — они поили своих скаковых лошадей гидромелем — напитком из меда, смешанного с водой, пытаясь таким образом увеличить их силу (Morgan, 1957; Aliens, 1965). Считают, что основной причиной подобного поведения спортсменов, пытавшихся искусственным способом получить решающее преимущество в соревнованиях, были известность, слава и почет, а также денежные награды, которые стали еще более существенными факторами после возникновения профессионального спорта, конных скачек и собачьих бегов. В начале XX столетия русские и австрийские ученые разработали первые экспериментальные методы определения стимуляторов в слюне лошадей, и в 1910—1911 гг. около 220 образцов были подвергнуты анализу с целью обнаружения алкалоидов, применявшихся в качестве допинга. В период между 1938 и 1954 гт. были предложены принципиальные процедуры обнаружения таких стимуляторов, как амфетамины, однако они характеризовались ограниченной чувствительностью и результаты анализа в значительной степени зависели от посторонних активных веществ, присутствующих в биологических образцах (Richter, 1938; Keller, Ellenbogen, 1952; Axelrod, 1954). Однако уже в 1956 г. был предложен получивший широкое распространение метод, основанный на жидкостной экстракции с последующей хроматографией на бумаге и визуализацией результатов разделения (Vidic, 1956). Фатальность применения допинга стала очевидной в 1886 г., когда во время велогонки Париж —Бордо от передозировки кофеина умер велогонщик Линтон (Prokop, 2002). В последующие 70 лет были зафиксированы многочисленные смертные случаи, связанные с применением стимуляторов, в основном среди велогонщиков. Приводим несколько случаев, зарегистрированных только в Италии (Vcnerando, 1963): смерть велогонщика в результате отравления амфетамином (1949); госпитализация велогонщика с тяжелым отравлением чрезмерной дозой амфетамина (1956); велосипедист в состоянии шока, вызванного большой дозой симпатомиметиков (1958); госпитализация велосипедиста с интоксикацией амфетамином и аналептиками (1962). Формирование допинговых комиссий во Франции (1959), Австрии (1962) и Италии (1963), а затем и Медицинской подкомиссии Международного олимпийского комитета (МОК) в 1967 г., положили начало крупномасштабной борьбе против допинга. Первый официальный допинг-контроль был осуществлен во время Олимпийских игр в Гренобле (1968), где впервые для скрининга лиц, применявших стимуляторы, проведен первый анализ (Beckett et al., 1967). В последующие десятилетия список запрещенных препаратов и методов стимуляции многократно изменялся и дополнялся. Было разработано большое количество методов, предназначенных для определения веществ, применяемых в качестве допинга, продуктов их обмена и их влияния на физиологические и биохимические показатели организма.
Классификация стимулирующих препаратов
Запрещенные субстанции
Учитывая большое разнообразие запрещенных веществ, не существует списка, в котором все они были бы перечислены. Примеры для каждой группы дополнены фразой "... и аналогичные вещества", результатом чего является запрет на использование всех соединений, близких по фармакологическим или физико-химическим свойствам. Ниже представлена классификация запрещенных субстанций и методов воздействия, предложенная МОК и Всемирным антидопинговым агентством (ВАДА) (International Olympic Committee, 2003). Для некоторых лекарственных препаратов и веществ, таких, как β-блокаторы, кортикостероиды, местные анестетики, алкоголь, запрет на применение ограничивается отдельными видами спорта с учетом медицинских показаний.
Классификация запрещенных субстанций и методов воздействия, предложенная Международным олимпийским комитетом (МОК) и Всемирным антидопинговым агентством (ВАДА)
Запрещенные классы веществ
Стимуляторы
Наркотические вещества
Анаболические препараты
Диуретики
Пептидные гормоны, миметики и их аналоги
Препараты с антиэстрогенной активностью
Маскирующие препараты
Запрещенные методы воздействия
Стимуляция транспорта кислорода
Фармакологические, химические и физические манипуляции
Генный допингКлассы субстанций, запрещенных в отдельных видах спорта
Алкоголь
Каннабиноиды
Местные анестетики
Глюкокортикостероиды
β-блокаторы
СТИМУЛЯТОРЫ
Стимуляторы представляют собой, вероятно, наиболее древний вид субстанций, используемых человеком в качестве допинга. Сюда относятся такие соединения, как амфетамин, эфедрин, кофеин. Последний применяли уже мексиканские инки в XVI ст., потреблявшие листья коки, чтобы преодолеть расстояние более 1000 миль (1609 км) между Куско и Кито за 5 дней (www.g-o.de, 2003), а первое допинговое вещество, обнаруженное в образцах мочи спортсменов в XX ст., относилось к амфетаминам. Поскольку эфедрин входит в состав ряда противопростудпых препаратов, а кофеин содержится во многих холодных и горячих напитках, была установлена граница предельного содержания этих веществ в моче, что требует проведения количественной оценки их содержания в моче. Новые правила, вступившие в силу с января 2004 г., полностью сняли запрет на использование кофеина.
Одним из спорных веществ, запрещенных WADA является ноотропный препарат фенотропил.
АНАБОЛИЧЕСКИЕ ПРЕПАРАТЫ
Применение стимуляторов и наркотиков представляет интерес преимущественно во время соревнований, тогда как анаболические препараты являются эффективным средством воздействия в период проведения тренировочных занятий. Вещества, стимулирующие рост мышечной ткани и увеличение силовых показателей, были внесены в список запрещенных субстанций МОК в 1976 г., а после 1993 г. в класс анаболических препаратов были включены не только стероиды — производные тестостерона, но и β2-агонисты, поскольку они также вызывают анаболический эффект при использовании в дозах, существенно превышающих терапевтические (Reedset al., 1998; Wagner, 1989; Stallion et al., 1991; Hoher, TroidI, 1995).
ДИУРЕТИКИ
Диуретики рассматриваются в качестве допинговых препаратов на основании следующих фактов: а) спортсмены, соревнующиеся в видах спорта, где происходит разделение на весовые категории, могут снижать массу тела искусственно стимулированным диурезом, т. е. увеличением выделения мочи; б) увеличение водных потерь приводит к разбавлению мочи и снижению концентрации выделяемых веществ. Таким образом, диуретики могут маскировать применение запрещенных субстанций, для которых установлен количественный порог содержания в моче. Класс диуретиков, в частности, может служить демонстрацией физико-химической гетерогенности одной группы препаратов. На основании химической структуры, места и механизма воздействия диуретические препараты могут быть разделены, но меньшей мере, на 6 групп. Это так называемые тиазиды (например, гидрохлортиазиды), производные сульфамоилбензойной кислоты (например, фуросемид),осмотические диуретики (например, маннитол), ингибиторы карбоангидразы (например, ацетазоламид), производные феноксиуксусной кислоты (например, этакриновая кислота) и калийсберегающие диуретики (например, спиронолактон).
БЕТА-БЛОКАТОРЫ
Препараты, блокирующие β-адренорецепторы (также называемые β-блокаторы), запрещены для применения в таких видах спорта, как стрельба и прыжки на лыжах из-за их седативного эффекта. В общем структурная формула β-блокаторов включает фенольное кольцо с оксипропаноламиновой боковой цепью, которая заканчивается изопропиловым или третбутиловым остатком (как в случае иропранолола и левобунолола), либо фенилэтаноламиноиое ядро с заменами боковых атомов водорода, например на нитритный остаток (нифеналол). Современные β-блокаторы могут иметь и несколько иную структуру, как например лекарственный препарат небиволол. Начиная с 1988 г. этот класс препаратов был включен МОК в список запрещенных к применению субстанций.
В списке запрещенных субстанций, приведенном выше, есть и другие классы запрещенных веществ, таких, как пептидные гормоны, однако здесь мы будем рассматривать только низкомолекулярные химические соединения.
Методы анализа
Первые получившие широкое распространение методики скрининга и доказательств для допинг-контроля заключались в приготовлении препаратов проб с использованием жидкостной экстракции мочи, концентрации полученных экстрактов и разделении анализируемых веществ с помощью газожидкостной хроматографии (ГЖХ) и тонкослойной хроматографии (ТСХ). Для анализа продуктов, разделенных с помощью ГЖХ, использовали плазменно-ионизационный детектор (ПИД), который позволял обнаружить присутствие стимуляторов из группы амфетамина по сигналу с временем удержания, сопоставимым со стандартными образцами аналогичных препаратов. Тонкослойную хроматографию применяли для идентификации стрихнина и таких стимуляторов с гидроксилированным кольцом, как β-гидроксиамфетамин и фенилэфрин (Beckett et al., 1967). В случае позитивных результатов теста дополнительную информацию об анализируемых веществах получали с помощью дериватизации, микроинфракрасной спектроскопии, а также масс-спектрометрии (МС). Совершенствование аналитических методов и появление различных технических новшеств привело к разработке сложных процедур приготовления образцов и появлению разнообразных видов анализа, и наконец, к созданию и выпуску в продажу специального оборудования, что в целом позволяет проводить обширный анализ образцов мочи элитных спортсменов с целью допинг-контроля. В зависимости от свойств анализируемых веществ применяются различные аналитические инструменты. Принципы работы некоторых из них рассмотрим ниже.
В целом предварительное хроматографическое разделение экстрактов, полученных из биологических материалов, таких, как кровь, моча или волосы является в большей или меньшей степени обязательным условием для последующего аналитического анализа. Это позволяет получить более подробную информацию об анализируемых образцах; например, разница во времени удержания позволяет разделить стереоизомеры, кроме того, так можно отделить вещества, представленные в образце в небольших концентрациях, от тех которые составляют его значительную часть. Современные хроматографические системы основаны на применении капиллярной газовой хроматографии или высокоэффективной жидкостной хроматографии, оба эти метода чрезвычайно сложны и развились в отдельные разделы аналитической химии.
Газовая хроматография
Сегодня капиллярные колонки представляют собой наиболее распространенное средство для проведения газовой хроматографии (ГХ) с целью допинг-контроля. Их высокая эффективность с точки зрения качества разделения, износоустойчивость и необыкновенное разнообразие неподвижных фаз обеспечивает широкий выбор для создания различных методик и возможности для решения таких задач, как проведение полного анализа или скрининг специфических веществ. Колонка состоит из трех основных элементов: (а) внешнего защитного покрытия; (б) слоя сорбента из плавленого кварца и (в) неподвижной фазы.
Кварцевое покрытие. Сорбирующий слой изготовлен из синтетического кварцеподобного стекла высокой степени чистоты с низким содержанием примесей оксидов металлов. Такое покрытие благодаря наличию групп силанола имеет чрезвычайно активную поверхность, которая может реагировать с полярными группами анализируемых веществ, такими, как гидроксильные, карбоксильные и тиольные остатки, а также первичными и вторичными аминами, что приводит к появлению "хвостов" у пиков разделяемых веществ и снижению интенсивности пиков. Поэтому при подготовке колонки производится деактивация силанольных групп с помощью подходящей химической обработки, например путем триметилсилилирования. Полученное таким образом покрытие хорошо подходит для нанесения неподвижной фазы.
Неподвижная фаза. Неподвижная фаза в газовой хроматографии играет основную роль, поскольку именно она определяет время удержания, качество разделения и форму пиков анализируемых веществ. Эта особая часть капиллярной колонки состоит либо из полисилоксанов/силиконов, полиэтиленгликолей (ПЭГ) либо из пористого слоя сорбента. Чаще всего в качестве неподвижной фазы используют замещенные полисилоксаны, которые обладают высокой стойкостью и сроком службы. Общая химическая структура неподвижных фаз изображена на основе полисилоксанов, которые представляют собой цепочку из чередующихся кислорода и кремния с боковыми замещающими группами, присоединяющимися по две к каждому атому кремния. Структура и количество замещающих групп являются характеристикой каждой неподвижной фазы. Используют преимущественно четыре замещающие группы в разном соотношении: а) метальные; б) фенильные; в) цианопропильные, г) трифторпропильиыс остатки. Выбор замещающих групп и их относительная представленность в неподвижной фазе определяют полярность ГХ колонки. Еще одним материалом, применяемым для формирования неподвижной фазы в ГХ-колонках, является ПЭГ, основной характеристикой которого является молекулярный вес или длина цепей полимера. Существенное отличие этого материала от полисилоксана заключается в возможности создания неподвижных фаз с определенным значением pH, т. е. кислотных или щелочных колонок, которые демонстрируют лучшие показатели при разделении кислотных или щелочных соединений соответственно. Основным недостатком является высокая чувствительность к кислороду, особенно при повышенных температурах, которая приводит к разрушению неподвижной фазы и сокращает срок службы колонки. Неподвижные фазы для адсорбционной хроматографии состоят из мельчайших частичек пористых материалов (например, полимеров, оксида алюминия, молекулярных сит), которые присоединяют к кварцевому покрытию капилляра с помощью химических линкеров. Благодаря высокой адсорбирующей способности в отношении газообразных веществ такие неподвижные фазы используют преимущественно для хроматографии наиболее летучих компонентов или газов, которые обычно плохо связываются с неподвижными фазами на основе полисилоксанов или ПЭГов, поэтому температуры разделения здесь не превышают 35 ’С. В случае применения так называемых капиллярных ГХ колонок PLOT (porous layer open tubular) твердофазная абсорбция газов является основным механизмом разделения, обеспечивающим эффективное удержание летучих веществ. В то же время сильная адсорбция анализируемого вещества на неподвижной фазе не позволяет использовать такие колонки для деления менее летучих веществ.
Внешняя оболочка. Поскольку капилляры из сплавленного кварца очень хрупкие, для них требуется защитное внешнее покрытие. Для этой цели обычно используют полиимид, который обладает двумя достоинствами: во-первых, колонки с полиимидной оболочкой достаточно прочные и не требуют деликатного обращения, во-вторых, полиимид покрывает и заполняет все трещины в капиллярах из сплавленного кварца, предотвращая увеличение дефектов.
После рассмотрения устройства капиллярной колонки для газовой хроматографии следует отметить еще два параметра, оказывающих заметное влияние на качество хроматографического разделения: размеры колонки, т. е. длина, диаметр и толщина пленки неподвижной фазы, а также газы-носители.
Тогда как длина и диаметр колонки влияют в основном на разрешение пиков, толщина пленки неподвижной фазы определяет емкость колонки и удержание анализируемых веществ. Длина колонки прямо пропорциональна количеству теоретических тарелок, а поскольку разрешение пропорционально корню квадратному количества теоретических тарелок, разрешение также будет пропорционально корню квадратному длины колонки. Иными словами, удвоение длины колонки (а значит, и количества теоретических тарелок) будет приводить к улучшению разрешения не на 100 %, а только на 25—35 %; уменьшение длины колонки на 50 % приведет к ухудшению разделения примерно на 15 — 25 %. Кроме того, количество теоретических тарелок обратно пропорционально диаметру колонки, следовательно, уменьшение диаметра колонки будет увеличивать эффективность газовой хроматографии, т. е., поскольку разрешение пропорционально квадратному корню из количества теоретических тарелок, уменьшение диаметра колонки в два раза также позволит улучшить разделение на 25—35 %, как, например, при замене колонки с внутренним диаметром 0,2 мм2 на колонку с диаметром 0,11 мм2. Емкость колонки непосредственно определяется толщиной пленки неподвижной фазы. Если толщина слоя неподвижной фазы 0,1—0,2 мкм подходит для анализа 20—50 нг вещества, то для анализа количеств больше 125 нг необходима колонка с толщиной неподвижной фазы 0,5 мкм, поэтому толщина пленки должна быть подобрана в соответствии с предполагаемым количеством анализируемых веществ, наносимых на ГХ колонку.
Кроме того, на параметры хроматографического разделения влияет также используемый в качестве носителя газ, эта зависимость описывается кривой Ван Деемтера. В качестве газов-носителей часто используют гелий и водород, причем последний обеспечивает превосходную оптимальную линейную скорость, в результате чего значительно улучшается качество разделения. Явный недостаток водорода щ его высокая воспламеняемость.
Жидкостная хроматография
По сравнению с газовой, принадлежности для жидкостной хроматографии отличаются значительным разнообразием размеров, наполнителей и, поскольку разделение происходит при переносе в жидком носителе, большим набором органических растворителей и буферов. Помимо того, в жидкостной хроматографии (ЖХ) в зависимости от свойств анализируемых веществ могут применяться несколько различных механизмов разделения (нормально-фазовая, обращенно-фазовая, ионообменная и ситовая). В этом кратком обзоре мы коснемся только обращенно-фазовой хроматографии (ОФХ ), которая чаще всего используется при проведении анализов с целью допинг-контроля.
Картриджи. Для использования в ЖХ предлагаются картриджи-колонки различного диаметра. После усовершенствования материалов-наполните-лей (т.е. неподвижной фазы, см. ниже) в лабораториях допинг-контроля для анализа низкомолекулярных соединений чаще всего используют колонки длиной 30—120 мм с внутренним диаметром 1,0— 4,6 мм, тогда как в прежние времена для высокоэффективной жидкостной хроматографии (ВЭЖХ) применялись гораздо более объемные и длинные колонки. Уменьшение длины колонок стало возможным после появления обладающих высокой специфичностью высокоизбирательных масс-анализаторов, которые позволяют осуществлять разделение веществ на основании их масс-спегара, благодаря чему потребность в оптимальном хроматографическом разделении анализируемых веществ стала не столь актуальной. Кроме того, была существенно повышена производительность колонок для ЖХ, и это значительно сократило время, необходимое для разделения пиков.
Неподвижная фаза. Как отмечалось выше, определяющим фактором в хроматографии являются параметры неподвижной фазы и жидкостная хроматография в этом не исключение. Здесь необходимо учитывать различные характеристики, в частности размер частиц (3—50 мкм), особенности носителя (частицы силикагеля сферической или неправильной формы), наличие химически связанной фазы (например, С4, С8, С18) и размер пор (50—4000 А).
Для оценки характеристики эффективности хроматографической колонки часто используют пара-метр "количество тарелок п" или "высоту тарелки h". Уравнение Ван Деемтера в его простейшем виде описывает обратную взаимосвязь размера частиц и высоты тарелки; это означает, что уменьшение размера частиц ведет к улучшению эффективности хроматографии, а именно разрешения (Yamashita, Fenn, 1984а; Engelhardt et al., 1985). Поэтому существует тенденция к уменьшению размера частиц наряду с использованием очень коротких колонок в высокоскоростной хроматографии для обеспечения требуемого разрешения пиков.
Чаще всего в качестве материала для приготовления неподвижной фазы обратно фазовой хроматографии используется силикагель. Представленные в продаже виды силикагеля отличаются по своим физическим характеристикам, таким, как площадь специфической поверхности, средний диаметр пор, специфический объем пор и форма. Предполагая, что частицы имеют открытые поры цилиндрической формы, можно выразить взаимосвязь между первыми упомянутыми переменными следующим уравнением:
0 = 103 х 4 Vр /Оsp ,
где 0 — средний диаметр пор, нм; Vp — специфический объем пор, млт"1; Оsp — специфическая площадь поверхности, м2т~' (Scott, 1982). При средней площади поверхности, равной около 300 м2т~', и диаметре пор 10 им специфический объем пор будет составлять примерно 1 млт"1. В настоящее время как носитель для создания неподвижной фазы в обращенно-фазовой ЖХ в большинстве случаев используют сферические частицы силикагеля, поскольку с помощью его можно достичь более высокой плотности упаковки по сравнению с частицами неправильной формы, полученными при полимеризации кремниевой кислоты. На поверхности такие частицы несут гидроксильные группы (силанольные остатки), которые могут быть использованы для создания химически привитой фазы; она и будет определять свойства колонки для ВЭЖХ. В продаже представлен широкий выбор разнообразных фаз, позволяющий решать самые различные задачи хроматографического разделения, например, часто используют фазы с привитыми феи ильными С18-, С8- и С4-группами, либо более полярные материалы, такие, как фазы с привитыми циано-, амино- и диольными группами. Более того, созданы еше более сложные системы, позволяющие разделять молекулы-стерсоизомеры одного соединения. Самых последних результатов в области высокопроизводительного хроматографического анализа удалось добиться благодаря созданию так называемой монолитной колонны, представляющей собой единый кусок органического полимера или диоксида кремния со сквозными порами в нем, полученный прямой полимеризацией соответствующих мономеров. Такой материал отличается более высокой стабильностью и, что важно, более высокой производительностью по сравнению с обычными колонками, заполненными отдельными частицами.
Подвижная фаза. В случае ОФГ неподвижная фаза является неполярным, а подвижная — полярным компонентом. Обычно в ОФГ применяют буферные системы, состоящие, например, из KH2PO4/H3PO4 или NaH2РО4 в сочетании с такими органическими растворителями, как метанол или ацетонитрил, которые хорошо подходят для анализа с помощью ультрафиолетовых (УФ) детекторов. В то же время применение ВЭЖХ в сочетании с МС предъявляет более серьезные требования к характеристикам элюэнтов, поскольку в отношении ЖХ существуют ограничения на допустимый диапазон pH, выбор растворителя, содержание добавок в растворителе и скорость подачи элюзита, направленные на достижение оптимальных результатов масс-спектрометрии (Wheeler, 1955). Обычно в случае ионизации при атмосферном давлении (например, злектрораспылением) требуется добавление легколетучих растворителем для предотвращения примесей ионов анализируемого вещества, поэтому часто применяемые фосфатные, боратные или сульфатные добавки здесь не подходят, вместо них используют ацетат аммония, формиат аммония или тетраэтиламмониумгидроксид. Более того, при использовании ионизации электрораспыленном не допускаются ингредиенты, которые дают сильные ионные пары, в результате чего после десорбции происходит нейтрализация ионов. Первостепенное значение имеет поддержание pH, особенно в случае ионизации электрораспылепием, поскольку этот параметр усиливает ионизацию анализируемого вещества. Анализ соединений, имеющих щелочную природу, следует производить при кислом pH, применяя такие добавки, как уксусная или муравьиная кислота в концентрации 0,1 —1,0 X. в то время как соединения с кислотными свойствами (например, карбоновые кислоты) легче ионизируются в щелочной среде, которую можно создать, например, добавлением гидроксида аммония. В числе часто используемых органических растворителей те же, что применяются и при обычной ВЭЖХ без МС. т. с. метанол, этанол и ацетонитрил.
Детекторы
Детекция и идентификация разделенных хроматографией веществ в допинг-контроле имеет чрезвычайно важное значение. К настоящему времени разработано множество различных систем детекции, в частности пламенно-ионизационный детектор (ПИД), азотно-фосфорный детектор (АФД), УФ фотометрический детектор, а также масс-спектрометрические детекторы, такие, как квадрупольные, времяпролетные, ионные ловушки, масс-анализаторы ионно-циклотронного резонанса с Фурье-преобразо-ванием, тройные квадрупольныс детекторы, магнитные секторные анализаторы. Кроме того, в продаже имеются приборы, включающие два и более различных типов детектирующих устройств, а также разработаны различные прикладные системы для определения применения запрещенных веществ, которые базируются на использовании специальных методик приготовления образцов в сочетании с хроматографией и детектором, обладающих хорошей чувствительностью и избирательностью.
ПЛАМЕННО-ИОНИЗАЦИОННЫЙ ДЕТЕКТОР
Пламенно-ионизационные детекторы применяются в сочетании с газоном хроматографией уже достаточно давно и являются, пожалуй, одними из наиболее универсальных. Выходящий из хроматографической колонки газ смешивается с воздухом, насыщенным водородом, и воспламеняется с помощью электроподжига. При сгорании водорода в воздухе образуется незначительное количество ионов, однако при пиролизе в пламени водорода большинство органических соединений дает значительное количество ионов и электронов и это приводит к увеличению проводимости. На так называемый коллектор или собирающий электрод подается напряжение, под действием которого возникает электрический ток, величина которого пропорциональна количеству образца, сгоревшего после выхода из хроматографической колонки. Ток регистрируется с помощью амперметра, преобразуется в цифровой сигнал и отображается в виде пика на хроматограмме.
АЗОТНО-ФОСФОРНЫЙ ДЕТЕКТОР
Азотно-фосфорный детектор (АФД) представляет собой разновидность ПИД. Основное различие заключается в том, что непосредственно нал форсункой горелки располагается стеклянный или керамический элемент. Низкое соотношение водород/воздух не позволяет поддерживать пламя, что приводит к снижению ионизации углеводов. Однако щелочные ионы па поверхности керамического элемента способствуют ионизации соединений, содержащих фосфор или азот, облегчая их детекцию па фоне остальных веществ, имеющих преимущественно углеводную природу.
ДЕТЕКТОР ПОГЛОЩЕНИЯ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ
Тогда как ПИД и АФД могут применять только в сочетании с ГХ, детектор УФ-поглощения, начиная с конца 1960-х гг., является одним из наиболее распространенных анализаторов для ВЭЖХ. Принцип его работы основан на обычной спектрометрии и законе Бера—Ламберта:
Log I0/I = ecd,
где I0 — интенсивность падающего света; I — интенсивность прошедшего света; е — коэффициент экстинкции (поглощения); с — концентрация поглощающего анализируемого вещества; d — толщина слоя поглощающего вещества. На практике элюируемые вещества после ВЭЖХ колонки проходят через ячейку определенной длины, источник света испускает УФ-излучение (например, дейтериевая лампа, 190 — 600 нм) постоянной интенсивности, которое через монохроматор попадает на ячейку, интенсивность пропущенного света определенной длины волны определяется с помощью фотодиодов.
Описанные детекторы позволяют распознавать вещества, разделенные хроматографией — ГХ или ВЭЖХ. Основным недостатком этих детекторов является их низкая специфичность и, соответственно, недостаток подробной информации об анализируемых веществах. Это стало причиной того, что аналитические приборы с масс-спектрометрическими детекторами становятся основным средством при проведении анализов с целью допинг-контроля, которое применяется в сочетании с ГХ и ВЭЖХ и дополняет возможности "традиционной" инструментальной базы на основе ПИД, АФД и УФ-детекторов. Для определения веществ с помощью МС необходимо перевести анализируемое вещество в ионную форму. Этого можно добиться рядом технических приемов, выбор которых происходит с учетом особенностей используемой хроматографической системы. В настоящее время в ГХ-системах, оснащенных масс-спектрометрическим анализатором, используют ионизацию электронным ударом или химическую ионизацию, тогда как в ВЭЖХ-установках применяется ионизация электрораспылепием, химическая ионизация при атмосферном давлении, а также фотоионизация при атмосферном давлении. Далее вкратце рассмотрим принципы ионизации электронным ударом и электрораспылением, а также квадрунольный анализатор и ионную ловушку — инструменты, которые чаще всего используют в лабораториях допинг-контроля.
Способы ионизации
ИОНИЗАЦИЯ ЭЛЕКТРОННЫМ УДАРОМ
Ионизация электронным ударом (EI) широко используется для создания позитивно заряженных ионов анализируемых веществ после разделения на ГХ-колонке. Электроны испускаются с катода (нагретая вольфрамовая или рениевая нить) и, ускоряясь под действием электрического поля, устремляются к аноду. Пучок разогнанных до определенной энергии электронов пересекает под прямым углом поток газа с элюируемыми веществами, поступающий из ГХ. При столкновении электронов, обладающих энергией 70 эВ (напряжение между катодом и анодом устанавливается равным 70 В), с молекулами анализируемого вещества, которое является источником ионов, могут происходить разнообразные процессы ионизации, например:
(1) АВ + е- > АВ+ + 2е-;
(2) АВ + е- > АВ2+ + Зе-;
(3) АВ + е- > АВ-.
В случае позитивной ионизации наиболее важным механизмом является образование позитивно заряженной молекулы (АВ+) при потере электрона, выбитого ускоренным электроном из электронного потока между катодом и анодом (1). Кроме того, анализируемая молекула АВ может потерять два электрона, что приведет к образованию заряженной молекулы АВ2+ (2). Молекула АВ может также захватить свободный электрон и приобрести отрицательный заряд АВ' (3). Помимо описанных выше вариантов воздействия электронного удара на вещество, выходящее с ГХ-колонки, следует принимать во внимание и другие последствия этого способа ионизации. Основным результатом электронного удара является образование высокоэнергетических катион- радикалов, распадающихся на ионы. В результате детекции этих ионов масс-селективным анализатором формируется характерный масс-спектр соответствующего вещества. В зависимости от происходящих перемещений и потерь электронов продуктами ионизации могут быть как радикалы, так и ионы с парным числом электронов.
ИОНИЗАЦИЯ ЭЛЕКТРОРАСПЫЛЕНИЕМ (ИЭР)
За разработку способа мягкой ионизации методом электрораспыления в 2002 г. присуждена Нобелевская премия по химии. Джон Фенн был награжден за фундаментальные исследования процессов ионизации макромолекул, которые были опубликованы еще в 1984 г. Ямашита и Фснном (Yamashita, Fenn, 1984b; Voyksner, 1997). Суть метода заключается в том, что жидкости, содержащие протонированные и депротонированные молекулы, распыляются через капиллярный наконечник при высоком напряжении (1 кВ и выше). При этом формируются заряженные капли, которые уменьшаются в объеме за счет испарения растворителя и последующего дробления, в результате образуются мельчайшие капли, обладающие очень высоким зарядом. В результате из этих мельчайших капель образуются газообразные ионы — этот процесс описывают две различные теории: модель заряженного остатка (Dole et al., 1968) и испарение ионов (Iribame, Thomson, 1976). Схематическое изображение основных процессов, происходящих при ионизации электрораспылением. Сначала распространение электрического ноля по жидкости внутри капилляра приводит к формированию положительного заряда иа поверхности жидкости, в результате чего происходит искажение мениска, формирование конусообразного выступа и распыление капель, обладающих значительным положительным зарядом. При испарении растворителя размер капель уменьшается, тогда как их заряд остается неизменным. Затем под действием нарастающего электростатического отталкивания происходит дальнейшее дробление капель, которое продолжается, пока они не достигнут Релеевского предела устойчивости. Это явление происходит одновременно с дальнейшим испарением растворителя, благодаря чему формируются частицы очень малого размера, обладающие высоким зарядом. В результате, как предполагается (Dole et al., 1968), образуются частицы, имеющие лишь один ион, а испарение растворителя приводит к возникновению газообразного иона (модель заряженного остатка). Альтернативная гипотеза постулирует, что эмиссия ионов происходит непосредственно с поверхности частиц вещества размером менее 10 нм, что также приводит к формированию газообразных ионов (испарение ионов) (Kcbarle, Но, 1997).
Масс-анализаторы
Ионы анализируемого вещества, полученные одним из способов ионизации, далее подвергаются анализу с помощью масс-селективных детекторов, например квадрупольного или ионной ловушки. Для работы обоих этих детекторов необходим глубокий вакуум, их можно использовать в сочетании как с ГХ (и ионизации вещества электронным ударом), так и с ВЭЖХ (например, с ионизацией электрораспылением) системами разделения. Поскольку ионизация электронным ударом происходит в вакууме, для подключения масс-анализатора не требуется никаких специальных приспособлений для выравнивания давлений, однако ионизация электрораспылением осуществляется при атмосферном давлении, поэтому современные системы ГХ-ИЭР-МС оборудованы сложными системами, обеспечивающими поддержание в масс-анализаторе необходимого давления.
КВАДРУПОЛЬНЫЙ АНАЛИЗАТОР
Квадрупольный масс-спектрометр состоит из четырех стержней, которые могут быть изготовлены из различных материалов, например из плавленого кварца, покрытого слоем золота. Противоположные стержни соединены между собой, а расположенные рядом — изолированы друг от друга. Сначала ионы, образовавшиеся в источнике ионов, направляются с ускорением в центр квадруполя. Под действием переменного электрического поля, приложенного к стержням, по направлению к центральной линии квадруполя формируются позитивные или негативные поля, таким образом позитивные ионы, пролетающие вдоль стержней квадруполя, отталкиваются позитивными и притягиваются негативной поляризацией. Степень отклонения прямо пропорциональна приложенному напряжению, его частоте (т. е. продолжительность воздействия переменного поля) и массе ионов. Кроме того, к парам стержней прикладывается постоянное напряжение. В результате ионы с различным соотношением массы и заряда могут перемещаться в двухмерном поле квадруполя, если прикладываемые поочередно постоянное и переменное поля чередуются с частотой, которая обеспечивает устойчивое колебательное движение. Эти параметры можно изменять с целью оптимизации масс-селекции, благодаря чему становится возможным пропускать отдельные ионы или записывать полный спектр, выполняя в течение заданного времени поочередное сканирование в различных диапазонах соотношения масса/заряд (Budzikiewicz, 1998; Lottspeich, Zorbas, 1998).
Ионы, изолированные с помощью квадруполя, могут подвергаться дальнейшим исследованиям, как это происходит в масс-спектрометрах с тройным квадруполом. В таком масс-спектрометре имеются три соединенных между собой квадруполя, первый из которых используется для того, чтобы из пучка ионов, попадающего в масс-спектрометр, отобрать ионы с определенными характеристиками (масса/заряд). Во втором квадруполе, так называемой камере столкновений, отобранные ионы соударяются с молекулами газа (аргон или азот) и подвергаются дальнейшему распаду, степень которого зависит от приложенного ускоряющего напряжения и давления газа в камере для столкновений. Образовавшиеся в результате столкновения ионы измеряются в третьем квадруполе либо путем сканирования полного спектра либо измерения отдельных ионов, что позволяет получить информацию о процессах фрагментации, а также о структуре анализируемого вещества.
КВАДРУПОЛЬНАЯ ИОННАЯ ЛОВУШКА
В качестве альтернативы масс-спектрометрам с квадрупольным анализатором часто используют анализаторы с квадрупольной ионной ловушкой. Еще в 1953 г. Вольфганг Пол с соавторами описал возможность использования трехмерного квадруполя в качестве "ионной ловушки", а в последнее десятилетие на основе этого предположения были созданы сложные масс-спектрометры с ионными ловушками (Louris et al., 1987, 1989; Patterson et al., 2002). Ha рис. 5.10 представлена схема устройства ионной ловушки, которая состоит из двух чашеобразных электродов (один со входом для ионов, а другой с отверстием для их выхода) и кольцевого электрода. Определенное сочетание радиочастотных и постоянных напряжений, прикладываемых к электродам ионной ловушки, позволяет удерживать ионы внутри нее. Ионы, которые формируются во внешнем источнике ионов (например, с использованием ионизации электронным ударом или ялектрораспылением), попадают в ионную ловушку, содержащую газ (гелий или аргон) под давлением равным около 1 мторр. Чаще используют гелий, который замедляет ионы, отклоняя их траекторию к центру ловушки. Кроме того, наличие газа позволяет снизить кинетическую энергию ионов при их столкновениях с молекулами газа, что также способствует захвату ионов ловушкой. Удержание ионов в широком диапазоне значений отношения масса/заряд определяется переменным напряжением, которое подается на кольцевой электрод. Поэтому последовательный выброс ионов, предоставляющий возможность их масс-избиратель-ной детекции, обеспечивается так называемым состоянием неустойчивости, которое создается путем постепенного увеличения переменного напряжения на кольцевом электроде в сочетании с приложением переменного напряжения к чашеобразным электродам на концах ионной ловушки, что приводит к возникновению резонансного движения. Ионы с определенным соотношением масса/заряд выходят на нестабильные траектории и выбрасываются через отверстия на чашеобразном электроде (выход ионов) и детектируются с помощью электронного умножителя.
Помимо эффективного режима сканирования, спектрометры с ионными ловушками предоставляют широкие возможности для МСп экспериментов. Избирательное удаление ионов из ловушки, накопление определенного типа ионов-предшественников с последующей их резонансной активацией позволяет добиться диссоциации, индуцированной столкновениями (collision activated dissociation, CAD). В результате образуется спектр ионных продуктов, предоставляющий объем информации, сопоставимый с тем, который дают эксперименты с использованием тройного квадруполя. Вместе с тем ионная ловушка обладает важным преимуществом, поскольку позволяет отбирать, накапливать и расщеплять иоиы, получаемые в МС/МС-экспериментах, а именно МС3, предоставляя информацию о возможных способах фрагментации и составе образующихся при диссоциации ионах, что представляет значительный интерес, особенно в случае масс-спектрометрии в сочетании с ионизацией электрораспылеиием.
Очистка и приготовление образцов
Согласно установленным правилам, для анализа на запрещенные субстанции при допинг-контроле спортсмены сдают главным образом мочу. Кроме того, в определенных случаях для идентификации конкретных препаратов могут быть получены образцы крови, плазмы/сыворотки и волос. Приготовление образцов является чрезвычайно важным элементом допинг-контроля, поскольку в значительной мере обеспечивает достижение максимально возможной определенности результатов и необходимой чувствительности при проведении анализов. К настоящему времени разработаны разнообразные приемы очистки образцов от солей и других примесей, в частности выделения целевого анализируемого вещества.
Жидкостная экстракция
Чаще всего и, вероятно, дольше всего используется метод приготовления образцов жидкостной экстракции. В одной из первых работ, посвященных идентификации бензедрина (рацемическая смесь амфетаминсульфата) и его метаболитов в моче человека, жидкостная экстракция применялась для определения скорости экскреции (Richter, 1938). В частности, пробы мочи подвергали гидролизу 2 н. гидроксидом натрия и экстрагировали петролейиым эфиром. В последующие десятилетия были описаны многочисленные методики очистки веществ, содержащихся в биологических жидкостях, с применением жидкостной экстракции. В основу всех этих методик был положен один и тот же принцип: изменение pH до необходимого значения и экстракция кислых, нейтральных или щелочных компонентов (Keller, Ellenbogen, 1952; Axelrod, 1954; Beckett, Rowland; 1965; Beckett, Wilkinson, 1965; Kolb, Patt, 1965; Cartoni, Cavalli, 1968). Знание величины pi анализируемых веществ предоставляет возможность многократной экстракции проб и/или повторной экстракции их компонентов при различных pH различными растворителями. Стремление к созданию более детальных, специфических и чувствительных методов анализа сопровождалось совершенствованием и развитием процедур жидкостной экстракции, направленным на снижение количества коэкстрагируемых примесей, создающих помехи при анализе. Разработанные принципы и сегодня используются в методах скрининга и подтверждения при проведении анализов с целью допинг-контроля (Donike et al., 1970; Spyrdaki et al., 2001; Van Eenoo et al., 2001; Thevis et al., 2003b), например, стимуляторы, такие, как амфетамины, эфедрины и их производные, обычно экстрагируют из проб мочи эфирами в щелочных условиях, вещества, экстрагированные органической фазой, концентрируются и подвергаются дальнейшему анализу ГХ-МС и/или ГХ-АФД. Помимо того, жидкостная экстракция применяется для анализа кортикостероидов (Fluri et al., 2001), диуретиков, веществ, блокирующих активность р-рецепторов и анаболических стероидов при различных условиях (т. е. в присутствии минеральных солей, органических растворителей и при разных значениях pH) (Geyer et al., 1997; Thevis et al., 2001; Deventer et al., 2002).
Очень мощным средством оказалась так называемая рсэкстракция или повторная экстракция, которая применялась уже в 1952 г. (Keller, Ellenbogen, 1952). Этот метод применяется для повышения чистоты образцов, которые предстоит подвергнуть анализу. В частности, экстракция анализируемых веществ в щелочных условиях в органический растворитель с последующим перемещением интересующих исследователя веществ из органической в закисленную водную фазу (0,06 н., НС1) доказала свою пригодность для подтверждающих тестов, например для Р2-агониста кленбутерола, благодаря крайне эффективному снижению количества разнообразных биологических примесей (Sigmund et al., 1998).
Твердофазная экстракция
Для ряда веществ используется альтернативный способ очистки и концентрации анализируемых веществ, содержа1цихся в биологических пробах, а именно твердофазная экстракция (ТФЭ ). Применение различных адсорбирующих материалов, в частности полистирола, С18 или ионообменных смол, позволило создать некоторые методики скрининга и получения доказательств, используемых при проведении допинг-контроля. В 1968 г. Брсдлоу продемонстрировал возможность экстракции стероидных коньюгатов нейтральными полимерными смолами (Bradlow, 1968). Дальнейшее совершенствование использованных им материалов и приемов позволило создать методику, пригодную для использования для проведения допинг-контроля, например па применение анаболических стероидов (Donike et al., 1984) и диуретиков (Thieme et al., 2001). Основным достоинством ТФЭ является возможность полной автоматизации процедуры экстракции образцов, включая подготовку картриджей, загрузку проб, промывку и последующую элюцию. Кроме того, в ходе ТФЭ можно производить дериватизацию анализируемых веществ (Lisi et al., 1991).
Иммуноаффинная хроматография
Иммуноаффинную хроматографию (ИАХ ) в качестве средства выделения анализируемых веществ из биологических проб стали применять относительно недавно. Суть метода заключается в том, что моно-или поликлональные антитела, способные образовывать нековалентную связь с различными частями анализируемых молекул, пришивают к носителю, например к сферическим частицам агарозы. Гелем, приготовленным из таких частиц, заполняют колонку с пористым фильтром на одном конце и пропускают через нее пробы мочи или плазмы. При пропускании через колонку искомых анализируемых веществ антитела, связанные с носителем, узнают их и связывают, формируя нековалентные комплексы, тогда как остальные молекулы, не способные взаимодействовать с антителами, элюируются с растворителем. Изменение условий элюирования позволяет разрушить комплекс вещество—антитело, не разрушая при этом самих молекул, и получить анализируемое вещество в очищенном виде, практически без посторонних примесей, для проведения дальнейшего анализа, например с помощью ГХ-МС. Химические реакции, лежащие в основе приготовления адсорбента для наполнения колонки, и основные процессы, положенные в основу метода иммуиоаффинной хроматографии, представлены на схеме 5.5. Чаще всего в качестве носителя используют частицы агарозы, которые предлагаются для продажи рядом фирм. Для того чтобы к этим частицам можно было пришить химическим путем пептиды или белки, поверхность этих частиц активируют. Наиболее часто применяют метод активации цианогенбромидом (CNBr), предложенный в 1967 г. Аксеном (Axen et al., 1967). В щелочных условиях CNBr реагирует с гидроксильными группами на поверхности частиц агарозы с образованием циановых эфиров и имидокарбонатов, которые, в свою очередь, вступают в химическую реакцию с антителами (Hermanson et al., 1992). Частицы агарозы с присоединенными к ним антителами, помещенные в колонку, узнают и избирательно связывают только специфические вещества или классы веществ, присутствующие в биологических образцах. Использование подходящих элюентов, например смеси воды и органических растворителей, позволяет освободить связанное с антителами вещество, сконцентрировать его и анализировать при помощи стандартных методов, в частности МС (Schanzer et al., 1996; Machnik et al., 1999). Снижение количества посторонних примесей приводит к улучшению соотношения сигнал/шум и снижению порога детекции методами ГХ-МС и ЖХ-МС/МС.
Метод дериватизации
ГХ-МС является основным инструментом скрининга и получения доказательств в лаборатории допинг-контроля. Такие системы обладают высокой специфичностью и чувствительностью к многочисленным веществам, занесенным в список запрещенных субстанций МОК и ВАДА. Однако для проведения анализа с помощью ГХ-МС вещества должны быть переведены в газообразную форму. Поскольку это требование для многих анализируемых веществ, например Р2-агонистов, различных диуретиков и блока-торов p-рецепторов, выполнить достаточно сложно, путем реакций с различными реагентами получают их более легколетучие производные. Превращениям подвергают в первую очередь гидроксильные группы и вторичные аминогруппы, поскольку именно их способность к гидрофильным взаимодействиям является одной из причин сниженной летучести. Одной из первых осуществлявшихся модификаций анализируемого вещества было ацетилирование с помощью уксусного ангидрида. Образовавшиеся молекулы необходимо было очищать от остатков уксусной кислоты и уксусного ангидрида, что обычно выполняли с помощью жидкостной экстракции. Поскольку этот способ получения производных для ГХ-МС анализа достаточно сложный и трудоемкий, были разработаны несколько дериватизационных агентов, в состав которых, как правило, входят остатки триметилсилила (ТМС). Приводим некоторые из таких агентов: гексаметилдисилазан (ГМДС), триметилсилилимидазол (ТМСИми) и N-метил-N-триметилсилилтрифторацетамид (МСТФА) (Donike, 1969). Последний является наиболее часто применяемым для дериватизации веществом, в частности в сочетании с иодидом аммония и этаптиолом, который in situ приводит к образованию триметилйодсилана (ТМИС), высокореактивного триметилсилилирующего реагента (Donike, 1973; Donike, Zinunermann, 1980). В присутствии ТМСИ происходит модификация гидроксильных и аминогрупп, а кетоновые остатки превращаются в енол-ТМС эфиры. Несколько других мощных реагентов применялись для введения в анализируемые молекулы трифторацетил (ТФА)-или гептафторбутил (ГФБ)-остатков, а именно N,N-бистрифторацетамид, N-метил-N-бистрифтораце-тамид (МБТФА) (Donike, Derenbach, 1976) или N-метил-N-бисгептафторбутиламид (МБГФБ) соответственно. Трифторацетилирование приводит к формированию более стабильных производных аминогрупп по сравнению с триметилсилилированием, поэтому возможна также избирательная модификация анализируемых веществ ТМС- и ТФА-группами, что делает возможным хроматографическое разделение стереоизомеров таких стимуляторов, как эфедрины (Opfermann, Schanzer, 1996; Thevis et al., 2003b).
Литература
Aguilera, Rv Catlin, D.H., Becchi, M. et al. (1999) Screening urine for exogenous testosterone by isotope ratio mass spectrometric analysis of one pregnanediol and two androstanediols. Journal of Chromatography В 727, 95-105.
Aliens, E.J. (1965) General and pharmacological aspects of doping. In: Doping (de Schaepdryver, A. & Hebbelink, М., eds.). Pergamon Press, Oxford: 27-50.
Axelrod, J. (1954) Studies on sympathomimetic amines. II. The bio-transformation and physiological disposition of d-amphetamine, </-p-hydroxyamphetamine and dmethamphetamine. Journal of Pharmacology and Experimental Therapeutics 110, 315-326.
Axen, R., Porath, J. & Emback, S. (1967) Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature 24, 1302-1304.
Ayotte, C, Goudreault, D. & Charlebois, A. (1996) Testing for natural and synthetic anabolic agents in human urine. Journal of Chromatography В 687 , 3-25.
Beckett, A.H. & Rowland, M. (1965) Determination and identification of amphetamine in urine. Journal of Pharmacy and Pharmacology 17, 59-60
Beckett, A.H. & Wilkinson, G.R. (1965) Identification and determination of ephedrine and its congeners in urine by gas chromatography. Journal of Pharmacy and Pharmacology Y7 (Suppl.), SI 04-S106.
Beckett, A.H., Tucker, G.T. & Moffat, A.C. (1967) Routine detection and identification in urine of stimulants and other drugs, some of which may be used to modify performance in sport. Journal of Pharmacy and Pharmacology 19, 273-294. de Boer, D., Gainza Bernal, M.E., van Ooyen, R.D. & Maes, R.A. (1991) The analysis of trenbolone and the human urinary metabolites of trenbolone acetate by gas chromatography /mass spectrometry and gas chromatography/ tandem mass spectrometry. Biological Mass Spectrometry 20, 459-466.
Bowers, L.D. (1998) Athletic drug testing. Clinics in Sports Medicine 17, 299-318.
Brad low, H.L. (1968) Extraction of steroid conjugates with a neutral resin. Steroids 11, 265-272,
Budzikiewicz, H. (1998) Massenspektrometrie. Wiley-VCH, New York.
Burstin, S. (1963) La Lucha contra el Dopage. Revista de Derecho Sportiva 3, 583-636'.
Cartoni, G.P. & Cavalli, A. (1968) Detection of doping by thin-layer and gas chromatography. Journal of Chromatography 37, 158-161.
Deventer, K., Delbeke, F.T., Roels, K. & Van Eenoo, P. (2002) Screening for 18 diuretics and probenecid in doping analysis by liquid chromatography-tandem mass spectrometry. Biomedical Chromatography 16, 529-535.
Dole, М., Mack, L.L., Hines, R.L. et al. (1968) Molecular beams of macroions. Journal of Chemical Physics 49, 2240-2249.
Donike, M. (1969) N-Methyl-N-trimethylsilyl-trifluoracetamid, ein neues Silylierungsmittel aus der Reihe der silylierten Amide. Journal of Chromatogmphy 42, 103-104.
Donike, M. (1973) Acylierung mit Bis(Acylamiden): N-Methyl-bis(tri-fluoracetamid) und Bis(trifluoracetamid), zwei neue Reagenzien zur Trifluoracetylierung. Journal of Chromatography 78, 273-279.
Donike, M. & Derenbach, J. (1976) Die selektive Derivatisierung unter kontrollierten Bedingungen: Ein Weg zum Spuren-Nachweis von Ariiinen. Zeitschrift Analytische Chemie 279, 128-129.
Donike, M. & Zimmermann, J. (1980) Zur Darstellung von Trimethyl-sllyl-, Triethylsilyl- und tert. -Butyldimethylsilyl-enolathem von Ketosteroiden fur gas-chromatographische und massenspektromet-rische Untersuchungen. Journal of Chromatogmphy 202, 483-486.
Donike, М., Jaenicke L., Stratmann, D. & Hollmann, W. (1970) Gas chromatographic detection of nitrogen-containing drugs in aqueous solutions by means of the nitrogen detector. Journal of Chromatography 52, 237-250.
Donike, М., Zimmermann, J., Barwald, K.R. et al. (1984) Routinebestimmung von Anabolika im Ham. Deutsche Zeitschrift fur Sportmedizin 35, 14-24.
Donike, М., Ueki, М., Kuroda, Y. et al. (1995) Detection of dihydrotestosterone (dht) doping: alterations in the steroid profile and reference ranges for dht and its 5 a-metabolites. Journal of Sports Medicine and Physical Fitness 35, 235-250.
Engelhardt, H., Miiller, H. & Schon, U. (1985) The column. In: High Performance Liquid Chromatogmphy in Biochemistry (Henschen,
A., Hupe, K.P., Lottspeich, F. & Voelter, W., eds.). VCH Verlagsgesellschaft, Weinheim: 17-78.
Fluri, K., Rivier, L., Dienes-Nagy, A. et al. (2001) Method for confirmation of synthetic corticosteroids in doping urine samples by liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A 926, 87-95.
Geyer, H., Schanzer, W., Mareck-Engelke, U. & Donike, M. (1996) Factors influencing the steroid profile. In: Proceedings of the 14th Cologne Workshop on Doping Analysis (Donike, M. Geyer, H., Gotzmann A. & Mareck-Engelke, U., eds.). Sport & Buch Straufi, Cologne: 95-114.
Geyer, H., Schanzer, W., Mareck-Engelke, U., Nolteemsting, E. & Opfermann, G. (1997) Screening procedure for anabolic steroids-the control of the hydrolysis with deuterated androsterone glucuronide and studies with direct hydrolysis. In: Proceedings of the 15th Cologne Workshop on Doping Analysis (Schanzer, W., Geyer, H., Gotzmann, A. & Mareck-Engelke, U., eds.). Sport & Buch Straufi, Cologne: 99-101.
Hermanson, G.T., Mallia, A.K. & Smith, P.K. (1992) Immobilized Affinity Ligand Techniques. Academic Press, San Diego, CA.
Hoher, J. & Troidl, H. (1995) Doping im Sport. Deutsche Zeitschrift fur Sportmedizin 46, 270-282.
Horning, S., Geyer, H., Gotzmann, A., Flenker, U. & Schanzer, W. (1998) Detection of exogenous steroids by ,3C/,2C analysis. In: Proceedings of the 16th Cologne Workshop on Doping Analysis (Schanzer, W., Geyer, H., Gotzmann, A. & Mareck-Engelke, U., eds.). Sport & Buch Straufi, Cologne: 135-148.
International Olympic Committee (IOC) (2003) List of Prohibited Substances and Methods of Doping. IOC, Lausanne.
Iribame, J.V. & Thomson, B.A. (1976) On the evaporation of small ions from charged droplets. Journal of Chemical Physics 64, 2287-2294.
Kebarle, P. & Ho, Y. (1997) On the mechanism of electrospray mass spectrometry. In: Electrospray Ionization Mass Spectrometry-Fundamentals, Instrumentation and Applications (Cole, R.B., ed.). John Wiley & Sons, New York: 3-63.
Keller, R.E. & Ellenbogen, W.C. (1952) The determination of (/-amphetamine in body fluids. Journal of Pharmacology and Experimental Therapeutics 106, 77-82.
Knight, J. (2003) Drugs bust reveals athletes' secret steroid. Nature 425, 752 (News).
Kolb, H. & Patt, P.W. (1965) Beitrag zum Arzneimitteinachweis in Korperflussigkeiten durch Gaschromatographie. Arzneimittel-Forsdiung 15, 924-927.
Lang, HJ. & Hropot, M. (1995) Discovery and development of diuretic agents. In: Handbook of Experimental Pharmacology, vol. 117 (Greger, R.F., Knauf, H. & Mutschler, E., eds.). Springer-Verlag, Berlin: 141-172.
Leinonen, A., Kuuranne, T. & Kostiainen, R. (2002) Liquid chromatography/ mass spectrometry in anabolic steroid analysis-optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. Journal of Mass Spectrometry 37, 693-698.
Lisi, A.M., Trout, G.J. & Kaslauskas, R. (1991) Screening for diuretics in human urine by gas chromatography-mass spectrometry with derivatisation by direct extractive alkylation. Jotimal of Chromatography 563, 257-270.
Lottspeich, F. & Zorbas, H. (1998) Bioanalytik. Spektrum Akade-mischer Verlag, Heidelberg.
Louris, J.N., Cooks, R.G., Syka, J.E.P. et al. (1987) Instrumentation, applications, and energy disposition in quadrupole ion-trap tandem mass spectrometry. Analytical Chemistry 59, 1677-1685.
Louris, J.N., Amy, J.W., Ridley, T.Y. & Cooks, R.G. (1989) Injection of ions into a quadrupole ion trap mass spectrometer. International Journal of Mass Spectrometry and Ion Processes 88, 97-111.
Machnik, М., Geyer, H., Horning, S. et al. (1999) Long-term detection of clenbuterol in human scalp hair by gas chromatography-high-resolution mass spectrometry. Journal of Chromatography В 723, 147-155.
Masse, R., Ayotte, C, Bi, H.G. & Dugal, R. (1989) Studies on anabolic steroids. III. Detection and characterization of stanozolol urinary metabolites in humans by gas chromatography-mass spectrometry. Journal of Chromatography 497, 17-37.
Mohrke, W. & Ullrich, F. (1995) Metabolism of diuretics. In: Handbook of Experimental Pharmacology, vol. 117 (Greger, R.F., Knauf, H. & Mutschler, E., eds.). Springer-Verlag, Berlin: 173-200.
Morgan, C.E. (1957) Drug administration to racing animals. Journal of the American Veterinary Medical Association 130, 240-243.
Opfermann, G. & Schanzer, W. (1996) Trimethylsilylation-aspects for derivatisation. In: Proceedings of the 14th Cologne Workshop on Doping Analysis (Schanzer, W., Geyer, H., Gotzmann, A. & Ma* reck-Engelke, U., eds.). Sport & Buch Straub, Cologne: 247-252.
Patterson, G.E., Guymon, A.J., Riter, L.S. et al. (2002) Miniature cylindrical ion trap mass spectrometer. Analytical Chemistry 74, 6145-6153.
Prokop, L. (1970) The struggle against doping and its history. Journal of Sports Medicine and Physical Fitness 10, 45-48.
Prokop, L. (2002) Zur Geschichte des Dopings. Sportarztewoche, December 1-7, Kaprun.
Reeds, P.J., Hay, S.М., Dorward, P.M. & Palmer, R.M. (1988) The effect of b-agonists and antagonists on muscle growth and body composition of young rats (Rattus sp.). Comparative Biochemistry and Physiology С 89, 337-341.
Richter, D. (1938) A colour reaction for benzedrine. Lancet 238, 1275.
Schanzer, W. (1996) Metabolism of anabolic androgenic steroids. Clinical Chemistry 42, 1001-1020.
Schanzer, W. & Donike, M. (1995) Synthesis of deuterated steroids for GC/MS quantification of endogenous steroids. In: Proceedings of the 12th Cologne Workshop on Dope Analysis (Donike, М., ed.). Sport & Buch Straufi, Cologne: 93-112.
Schanzer, W., Delahaut, P., Geyer, H., Machnik, M. & Horning, S. (1996) Long-term detection and Identification of metandienone and
stanozolol abuse in athletes by gas chromatography-high-resolution mass spectrometry. Journal of Chromatography В 687, 93-108.
Scott, R.P.W. (1982) Microbore columns in liquid chromatography. In: Techniques in Liquid Chromatography (Simpson, C.F., ed.). John Wiley & Sons, Chichester: 79-96.
Shackleton, C.H., Phillips, A., Chang, T. & Li, Y. (1997) Confirming testosterone administration by isotope ratio mass spectrometric analysis of urinary androstanediols. Steroids 62, 379-387.
Sigmund, G., Homing, S., Seinsch, I. & Schanzer, W. (1998) Confirmation of clenbuterol. Proceedings of the 16th Cologne Workshop on Doping Analysis (Schanzer, W., Geyer, H., Gotzmann, A. & Mareck-Engelke, U., eds.). Sport & Buch Straufi, Cologne: 129-133.
Spyridaki, M.H., Tsitsimpikou, C.J., Siskos, P.A. & Georgakopoulos, C.G. (2001) Determination of ephedrines in urine by gas chromatography-mass spectrometry. Journal of Chromatography В 758, 311-314.
Stallion, A., Zhang, F.S., Chance, W.T., Foley-Nelson, T. & Fischer, I.E. (1991) Reversal of cancer cachexia in rats by cimaterol and supplemental nutrition. Surgery 110, 678-684.
Thevis, М., Opfermann, G. & Schanzer, W. (2000) Detection of the plasma volume expander hydroxyethyl starch in human urine. Journal of Chromatography В 744, 345-350.
Thevis, М., Opfermann, G. & Schanzer, W. (2001) High speed determination of B-receptor blocking agents in human urine by liquid chromatography/tandem mass spectrometry. Biomedical Chromatography 15, 393-402.
Thevis, М., Schmickler, H. & Schanzer, W. (2002). Mass spectrometric behavior of thiazide-based diuretics after eleetrospray ionization and collision-induced dissociation. Analytical Chemistry 74, 3802-3808.
Thevis, М., Schmickler, H. & Schanzer, W. (2003a). Effect of the location of hydrogen abstraction on the fragmentation of diuretics in negative eleetrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry 14, 658-670.
Thevis, М., Sigmund, G. & Schanzer, W. (2003b) Confirmation of ephedrines-comparison between GC-MS and LC-MS/MS. In: Proceedings of the 21st Cologne Workshop on Doping Analysis
(Schanzer, W., Geyer, H., Gotzmann, A. & Mareck-Engelke, U., eds.). Sport & Buch Straufi, Cologne: 303-307.
Thieme, D., Grosse, J., Lang, R., Mueller, R.K. & Wahl, A. (2001) Screening, confirmation and quantification of diuretics in urine for doping control analysis by high-performance liquid chromatography-atmospheric pressure ionization tandem mass spectrometry. Journal of Chromatography A 757, 49-57.
Van Eenoo, P., Delbeke, F.T., Roels, K. & De Backer, P. (2001) Simultaneous quantitation of ephedrines in urine by gas chromato-graphy-nitrpgen-phosphorus detection for doping control purposes. Journal of Chromatography В 760, 255-261.
Venerando, A. (1963) Pathologia del doping e mezzi di control lo. Medicina dello Sport 3, 945-959.
Ventura, R., Segura, J., Berges, R. el al. (2000) Distinction of inhaled and oral salbutamol by urine analysis using conventional screening procedures for doping control. Therapeutic Drug Monitoring 22, 77-282.
Vidic, E. (1956) Eine Methode zur Identifizierung papierchro-matographisch isolierter Arzneistoffe. Archives of Toxicology 16, 63-73.
Voyksner, R.D. (1997) Combining liquid chromatography with elec-trospray mass spectrometry. In: Eleetrospray Ionization Mass Spectrometry-Fundamentals, Instrumentation and Applications (Cole, R.B., ed.). John Wiley & Sons, New York: 323-341.
Wagner, J.C. (1989) Abuse of drugs used to enhance athletic performance. American journal of Hospital Pharmacy 46, 2059-2067.
Wheeler, A. (1955) Reaction rates and selectivity in catalyst pores. In: Catalysis, vol. 2 (Emmet, P.H., ed.). Reinhold, New York: 105-165.
Wilhelm, M. & deStevens, G. (1976) Antihypertensive agents. Progress in Drug Research. 20, 197-259.
Yamashita, M. & Fenn, J.B. (1984a) Eleetrospray ion source. Another variation on the free-jet theme. Journal of Chemical Physics 88, 4451-459.
Yamashita, M. & Fenn, J.B. (1984b) Negative ion production with the eleetrospray ion source. Journal of Chemical Physics 88, 4671-4675.
Допинг-контроль: количественный анализ
Содержание
 [убрать] 
1 Качественный анализ при проведении допинг-контроля1.1 Анаболические стероиды1.2 Сконструированные стероиды1.3 Эндогенные стероиды1.4 Диуретики и бета2-агонисты2 Допинг-контроль: количественный анализ3 Заключение4 Читайте такжеКачественный анализ при проведении допинг-контроля
Для большинства запрещенных субстанций в профессиональном спорте для позитивного результата теста достаточно просто получить подтверждение их присутствия в образце мочи. Поскольку многие методы скрининга и получения доказательств основаны на применении хроматографии в сочетании с масс-спектроскопией, были разработаны рекомендации для идентификации химических соединений с помощью систем ГХ-МС и ЖХ-МС(/МС). Присутствие вещества считается подтвержденным, если по относительной представленности определенного количества характерных ионов (в зависимости от применяемой разновидности масс-спектрометрии) образец сопоставим, с учетом допустимых отклонений, с соответствующим образцом стандарта, подвергнутым аналогичному анализу. Кроме того, время удержания вещества не должно отличаться (в пределах допустимого интервала отклонения) при хроматографическом анализе образца мочи спортсмена и контрольного образца мочи, содержащей искомое вещество. Поэтому для характеристики и идентификации веществ в столь сложных для анализа образцах, как пробы мочи, определяющее значение имеет информация о хроматографических и, особенно, масс-спектрометрических параметрах исследуемых химических соединений. К настоящему времени проведены многочисленные исследования масс-спектрометрических характеристик стимулирующих или маскирующих препаратов, а также разработаны методы их детекции с целью проведения допинг-контроля (Masse et al., 1989; de Boer et al., 1991; Donike et al., 1995; Ayotte et al., 1996; Shackleton et al., 1997; Bowers, 1998; Aguilera et al., 1999; Thevis et al., 2000, 2001, 2002, 2003a).
Далее рассмотрим общие принципы проведения анализа некоторых из этих веществ.
Анаболические стероиды
Рассматривая статистические данные в отношении результатов проведенных тестов на допинг и классов выявленных запрещенных веществ, можно заметить, что наиболее часто в качестве допинга в спорте применяют анаболические стероиды. Например, более 40 % запрещенных субстанций, обнаруженных аккредитоваными МОК лабораториями в 2001 г., были анаболическими стероидами. Одним из представителей этой группы является метилтестостерон — производное тестостерона, получаемое путем замены метальной группой остатка водорода у С-17. Анаболические стероиды в большинстве своем активно вовлекаются в метаболические процессы, образуя в результате серию метаболитов, например восстановление кетогрупп, окисление гидроксильных групп, гидроксилирование, а также окисление/восстановление связей углерод—углерод в ядре молекулы стероида (Schanzer, 1996). Вслед за этой фазой I метаболизма и перед выделением в составе мочи происходит фаза II метаболизма, а именно конъюгация продуктов фазы I с глюкуропидами или сульфатами.
Общепринятые стратегии идентификации метаболитов анаболических стероидов основываются на ферментативном гидролизе метаболитов фазы II, в ходе которого образуются метаболиты фазы I, их очистка, концентрация, дериватизация и последующий анализ ГХ-МС. Большинство метаболитов анаболических стероидов, за исключением нандролона, о котором речь пойдет ниже, не способны образовываться в организме человека естественным путем, поэтому в случае обнаружения этих соединений в моче спортсмена, подвергнутого допинг-контролю, будет сделано сообщение о положительном результате теста.
Сконструированные стероиды
Проблема применения так называемых сконструированных стероидов (designer steroid) в спорте и в научном мире нарастает подобно снежной лавине после того, как в октябре 2003 г. (Knight, 2003) лаборатория допинг-контроля Университета Калифорнии в Лос-Анджелесе обнаружила вещество, производное гестринона — лекарственного препарата, применяемого для лечения эндометриоза. Гидрогенирование этинилового остатка, расположенного у 17 углерода этого соединения, приводит к образованию стероидного гормона тетрагидрогестринона (THG), который может рассматриваться как аналог высокоэффективного анаболического стероида тренболона, однако клинические исследования физиологического воздействия и побочных эффектов THG никогда не проводились. Общепринятых в исследовательских лабораториях стратегий допинг-контроля, которые до сих пор были направлены на обнаружение прошедших клинические испытания фармацевтических препаратов, оказывается явно недостаточно для преодоления стремления некоторых спортсменов одержать победу пал соперниками обманным путем, подвергая при этом риску собственное здоровье. Учитывая тот факт, что многие процедуры скрининга основаны на сравнении стандартных образцов с пробами мочи с применением таких методик масс-спектрометрии, как мониторинг заданных ионов (selected ion monitoring, SIM) или мониторинг множественных реакций (multiple reaction monitoring, MRM), неизвестные производные или лекарственные препараты, такие, как THG, являются "невидимыми* для стандартных процедур контроля. Это обусловливает необходимость разработки более гибких методик контроля, которые бы позволяли детектировать как известные, так и неизвестные вещества, обладающие сходной структурой, например общее стероидное ядро, что в принципе возможно, в частности, с применением современных систем ГХ-МС/МС.
Эндогенные стероиды
Если в случае применения анаболических стероидов в моче появляются метаболиты, которые не наблюдаются в норме, применение тестостерона как допинга обнаружить гораздо сложнее, поскольку этот гормон вырабатывается в организме человека. Для этой цели были разработаны различные подходы, наиболее распространенными из которых являются определение соотношения тестостерон/эпитестостерон (Т/Э) и так называемое масс-спектрометрическое измерение соотношения стабильных изотопов углерода (IRMS). Профиль эндогенных стероидов может варьировать в различных ситуациях (Geyer et al., 1996), однако было показано, что соотношение Т/Э является достоверным показателем применения тестостерона как допинга, поскольку продукция эпитестостеропа происходит независимо от тестостерона. В качестве порогового принято значение соотношения Т/Э, равное 6, однако в случае превышения порога позитивный результат теста регистрируется не сразу, спортсмен должен пройти дальнейшее исследование, направленное на контроль естественного повышенного уровня тестостерона.
Увеличение доступности изотопного анализа методом масс-спектрометрии (IRMS) способствовало проведению ряда исследований, показавших возможность обнаружения различий между эндогенным и синтетическим тестостероном с помощью данного подхода. В частности, было установлено, что природный тестостерон отличается от синтезированных химическим путем аналогов, которые используются как медицинские препараты по соотношению изотопов углерода ,3С/,2С. Применение ГХ с последующим сжиганием анализируемого вещества и анализом образовавшегося при этом диоксида углерода позволяет получать информацию о происхождении тестостерона на основании данных о соотношении изотопов |3С и ,JC (Homing et al., 1998; Aguilera et al., 1999).
Диуретики и бета2-агонисты
К веществам, анализ которых обычно производится посредством ГХ-МС(/МС), относятся также диуретики и β2-агонисты. В частности, группа диуретиков характеризуется химическим разнообразием препаратов, назначаемых для сходных или идентичных целей. Для представителей этой группы веществ применяют преимущественно негативную ионизацию (Thieme et al., 2001; Thevis et al., 2002, 2003a), что обусловлено их кислотными свойствами, однако для некоторых диуретиков, в частности триамтерена, требуется позитивная ионизация. Для β2-агонистов основным подходом является протопирование анализируемого вещества с последующей детекцией позитивно заряженной молекулы. Как описано в "Методы анализа”, источники ионов, сопрягающие ГХ с МС, обычно позволяют генерировать протонированные или депротонированные молекулы без заметной их фрагментации. Таким образом, структурная информация об анализируемых веществах, специфичность и избирательность масс-анализаторов обеспечиваются применением индуцированной столкновениями диссоциации (CAD) ионизированных препаратов и последующим анализом производных фрагментов. Для этого необходимо иметь сведения про сродство к протонам и поведение продуктов диссоциации после эффективной активации анализируемых молекул с помощью CAD, которая существенно отличается по механизмам фрагментации молекул от электронного удара (EI). Для диуретиков, а также для основной массы β2-агонистов, за исключением салбутамола достаточно проведение качественного анализа. Обычно хроматограммы экстрагированных ионов делают возможной достаточно чувствительную детекцию этих веществ в биологических пробах, а положительный вывод об их наличии делается па основании существенного численного преобладания их результирующих ионов. В 2001 г. около 17,5 % случаев положительных результатов проведенного в 25 аккредитованных МОК лабораториях допинг-контроля относились к применению β2-агонистов, диуретики были обнаружены в 5 % случаев.
Допинг-контроль: количественный анализ
Для некоторых субстанций, включая стимуляторы, такие, как эфедрин, метаболиты анаболических стероидов, такие, как нандролон, и β2-агонисты, такие, как салбутамол, установлен пороговый уровень, на основании сравнения с которым делается вывод о положительных или отрицательных результатах теста. Основанием для такого решения стали различные причины. Эфедрины входят в состав многих противопростудных лекарственных препаратов, поэтому по антидопинговым правилам их применение является законным, если содержание производных норэфедрина, эфедрина и псевдоэфедрина в моче не превышает 5, 10 или 25 мг-мл'1 соответственно. Салбутамол относится к группе симпатомиметиков, является одним из 4 разрешенных для использования β2-агонистов (наряду с салметеролом, тербуталином и формотеролом) при условии их применения в виде ингаляции. Поскольку определить, как применялся препарат (орально в виде таблеток или в виде аэрозоля) и в какой дозировке, достаточно сложно, о присутствии салбутамола в пробах во время соревнований сообщают в соответствующую федерацию; если содержание вещества превышает 100 нг-мл'1. В период между соревнованиями установлен пороговый уровень 1 мг-мл"1, поскольку при использовании некоторых симпатомиметиков в дозах, существенно превышающих терапевтические, наблюдаются анаболические эффекты. Присутствие метаболита нандролона 5а-эстраи-За-ол-17-один (норандростерона) в моче профессиональных спортсменов может быть в определенной степени обусловлено эндогенной продукцией, поэтому для этого вещества установлено пороговое содержание 2 иг-мл*1 для мужчин и 5 нг-мл'1 для женщин. Для обоснования полученных значений были проведены многочисленные исследования, также были учтены различные факторы, которые могут влиять на уровень эндогенного образования этого метаболита, например значительный физиологический стресс или беременность, которые приводят к существенному повышению содержания этого вещества в моче. Количественное определение этих соединений осуществляется с использованием калибровочных кривых, которые строят на основании результатов определения стандартными методами соответствующих внутренних стандартов, обладающих сходными или идентичными физико-химическими свойствами (Schanzer, Donike, 1995).
Заключение
При проведении допинг-контроля анализ низкомолекулярных соединений основан преимущественно на применении хроматографических и масс-спектрометрических методов, которые делают возможным обнаружение и идентификацию запрещенных препаратов и их метаболитов в пробах биологических жидкостей, таких, как кровь и моча. В то время как в прежние годы анализ проводился главным образом газовой хроматографией с детекцией разделенных продуктов различными анализаторами, например пламенно-ионизационными и азотно-фосфорными детекторами, а также масс-спектрометрическими анализаторами. В последних работах применяется в основном жидкостная хроматография, продукты разделения которой после ионизации при атмосферном давлении подвергаются масс-спектрометрическому анализу, поскольку данный подход позволяет существенно сократить время подготовки образцов и не требует дериватизации анализируемых веществ. Кроме того, благодаря применению тройных квадрупольных анализаторов и ионных ловушек стало возможным осуществление более гибких масс-спектрометрических экспериментов, направленных на определение и характеристику известных лекарственных препаратов, а также неизвестных сконструированных веществ, что также способствует усилению борьбы против допинга и нелегального применения запрещенных препаратов. С момента создания списка запрещенных субстанций и методов стимуляции диапазон веществ, которым уделяется внимание при проведении допинг-контроля, пе перестает изменяться и лабораториям в рамках этого динамического процесса приходится постоянно расширять и модифицировать методы анализа, повышая их чувствительность, специфичность и приспособляемость к решению новых задач, чтобы ограничить злоупотребления лекарственными препаратами в спорте, а также уберечь спортсменов от ложных подозрений. И здесь новые разработки в области высокоскоростной и высокоэффективной хроматографии, масс-спектрометрических, обладающих высоким разрешением и чувствительностью, а также современных приемов ионизации предоставляют аналитическим лабораториям ценные инструменты, которые позволяют получать еще более подробную информацию о примененных веществах, например об их структуре и метаболизме, и расширить временные рамки выявления злоупотреблений стимулирующими препаратами. Поскольку многие препараты, такие, как анаболические стероиды, применяются в период между соревнованиями, но при этом сохраняют свой стимулирующий эффект на протяжении нескольких недель, для полноценного допинг-контроля необходимо проведение анализов как во время соревнований, так и во внесоревновательном периоде. Кроме того, требуется максимальная специфичность и чувствительность аналитических процедур.
Эндокринная регуляция репродуктивной системы
Содержание
 [убрать] 
1 Эндокринная регуляция репродуктивной системы2 Введение3 Основы репродуктивной физиологии4 Гипоталамо-гипофизарно-гонадный гомеостаз при интенсивной физической тренировке4.1 Долговременные клинические исследования4.2 Исследования по данным наблюдений5 Нерешенные проблемы6 Заключение7 Читайте также8 ЛитератураЭндокринная регуляция репродуктивной системы
Репродуктивная система мужчин и женщин в условиях интенсивной физической тренировки остается относительно стабильной. В то же время регулярное применение любого из многочисленных сильнодействующих веществ, относящихся к категории допинга, выполнение тренировочных программ с чрезмерной нагрузкой или не учитывающих принципа последовательного увеличения нагрузки, снижение массы тела в процессе тренировок, психосоциальный стресс, неадекватное восполнение энерготрат организма и постоянные значительные нагрузки в период полового созревания практически неизбежно влекут за собой изменения продукции репродуктивных гормонов. Применение анаболических стероидов приводит к нарушениям менструального цикла у женщин и уменьшению сперматогенеза у мужчин, а также существенному снижению концентрации защитного холестерина (липопротеиды высокой плотности) у представителей обоих полов. В отсутствие упомянутых выше факторов риска также могут наблюдаться менее значительные адаптационные изменения функции эндокринной системы и метаболизма, однако их влияние на состояние здоровья не установлено. Например, в одном из исследований долговременных эффектов двигательной активности было показано, что единственной заметной реакцией на тренировочный процесс, связанный с подготовкой к марафону молодых здоровых женщин, которые занимались бегом на длинные дистанции, было незначительное, в пределах естественных отклонений, сокращение продолжительности постовуляторной (лютеиновой) фазы менструального цикла. По данным исследований состояния репродуктивной функции, у спортсменов в целом был выявлен ряд нарушений, однако эти данные оказались обусловленными наличием некоторых известных патологических состояний. Таким образом, тренировочные занятия физическими упражнениями здоровых лиц зрелого возраста при условии контроля, соблюдения принципа постепенного увеличения нагрузки и применения обоснованной интенсивности нагрузки, а также адекватного восполнения энерготрат, обладают минимальным потенциалом негативных воздействий па репродуктивную систему.
Введение
Критическая оценка влияния интенсивных тренировочных занятий и активного участия в спортивной деятельности на эндокринную систему является сравнительно недавним достижением медицинских исследований. В действительности большинство научных сообщений прошлых лет, которые цитируются в учебниках и на которые ссылаются рекламные листки современных биологических пищевых добавок, отличались тем, что непосредственный эффект физических нагрузок обычно смазывался наличием различных сочетанных факторов, из-за чего окончательные и безоговорочные выводы на основании полученных данных сделать было невозможно. Сегодня к научно обоснованным выводам можно предъявлять следующие требования (не исключая и других возможных): 1) участие в проведении исследований явно нормальных лиц без нарушений здоровья; 2) использование тренировочных программ, предусматривающих наличие контроля, постепенное увеличение нагрузки, а также возможность количественной оценки интенсивности и продолжительности занятий; 3) проведение в том же временном диапазоне параллельного исследования группы лиц с аналогичными характеристиками (возраст, пол), не принимающих участия в занятиях физическими упражнениями; 4) документально подтвержденную адекватность энергетической ценности рациона питания и энерготрат, связанных с двигательной активностью; 5) документально подтвержденное отсутствие применения скрытых лекарственных или гормональных препаратов (допинг); 6) исходная и последующая оценка испытываемого психосоциального стресса; 7) тщательный анализ семейного анамнеза, направленный на выявление наследственных факторов, которые используются при оценке вероятности нарушений функции репродуктивной системы у населения в целом. В настоящее время ни одно из проведенных исследований не удовлетворяет комплекс сформулированных требований, поэтому для понимания более тонких изменений метаболизма и функции эндокринной системы необходимо проведение дальнейших клинических и физиологических исследований.
Основы репродуктивной физиологии
Современные представления о репродуктивной физиологии человека охватывают комплексную картину обмена гормональными сигналами между центральной нервной системой (гипоталамус), передней долей гипофиза (гонадотропные клетки) и половыми железами (семенниками и яичниками). Упомянутый выше комплекс эндокринных желез (система эндокринной регуляции репродуктивной функции) управляется сигналами, связанными с половым созреванием, соматическим ростом, составом тела, реакцией на стресс, аппетитом, энерготратами организма и действием инсулина (Urban et al., 1988; Evans et al., 1992; Giustina, Vcldhuis, 1998). Для реконструкции патогенеза эндокринных нарушений и понимания отличительных особенностей механизмов нормальной адаптации к физическим нагрузкам необходимо рассматривать систему эндокринной регуляции репродуктивной функции комплексно. Так, для успешного функционирования репродуктивной системы в период интенсивных тренировок минимальным необходимым условием (обязательным, но не достаточным) является адекватное восполнение затраченной энергии (Loucks, 2003).
Сигналы, возникающие в центральной нервной системе и в периферических тканях, сходятся к гипоталамическому комплексу, сформированному примерно 1200 нейронами, которые секретируют гонадолиберин (GnRH-гонадотропин-рилизинг-гормон). Синхронное возбуждение этих нейронов приводит к циклическим выбросам гонадолиберина в портальную систему кровеносных капилляров (сплошные стрелки с [+]), соединяющую медиобазальный гипоталамус с гипофизом. Гонадолиберин управляет процессами транскрипции, трансляции, процессинга и секреции лютеинизирующего гормона (ЛГ) и фолликулостимулирующего гормона(ФСГ) в гонадотропных клетках. Система кровообращения доставляет ЛГ к гонадам (семенникам или яичникам); ЛГ стимулирует синтез и секрецию тестостерона(и, следовательно, эстрадиола) у мужчин и женщин и прогестерона у женщин после овуляции. У женщин ФСГ способствует созреванию фолликулов (Граафовых пузырьков), готовности к оплодотворению ооцитов и повышению чувствительности яичников к ЛГ. У мужчин ФСГ оказывает действие, синергичное с тестостероном, секрецию которого внутри семенников стимулирует ЛГ, и стимулирует прохождение ранних стадий сперматогенеза в семенных канальцах. Половые стероиды воздействуют на периферические ткани-мишени, а именно мышечную и жировую ткани, молочные железы, скелет, кожные покровы, половые органы, гипоталамус и гипофиз. У женщин эстроген и прогестерон являются элементами регуляторной цепи обратной связи (подавление и стимуляция), их циклические колебания регулируют усиление секреции ЛГ, предшествующее овуляции. Те же половые гормоны стимулируют рост и созревание эндометрия матки, что необходимо для имплантации оплодотворенного бластоциста в беременности.
Адаптации эндокринной системы к физическим нагрузкам реализуются посредством нескольких уровней контроля: а) сигналы, поступающие в гипоталамус из ЦНС и с кровью; б) гипоталамическая интеграция поступивших сигналов и передача суммарного сигнала в переднюю долю гипофиза; в) система обратной связи, осуществляющая регуляцию активности гипоталамуса посредством внутренней температуры тела, медиаторов воспаления, продуктов тканевого обмена (лактат, свободные жирные кислоты и др.) и продуктов секреции клеток-мишеней (инсулиноподобный фактор роста стимулируется в печени соматотропином); г) экзогенные субстраты (глюкоза, жиры и аминокислоты); д) тиреоидные и надпочечниковые гормоны, обеспечивающие адаптацию к стрессу (тироксин, кортизол и адреналин). Эта минимальная сеть взаимодействий управляет гипоталамической стимуляцией гонадотропных клеток с помощью цикличного (волнообразного) выброса декапептида, гонадолиберина. Гонадолиберин индуцирует в гипофизе синтез и секрецию лютеинизирующего гормона (Л Г) и фолликулостимулирующий гормон (ФСГ). Эти два белка являются ключевыми эффекторами яичников и семенников. Амплитуда и периодичность секреции гонадолиберина определяют секретируемое в гипофизе количество ЛГ и ФСГ (Urban et al., 1988; Evans et al., 1992; Veldhuis, 1999): ЛГ регулирует синтез половых стероидных гормонов; ФСГ контролирует процессы образования спермы и созревания яйцеклеток, а также продукцию белка обратной связи — ингибина. Никаких значительных изменений в уровне секреции ФСГ и ингибина, связанных с занятиями физическими упражнениями, обнаружено не было (Veldhuis et al., 1998). Этот вывод справедлив и в отношении пролактина — гормона, стимулирующего лактацию, временное увеличение уровня которого наблюдается в ответ на тренировочные занятия и разнообразные психологические и физические стрессовые воздействия.
У мужчин ЛГ оказывает воздействие на клетки Лейдига в семенниках, стимулируя синтез и секрецию примерно 4 —бмг тестостерона ежедневно (Urban et al., 1988). У женщин ЛГ стимулирует в клетках оболочки яичников и желтого тела секрецию около 0,15 мг тестостерона (предшественника эстрогенов) и 10—20 мг прогестерона ежедневно (Evans et al., 1992). Тестостерон, эстроген и прогестерон обратимо подавляют (негативная обращая связь) гипоталамо-гипофизарный комплекс, осуществляя контроль цикличности секреции гонадолиберина, ЛГ и ФСГ (Veldhuis, 1999). Ограниченное во времени ингибирующее воздействие половых стероидных гормонов представляет собой фундаментальный регуляторный механизм, обеспечивающий поддержание репродуктивного гомеостаза. В целом гомеостаз является совокупным результатом обратных стимулирующих и подавляющих взаимодействий, которые обеспечивают циклические, обратимые изменения функции эндокринной системы, направленные на поддержание концентрации гормонов в пределах физиологической нормы, характерной для лиц данного возраста, пола и расы. Авторегуляцию здесь можно сравнить с системой автоматической регулировки оптимальной скорости автомобиля, которая удерживает скорость движения в заданном диапазоне. Таким образом, в организме здоровых людей каскад сигнальных взаимодействий обеспечивает необходимые для поддержания жизни концентрации субстратов (глюкоза), метаболитов (лактат) и гормонов (половые гормоны, кортизол, инсулин, соматотропин и др.). Необходимыми условиями поддержания гомеостаза являются детерминированные физиологические механизмы, низкий уровень случайных процессов, отсутствие генетических нарушений, адекватная психосоциальная поддержка и эффективная адаптация к внешним и внутренним стрессам (Veldhuis, 1996).
Гипоталамо-гипофизарно-гонадный гомеостаз при интенсивной физической тренировке
Долговременные клинические исследования
Несколько клинических исследований характеризуются проспективной рандомизацией выборки добровольцев без видимых нарушений здоровья, принимавших участие в занятиях физическими упражнениями различной интенсивности, продолжительности и/или тина. В одном долговременном исследовании молодые женщины с установившимся менструальным циклом принимали участие в тренировочных занятиях, интенсивность которых варьировала случайным образом от низкой (сублактатный порог) до высокой (супралактатный порог) (Rogol et al., 1992). Программа состояла в занятиях бегом на длинные дистанции, проходивших под руководством тренера, в течение 18 месяцев с индивидуальной целью пробежать марафонскую дистанцию. Содержание гормонов, регулирующих репродуктивную функцию, измеряли в начале исследований и спустя год занятий с постепенно увеличивающимся тренировочным объемом при заданной интенсивности занятий. Не обнаружено изменений содержания ЛГ, ФСГ, пролактина и эстралиола у лиц из группы, занимавшейся с низкой интенсивностью, а также у соответствующей контрольной группы женщин, которые вели активный образ жизни. У женщин, которые регулярно занимались с интенсивностью, превышающей индивидуально определенный лактатный порог, при равной протяженности общего пробега за время занятий (> 800 км), было установлено небольшое (1,8 суток) сокращение лютеиновой фазы менструального цикла при отсутствии заметных отличий в средней концентрации прогестерона (Rogol et al., 1992). Укорочение продолжительности лютеиновой фазы не превышало естественных колебаний этого показателя от цикла к циклу, наблюдавшихся у здоровых женщин предклимактерического возраста.
Значение адекватного восполнения энерготрат, связанных с двигательной активностью, демонстрирует одно из проведенных недавно исследований, основанных на использовании принципа проспективной рандомизации. В этом эксперименте продолжительностью 2 мсс у женщин, которые одновременно с выполнением физических нагрузок ограничивали калорийность своего рациона питания с целью снижения массы тела, вероятность нарушений продолжительности фолликулярной или лютеиновой фаз менструального цикла оказалась выше по сравнению с теми, кто занимался но такой же программе, но при этом не ограничивал энергетической ценности своего рациона (Buiten ct al.. 1985). Во всех случаях через 6 мсс после завершения этого исследования происходила нормализация менструального цикла.
Исследования по данным наблюдений
При определении содержания гормонов гипоталамо-гипофизарно-яичниковой системы у спортсменок вузов, занимавшихся бегом на длинные дистанции, была обнаружена группа лиц с нарушениями регулярных менструальных циклов, которые были предположительно обусловлены сниженной секрецией гипоталамического гонадолиберина (Rogol ct al., 1983; Veldhuis ct al., 1985; MacConnie et al., 1986). Вывод о сниженной секреции гонадолиберина в этих случаях был сделан на основании уменьшенной частоты периодических выбросов Л Г, притом что после инъекции синтетического гонадотропина наблюдалась нормальная или повышенная секреция гипофизарного ЛГ. Точных причин нарушения цикличности секреции ЛГ у отдельных спортсменок, занимавшихся бегом на длинные дистанции, не установлено. Эпидемиологические исследования показали, что обычно с этим явлением был ассоциирован один или несколько факторов риска нарушений репродуктивной функции.
При проведении проспективно рандомизированного анализа (wide infra) оказалось, что энергетический дефицит рациона питания при любом уровне энерготрат связан с повышенным риском олигоменореи (нарушение менструального цикла) (Bullen et al., 1985; Loucks, 2003). Несколько других обнаруженных клинических взаимосвязей, несмотря на отсутствие столь же четкой определенности, могут помочь в общих чертах выбрать направление для дальнейших исследований (Veldhuis et al., 1998).
Недостаточная энергетическая ценность рациона питания, неврогенная анорексия, булимия, анорексия отторгающего типа, принудительная рвота, а также чрезмерное применение слабительного — все эти факторы приводят к активации стресс-адаптивной гипоталамо-гипофизарно-надпочечниковой системы. Комплексный ответ на метаболический стресс центральной нервной системы включает ингибирование циклического характера секреции ЛГ путем подавления выделения гипоталамического гонадолиберина, которое в результате приводит к уменьшению стимуляции секреции ЛГ в передней доле гипофиза (Bergendahl et al., 1996, 2000; Loucks, 2003). Например, кратковременное голодание приводит к угнетению цикличного характера секреции ЛГ у здоровых лиц зрелого возраста. Исследования с участием молодых мужчин показали, что снижение концентрации ЛГ и тестостерона на 50 %, вызванное голоданием, может быть предотвращено периодическим внутривенным введением синтетического гонадолиберина каждые 90 мин (Aloi et al., 1997). Результат этого исследования демонстрирует, что недостаточная энергетическая ценность рациона питания ограничивает выделение гонадолиберина мозгом и таким образом блокирует секрецию ЛГ гипофизом.
Злоупотребления (применение без назначения врача) анаболических стероидов, синтетических прогестинов и соматотропного гормона человека (который оказывает пролактиноподобный подавляющий эффект на секрецию гонадолиберина) может стать причиной олиго- и аменореи (уменьшение продолжительности или нарушение менструальных циклов) у женщин, либо олиго- и азооспермии (уменьшение количества сперматозоидов или их отсутствие) у мужчин. Приводят ли к подобному результату инъекции эритропоэтина — неизвестно. Значительная психосоциальная нагрузка независимо от того, связан ли он с тренировочным процессом и участием в соревнованиях, также может приводить к нарушениям менструальной функции (Evans et al., 1992; Veldhuis et al., 1998). Кроме того, некоторые спортсмены начинают заниматься интенсивными тренировками с предсуществующими (недиагностированными) гормональными нарушениями и/или серьезными наследственными предпосылками к развитию эндокринных заболеваний. Оба эти фактора могут проявляться при воздействии значительной физической нагрузки или обнаруживаться независимо от двигательной активности.
Нерешенные проблемы
Важной нерешенной проблемой остается совместное действие двух или больше факторов, которые по отдельности увеличивают риск развития нарушений менструального цикла в условиях интенсивной физической тренировки. Этот вопрос решить чрезвычайно сложно, особенно учитывая практически безграничное количество возможных комбинаций различных факторов. Например, каким будет общий эффект от интенсивных занятий физическими упражнениями на менструальную функцию у женщины с наличием в семейном (но не персональном) анамнезе синдрома поликистоза яичников (обнаруживается у 5,0—8,5 % молодых женщин различной этнической принадлежности без признаков других заболеваний), периодическими нарушениями регулярности менструального цикла и незначительным снижением массы тела, связанным с тренировочными занятиями? И как на этот суммарный эффект может дополнительно повлиять выбор конкретного вида спорта, например спортивного фехтования, волейбола, прыжков с шестом, бега на 500 м или плавания на 100 м вольным стилем? Результаты наблюдений показывают, что нарушения менструального цикла реже всего встречаются у занимающихся велоспортом и плаванием (Evans et al., 1992). Непонятно также, в какой степени и в каких ситуациях факторы риска, характерные для женщин, будут применимы для мужчин? В настоящий момент данные, которые бы позволили решить все эти многофакторные задачи, отсутствуют. В действительности индивидуальные особенности, самостоятельные обращения к врачу, вид двигательной активности (и связанные с ним отклонения внутренней температуры тела), психологическая нагрузка, вероятность злоупотреблений лекарственными препаратами, потеря веса или его поддержание в пределах нормы, возраст начала тренировочных занятий и многие другие сопутствующие факторы, о которых ничего не известно, делают невозможной определенную интерпретацию данных исследований.
В отношении медицинского обслуживания профессиональных спортсменов врачи должны понимать, что физическая нагрузка сама по себе не может быть непосредственной причиной клинически значимых изменений функции эндокринной системы, следовательно, анализ особенностей питания, динамики изменений массы тела, энергетической ценности рациона питания, истории болезни, семейного анамнеза, симптомов системных нарушений и результатов медицинского скрининга, проведенный под руководством врача, поможет сохранить здоровье спортсмена. Для исключения вероятности либо обнаружения различных заболеваний, поддающихся лечению, необходимо проведение тщательной оценки состояния здоровья.
Исследованием влияния интенсивных физических тренировок на полноценность спермы, а также на плодовитость (способность зачать) или фертильность (способность выносить полноценного ребенка) женщины серьезно никто не занимался. К исследованиям, имеющим отношение к изучению данной проблемы, можно отнести долговременный, объективный контроль уровня ФСГ, ингибина и активина, фоллистатина, сперматогенеза, созревания Граафовых пузырьков, овуляции, лютеинизации (образования желтого тела), а также анализа плодовитости, фертильности и нормальных родов у женщин различного возраста. На основании таких многогранных наблюдений можно прогнозировать, что изменения детородной функции, обусловленные интенсивной физической нагрузкой, будут, скорее, незначительными, чем явно выраженными.
О влиянии, если таковое имеется, физических нагрузок на послеродовое состояние женщины также ничего не известно. К показательным параметрам, которые остаются неисследованными, можно отнести время, необходимое для восстановления менструального цикла после беременности, эффективность лактации, объем молока и его питательную ценность для новорожденного, а также взаимосвязь новорожденного с матерью.
Более глубокого осмысления требуют клинические аспекты относительно пренебрегаемой проблемы либидо, потенции и полового удовлетворения профессиональных спортсменов высокого уровня. Кроме того, заботой медиков должно быть предоставление всем спортсменам полного доступа к инструкциям и разъясняющим материалам, касающимся риска получения заболеваний, передаваемых половым путем, а также инфекционных респираторных и желудочно-кишечных заболеваний. Эта потребность обусловлена широким спектром социокультурных, диетических и географических условий, с которыми приходится сталкиваться спортсменам в связи с участием в международных соревнованиях.
Заключение
Интенсивные физические тренировки не приводят к существенным нарушениям репродуктивной функции у здоровых лиц зрелого возраста (это не обязательно относится к детям). Этот вывод неправомерен в ситуациях, когда физические тренировки сочетаются с недостаточной энергетической ценностью рациона питания, снижением массы тела, нарушениями нормального режима питания, сопутствующими заболеваниями, высоким риском развития наследственных заболеваний репродуктивной системы, чрезмерным психологическим стрессом и/или злоупотреблениями алкоголем, лекарственными или гормональными препаратами. Необходимы дополнительные медицинские исследования, направленные на выяснение других аспектов воздействия интенсивной физической нагрузки, в частности на плодовитость, фертильность, послеродовое восстановление и половую функцию.
Работа была выполнена при частичной финансовой поддержке Национального Института здоровья США и Государственного исследовательского центра (Бетесда, США), номера фантов RR00585, AG23133, DK60717.
Литература
Aloi, J. A., Bergendahl. М., Iranmanesh, А. & Veldhuis, J.D. (1997) Pulsatile intravenous gonadotropin-releasing hormone administration averts fasting-induced hypogonadotropism and hypoandrogene-mia in healthy, normal-weight men. Journal of Clinical Endocrinology and Metabolism 82, 1543-1548.
Bergendahl, М., Vance, M.L., Iranmanesh, A., Thorner, M.O. & Veldhuis, J.D. (1996) Fasting as a metabolic stress paradigm selectively amplifies cortisol secretory burst mass and delays the time of maximal nyctohemeral cortisol concentrations in healthy men. Journal oj Clinical Endocrinology and Metabolism 81(2), 692-699. Bergendahl, М., Iranmanesh, A., Pastor, C, Evans, W.S. & Veldhuis, J.D. (2000) Homeostatic joint amplification of pulsatile and 24-hour rhythmic cortisol secretion by fasting stress in midluteal phase women: concurrent disruption of cortisol-growth hormone, cortisol-luteinizing hormone, and cortisol-leptin synchrony. Journal of Clinical Endocrinology and Metabolism 85(11), 4028-4035.
Bullen, B.A., Skrinar, G.S., Beitins, I.Z. et al. (1985) Induction of menstrual disorders by strenuous exercise in untrained women. Next England Journal of Medicine 312(21), 1349-1353.
Evans, W.S., Sollenberger, M.J., Booth, Jr., R.A. et al. (1992) Contemporary aspects of discrete peak detection algorithms. II. The paradigm of the luteinizing hormone pulse signal in women. Endocrine Reviews 13(1), 81-104.
Giustina, A. & Veldhuis, J.D. (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocrine Reviews 19(6), 717*797.
Loucks, A.B. (2003) Energy availability, not body fatness, regulates reproductive function in women. Exercise and Sports Sciences Reviews 31(3), 144-148.
MacConnie, S.E., Barkan, A.L., Lampman, R.M., Schork, M.A. & Beitins, I.Z. (1986) Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. New England Journal of Medicine 315, 411-417.
Rogol, A.D., Veldhuis, J.D., Williams, F.T. & Johnson, M.L. (1983) Pulsatile secretion of gonadotropins and prolactin in male marathon runners: relation to the endogenous opiate system. Journal of Andrology 5, 21-27.
Rogol, A.D., Weltman, A., Weltman, J.Y. et al. (1992) Durability of the reproductive axis in eumenorrheic women during 1 year of endurance training. Journal of Applied Physiology 72(4), 1571* 1580.
Urban, R.J., Evans, W.S., Rogol, A.D. et al. (1988) Contemporary aspects of discrete peak detection algorithms. I. The paradigm of the luteinizing hormone pulse signal in men. Endocrine Reviews 9, 3-37.
Veldhuis, J.D. (1996) Neuroendocrine mechanisms mediating awakening of the gonadotropic axis in puberty. Pediatric Nephrology 10, 304-317.
Veldhuis, J.D. (1999) Male hypothalamic-pituitary-gonadal axis. In: Reproductive Endocrinology (Yen, S.S.C., Jaffe, R.B. & Barbieri, R.L., eds.). W.B. Saunders Co., Philadelphia: 622-631.
Veldhuis, J.D., Evans, W.S., Demers, L.M. et al. (1985) Altered neuroendocrine regulation of gonadotropin secretion in women distance runners. Journal of Clinical Endocrinology and Metabolism 61, 557-563.
Veldhuis, J.D., Yoshida, K. & Iranmanesh, A. (1998) The effect of mental and metabolic stress on the female reproductive system and female reproductive hormones. In: Handbook of Stress Medicine: an Organ System Approach (Hubbard, J. & Workman, E.A., eds.). CRC Press, Boca Raton, FL: 115-140.
Виды гормона роста и влияние физической нагрузки
Содержание
 [убрать] 
1 Варианты соматотропного гормона и занятия физическими упражнениями1.1 Определение концентрации гормона роста1.2 Биологические методы определения СТТ: опыт публикаций прежних лет1.3 Биологические методы определения СТГ: новые перспективы2 Первичная структура рекомбинантного соматотропного гормона человека и ее молекулярные особенности3 Сравнение результатов различных методов4 Разнообразие форм соматотропного гормона, циркулирующих в системе кровообращения5 Различные формы соматотропного гормона: возрастающий объем данных6 Результаты тибиатеста и реакция на физическую нагрузку7 Различия между оцениваемыми биологическими тестами, соматотропным гормоном и иммунным анализом СТТ8 Исследования влияния постельного режима на уровень СТГ в крови9 Афферентные мышечные нервы, регулирующие высвобождение соматотропного гормона у крыс10 Острые и хронические эффекты при выполнении силовых упражнений и биологически активный соматотропный гормон11 Заключение12 Читайте также13 ЛитератураВарианты соматотропного гормона и занятия физическими упражнениями
Занятия физическими упражнениями стимулируют секрецию соматотропного гормона (гормона роста, СТГ) передней доли гипофиза, а повышение концентрации СТГ в крови вносит свой вклад в реализацию индуцированной физическими упражнениями гипертрофии мышц и расщепления жиров, а также других физиологических реакций. Анализ литературы, посвященной взаимосвязи секреции СТГ и физических тренировок, позволяет сделать обобщающий вывод о том, что концентрация СТГ в плазме крови в значительной степени определяется продолжительностью и интенсивностью тренировочных занятий.
В то же время гораздо менее очевидным кажется тот факт, что многие способны в полной мере представить себе комплексность процессов, обеспечивающих функционирование системы продукции гормона роста в гипофизе. Связанные с этим вопросы обсуждаются главным образом в статьях, публикуемых в журналах для специалистов, основное внимание которых уделяется секреции СТГ, которая не имеет отношения к занятиям физическими упражнениями. Однако ситуация постепенно начинает изменяться.
Ниже рассмотрим биохимические и физиологические свойства молекулы СТГ и ее разнообразных форм. Проанализируем литературные данные, демонстрирующие изменения соотношения различных вариантов СТГ в крови после занятий физическими упражнениями, также вкратце коснемся некоторых аспектов клеточной биологии гипофиза с надеждой, что эти сведения помогут сформировать фундаментальную основу представлений о том, как продукция различных форм СТГ может быть взаимосвязана с изменениями, происходящими в ответ на занятия аэробными или силовыми упражнениями. И, наконец, представим данные, которые однозначно свидетельствуют о существовании новой цепи обратной связи между мышцами и гипофизом. Авторы уверены, что этот недавно открытый механизм обратной связи поможет объяснить механизм(ы), лежащие в основе индуцированной физическими упражнениями секреции СТГ.
Определение концентрации гормона роста
В настоящее время измерение содержания СТГ в плазме крови практически всегда проводят методом иммуноанализа. В то же время существуют другие системы детекции, но выбор метода определения СТГ в крови по-прежнему не теряет своей важности. До появления метода оценки СТГ с помощью иммуноанализа исследователи обычно полагались на биологические методы определения, для которых, как правило, были необходимы крысы. Некоторые из этих методик применяются в лабораториях, где работают авторы этой главы, и сегодня (Roth et al., 1963; Hunter, Greenwood, 1964). Поскольку использование этих методик часто позволяет получать интересные результаты, которые не всегда согласуются с оценками, полученными методом иммуноанализа, мы считаем оправданным рассмотрение здесь их деталей.
Биологические методы определения СТТ: опыт публикаций прежних лет
Эти тесты, которые были разработаны более 50 лет назад, отражают рост знаний об анаболических, липолитических и диабетогенных эффектах СТГ. Существенные детали некоторых тестов, применявшихся в то время, прекрасно описаны в обзоре 1962 г. (Papkoff, Li, 1962).
В отношении тестов на увеличение массы тела применимы следующие общие требования: для проведения теста необходимо большое количество крыс (10 на один уровень дозы); инъекции могут производиться подкожно или внутрибрюшинно; могут быть использованы нормальные крысы либо с удаленным гипофизом; тесты оценки массы тела отличаются довольно низкой чувствительностью (требуется доза 50 мг в день для взрослых самок и 10 мг в день для незрелых крыс с удаленным гипофизом); показатель точности (рассчитывается путем деления стандартного отклонения на наклон кривой) превышает 0,2; примеси других гормонов (например, тироксина) в препаратах СТГ, полученных из естественных источников, могут оказывать синергичное действие, что приведет к получению завышенных значений оценки. Несмотря на все эти недостатки, традиционный тест на увеличение массы тела, который заключается в измерении прироста массы тела незрелых крыс после подкожного введения СТГ на протяжении 10 дней, в соответствии с законами США остается обязательным для оценки биоидентичности и эффективности препаратов СТГ, получаемых с помощью генно-инженерных технологий.
Что касается тибиатеста или теста определения изменений ширины линии эпифизарного хряща большеберцовой кости крыс под влиянием СТГ (tibial line GH bioassay, Greenspan et al., 1949), основным его преимуществом по сравнению с тестом на увеличение массы тела является заметно более высокая чувствительность (реакция обнаруживается при использовании общей дозы, равной 5 мг, за период 4 суток). В этом тесте производится определение ширины некальцифицированной эпифизарной хрящевой пластинки большеберцовой кости крысы, отделенной от окрашенной нитратом серебра кальцифицированной порции пластинки. Этот тест использовался авторами данной главы при проведении различных исследований, в том числе направленных на изучение эффектов двигательной активности/постельного режима на уровень СТГ в крови.
Список биологических активностей гормона роста человека постоянно расширяется. Как отмечал Страсбургер (Strasburger, 1994), уже достаточно давно известно, что СТГ является анаболическим белком, который стимулирует продольный рост костей. Кроме того, было установлено, что он обладает лактогенным эффектом, агонистическими и антагонистическими свойствами по отношению к инсулину, оказывает липолитическое воздействие, в печени стимулирует орнитиндекарбоксилазу, принимает участие в регуляции натриевого и водного обмена, а также модулирует функцию иммунной системы.
Тесты с использованием культивируемых клеточных линий лимфоцитов IM-9 и адипоцитов ЗТЗ-F422A представляют собой появившиеся относительно недавно, заслуживающие внимания биологические методы определения СТГ in vitro на клетках. По нашим данным, они не применялись для оценки активности СТГ в плазме после занятий физическими упражнениями, поэтому мы не рассматриваем их более детально.
Биологические методы определения СТГ: новые перспективы
В работе, опубликованной Росволлом (Roswall et al., 1996), проведено тщательное сравнение двух новых биологических методов определения СТГ, разработанных в лабораториях авторов, и теста на увеличение массы тела крыс с удаленным гипофизом. Чтобы в полной мере оценить принципы, положенные в основу этих новых методов, необходимо рассмотреть: а) особенности строения молекулы СТГ, полученной генно-инженерным путем (рекомбинантный гормон роста человека, рчСТГ); б) его структурные варианты и продукты деградации; в) молекулярные взаимодействия между этими хорошо изученными формами и рецептором СТГ человека.
Первичная структура рекомбинантного соматотропного гормона человека и ее молекулярные особенности
Первичная последовательность формы рекомбинантного гормона роста человека, состоящая из 191 аминокислотного остатка (22 кДа). Эта форма идентична природной молекуле СТГ с мол. массой 22 кДа, которая синтезируется в гипофизе и выделяется в кровеносное русло при физиологической потребности. Отличительной структурной особенностью является положение остатков цистеина, отвечающих за формирование большой внутренней дисульфидной петли и меньшей по размеру петли на конце с-белка. Показаны также сайты ферментативного расщепления, расположенные между остатками треонина-136 и тирозина-143. Расщепление пептидной молекулы в этом месте приводит к образованию структуры, состоящей из двух цепей, связанных дисульфидными мостиками. Формирование такой двухцепочечной формы может происходить при участии мембран-ассоциированной протеазы во время секреции гормона клетками гипофиза. При длительном хранении СТГ в растворе может происходить дезамидирование остатков аспарагина 149 и 152, а также потеря крайних двух остатков на N-конце.
В биологических образцах обнаруживаются различные структурные варианты СТГ. В своих исследованиях Росволл с коллегами (Roswall et al., 1996) получили два варианта из встречающихся в природе, используя как исходную основу рекомбинантный гормон роста. Один из этих вариантов был димер, образовавшийся в результате формирования ковалентной связи между остатками метионина, другой — транскрипционный вариант с мол. массой 20 кДа, образующийся в результате делеции остатков 32— 46. Эти варианты были использованы в исследованиях, которые рассмотрены ниже.
Знание особенностей взаимодействия молекул рекомбинантного гормона роста с мембранными тканевыми рецепторами СТГ имеет немаловажное значение для более глубокого понимания значения и физиологических последствий повышения уровня СТГ в крови в ответ на занятия физическими упражнениями. Исследования Каннингэма и его коллег позволили более 15 лет назад не только установить полную аминокислотную последовательность мембранного рецептора соматотропина, но и показали, что внеклеточный компонент почти идентичен гликозилированной форме рецептора, выделенного из сыворотки человека (Cunningham, Wells, 1989; Cunningham et al., 1991). Эти исследователи доказали, что одна молекула СТГ с мол. массой 22 кДа образует комплекс с внеклеточными рецепторами двух молекул рецептора СТГ. При низких концентрациях СТГ рецептор связывается с двумя различными участками на поверхности молекулы гормона.
Знание молекулярных основ этого физиологического взаимодействия позволило Росволу (Roswall et al., 1996) разработать два различных типа биологических методов определения СТГ. Один, который носит название высокоэффективная рецепторсвязывающая хроматография (high performance receptor binding chromatography, HPRBC), заключается в сравнении в способности исследуемого образца СТГ и стандартного образца рСТГ формировать стабильный комплекс 2:1 рецептор/СТГ с растворимым рецептором СТГ. Для анализа полученного комплекса использовали эксклюзионную хроматографию в неденатурирующих условиях. Страсбургер с коллегами недавно разработали метод иммуно-функционального иммуноанализа со связанным ферментом (ИФА), который основан на более ранних работах Каннингама и его коллег (Strasburger et al., 1996). В этом методе для оценки функциональной активности препаратов, содержащих гормон роста, используют моноклональные антитела к СТГ и биотинилированный СТГ-связывающий белок. ИФА также применялся для определения содержания соматотропина в системе кровообращения после занятий физическими упражнениями (Nindl et al., 2000).
Второй метод, предложенный Росволлом (Roswall et al., 1996), носит название тест клеточной пролиферации (cell proliferation assay, СР) и состоит в том, что клетки клеточной линии миелоидной лейкемии мыши FDC-P1, трансфецированиые полным геном рецептора, инкубировали с исследуемыми образцами, содержащими СТГ, и оценивали как показатель биологической активности пролиферацию клеток по включению 3Н-меченого тимидина в ДНК. Подобный подход был использован для определения активности различных вариантов СТГ с использованием клеток Ba/F3-hGHR (Wada et al., 1998). В этих клеточных тестах проводится оценка ответной реакции (т. е. синтеза ДНК как показателя пролиферативной активности клеток), которая отделена от процесса димеризации рецептора несколькими звеньями сигнальной цепи. Росволл и его коллеги считают, что благодаря этому мы можем стать “еще на несколько шагов ближе к пониманию биологического ответа in vim" (Roswall et al., 1996, p. 36).
Сравнение результатов различных методов
Сравнение активностей генетических и химических вариантов рекомбинантного соматотропина, определявшихся с использованием теста на увеличение массы тела крыс, высокоэффективной рецепторсвязывающей хроматографии и теста клеточной пролиферации является источником полезной информации, которая может иметь важное значение при проведении последующей оценки аналогичных параметров в плазме крови человека после занятий двигательной активностью. Данные табл. (Roswall et al., 1996) демонстрируют высокую активность и хорошее соответствие между результатами оценки отдельных образцов (например, дезамидированного рСТГ и окисленного рСТГ); низкую активность в случае препаратов димеров или обработанного трипсином рСТГ, а также “сверхактивность” в тесте увеличения массы тела крыс двухцепочечного варианта рСТГ. Как указывают Росволл (Roswall et al., 1996) и другие исследователи, о повышенной биологической активности двухцепочечной формы СТГ сообщалось и ранее.
Несмотря на то что тесты клеточной пролиферации, описанные Росволлом и Вала (Roswall et al., 1996; Wadaet al., 1998), еще только предстоит использовать для изучения образцов крови, отобранных до и после физической нагрузки, кажется весьма вероятным, что уже в ближайшее время они сыграют важную роль в изучении функциональной роли соматотропного гормона.
Разнообразие форм соматотропного гормона, циркулирующих в системе кровообращения
Бауман предположил, что в крови человека можно выявить до 100 различных форм соматотропина (Baumann, 1991b). Концепция, согласно которой многочисленные молекулярные формы гормона роста могут возникать в результате посттрансляционных или трансляционных модификаций продукта экспрессии в гипофизе единственного гена GH-N, очевидно, не нова. Пионерские работы, выполненные в лабораториях Льюиса, Сииха, Костьо, Баумана и других исследователей, послужили основой для последующего анализа, проведенного в статье Баумана (Baumann, 1991b). В табл., заимствованной из этой работы, представлены цифры, характеризующие процентную представленность различных форм СТГ через 15 мин после секреции. Многие исследования, результаты которых обобщает эта таблица, были выполнены до того как рекомбинантные технологии получили широкое распространение. Неудивительно поэтому, что многие из этих данных были получены с помощью традиционных биохимических методов.
В литературе представлено множество экспериментальных данных, которые позволяют охарактеризовать химическую природу различных вариантов СТГ. Короткий, но далеко не полный анализ этих работ очень важен для внутреннего понимания механизмов, обеспечивающих гетерогенность СТГ и образование его комплексов, которые могут принимать участие в ответной реакции организма на физическую нагрузку и адаптации. О том, что иммунореактивный соматотропный гормон плазмы включает несколько видов молекул с различной мол. массой, которые можно разделить эксклюзионной хроматографией, было известно более 30 лет назад. В зависимости от порядка их элюции с колонки в прошлом было удобно выделять три основных изомера (варианта) СТГ: малый, большой и очень большой. Физическая природа этих вариантов гормона роста установлена гораздо хуже по сравнению с исследованиями, в которых был использован рекомбинантный белок. Несмотря на это, детальные исследования двух групп ученых под руководством Баумана и Льюиса (Baumann, 1991а, 1991Ь, 1999; Baumann et al., 1994; Lewis et al., 2000), направленные на характеристику большой и очень большой форм гормона, позволили прийти к заключению, что эти варианты представляют собой серии олигомеров. Наличие таких же олигомеров в экстрактах гипофиза человека также подтверждает эту точку зрения, поэтому большинство ученых считает, что при агрегации может происходить образование, по крайней мере, пентамериых комплексов и различия между большими и очень большими вариантами СТГ достаточно условны. Исследователи предпочитают разбивать олигомеры на группы в зависимости от их молекулярной массы, определенной на основании профиля элюции при хроматографии на сефадексе. Помимо олигомеров СТГ, обнаружены еще заряженные формы гормона, появление которых приписывают ацетилированию, дезамидированию или расщеплению СТГ.
Исследования Столара (Stolar et al., 1984) также показывают, что основная масса большого и очень большого варианта СТГ превращается в малую форму СТГ с мол. массой 22 кДа при экстракции и хранении (например, воздействие 4 М тиоционатом калия [KSCN] и два цикла замораживания—оттаивания приводят к превращению 70 % олигомеров в мономер соматотропина). Олигомерные формы гормона, уцелевшие после столь жесткой обработки, мигрируют как отдельные полосы с мол. массой 45, 62, 80 и 110 кДа. Эти формы количественно (почти полностью) превращаются в малую форму гормона после восстановления сульфгидрильных групп. Небольшую часть продукта этой реакции составляет кислая форма СТГ. Вариант СТГ с мол. массой 20 кДа образует главным образом димеры.
Что известно о биологической активности олигомеров фермента? В целом, по результатам тестов с радиорецепторами и на грызунах, считается, что большая форма (димер) имеет пониженную активность. В то же время, по данным иммуиоферментного анализа (Strasburger et al., 1996), димеры при равной молярной концентрации имеют более высокую активность (110 %) по сравнению с мономером, мол. масса которого 22 кДа.
Свойства пяти различных вариантов соматотропина описаны в одном из последних обзоров результатов работы групп Льюиса и Синха (Lewis et al., 2000). Два из них — короткий и длинный пептиды, образующиеся в результате протеолитического расщепления молекулы СТГ между 43-м и 44-м аминокислотными остатками. Данные этих исследователей свидетельствуют в пользу концепции, согласно которой короткий пептид (СТГ[ 1 — 43|) усиливает физиологические эффекты инсулина, а длинный пептид (СТГ|44—1911) обладает антиинсулиновыми свойствами. В действительности они пишут: “Мы считаем, что этот (более крупный) пептид и есть тот самый диабетогенный продукт гипофиза, который так долго не могли найти”.
В экстрактах гипофиза умерших людей и плазме крови был обнаружен пептид с мол. массой около 3 кДа, который проявляет активность в тибиатесте па крысах (Hymer et al., 2000). Этот пептид не является фрагментом СТГ. Связь данного белка с различными формами СТГ, описанными Бауманом, остается неясной (Baumann, 1999). Неполная последовательность этого белка, которая содержит 9—25-й аминокислотные остатки из его средней части, показывает, что он не может быть продуктом расщепления соматотропина. Наиболее интересно, что многие из этих аминокислотных остатков в его составе являются неполярными, а в целом последовательность очень похожа на один из участков молекулы проинсулина. Подобно пептиду С, этот пептид, секретируемый гипофизом, несомненно, также обладает биологической активностью. По неопубликованным данным одной из наших лабораторий (Р.Г.), в экстрактах гипофиза крысы также выявлен небольшой пептид, обнаруживающий положительную реакцию в тибиатесте.
Различные формы соматотропного гормона: возрастающий объем данных
Несмотря на то что уже многие годы известно о стимулирующем воздействии физических упражнений на уровень СТГ в крови, только в последнее время был поставлен вопрос о возможном изменении соотношения различных форм в системе кровообращения под действием физической нагрузки (Nindl et al., 2003). Рассмотрим некоторые предварительные данные, полученные нами в контексте информации, рассмотренной выше. Чтобы проанализировать логическим образом и получить результаты, необходимо учитывать следующие переменные: направленность исследований; тип упражнений (интенсивность/продолжительность); тип определения СТГ; метод, использованный для выделения отдельных форм гормона; специальная обработка образцов крови.
В табл. обобщены результаты разбитых на отдельные группы исследований (в которых участвовали только люди) в соответствии с выбранными нами условиями — в каждом случае образец изучали, хотя бы двумя методами с целью углубления понимания индуцированного упражнениями повышения уровня СТГ в крови, а также оценки количественного соотношения различных форм гормона. Только в одном исследовании (Hymer ct al., 2001) для количественной оценки вариантов СТГ использовали фракционированную плазму, но всех остальных работах изучали только полную плазму.
Экспериментальные данные, накопленные к настоящему времени, свидетельствуют о том, что занятия физическими упражнениями могут изменять активность или молекулярный состав СТГ в крови. Уоллес с коллегами использовали семь различных методов для количественной оценки СТГ у 17 мужчин, занимавшихся аэробной тренировкой, до и после 20 мин велоэргометрии при 80 % V02max, чтобы оценить изменения в содержании различных молекулярных изоформ под воздействием физической нагрузки (Wallace et al., 2001). Сыворотку крови анализировали специфическими антителами к суммарному, гипофизарному, форме 22 кДа, рекомбинатному, не содержащему форму 22 кДа, форме 20 кДа и иммунофункциональному (ИФ) СТГ. Основными результатами этого исследования были выводы о том, что: а) во время и после воздействия физической нафузки происходит повышение содержания в крови всех форм СТГ; б) после прекращения занятия физическими упражнениями преобладающей изоформой был 22 кДа СТГ с мол. массой 73 %; в) соотношение “СТГ, не содержащий формы с 22 кДа” / “суммарный СТГ” и “20 кДа СТГ” / “суммарный СТГ” возрастало, а соотношение “рекомбинантный СТГ" / “гипофизарный СТГ” уменьшалось. Уоллес (Wallace et al., 2001) объяснял увеличение изоформ, отличных от 22 кДа СТГ, более медленным исчезновением 20 кДа и, возможно, других (кроме 22 кДа) форм гормона. В целом результаты, полученные Уоллесом, показывают, что при воздействии интенсивной физической нафузки и в период восстановления происходит изменение соотношения различных изоформ СТГ. Несмотря на то что СТГ с мол. массой 22 кДа был преобладающей молекулярной изоформой, обнаруживаемой в максимальных концентрациях, в период восстановления после воздействия физической нагрузки происходило увеличение других изоформ гормона роста. Это говорит о том, что относительное содержание форм с мол. массой 20 к Да, 17 кДа, а также форм с мол. массой более 22 кДа (димеров, олигомеров и комплексов с серосодержащими белками) после занятий физическими упражнениями возрастает. Авторы предположили, что увеличение доли изоформ с мол. массой, отличающейся от 22 кДа, в период после воздействия физической нагрузки может быть обусловлено дифференциальной секрецией различных изоформ гормона гипофизом, образованием фрагментов, димеров и олигомеров в кровеносной системе, а также различной скоростью клиренса разных форм гормона. Авторы также предположили, что биологический смысл обнаруженных ими явлений может заключаться в повышенном диабетогенном эффекте изоформ СТГ с небольшой молекулярной массой, что может служить механизмом предотвращения гипогликемии в период после физической нагрузки.
Продолжая эксперименты, начатые Уоллесом (Wallace et al., 2001), Химер, Кремер и Ниндл провели исследование, в котором плазму, взятую у 35 женщин до и после интенсивной физической нагрузки (6 подходов приседаний с нафузкой 10 ПМ, с интервалами для отдыха между ними продолжительностью 2 мин), фракционировали с помощью эксюпозионной хроматофафии на фи класса размеров (Hymer et al., 2001). Фракция А содержала молекулы с мол. массой более 60 кДа (предположительно олигомеры и/или мономерный СТГ, связанный с рецептором); фракция В содержала молекулы с мол. массой 30— 60 кДа (предположительно гомо- и гетеродимеры), а в состав фракции С входили молекулы СТГ с мол. массой менее 30 кДа (предположительно смесь изоформ с мол. массой 22, 20, 16, 12 и 5 кДа). После этого все образцы были проанализированы с применением иммуноферментного анализа (Diagnostic Systems Laboratory IFA), радиоиммуномефического анализа (Nichols IRMA) и радиоиммунного анализа (National Institute of Diabetes and Digestive and Kidney Diseases, KIDDKD RIA). Кроме того, был проведен анализ всех образцов до и после обработки глутатионом (GSH) с целью определения эффекта химического восстановления дисульфидных связей. Определение иммунореактивности показало, что для фракции А этот показатель составлял 4 —11 % суммарного СТГ плазмы, для фракции В — 22 —45 % и для фракции С — 44—72 %. Существенное увеличение этого показателя, индуцированное физической нагрузкой, обнаружено для низкомолекулярных форм СТГ (30—60 кДа и менее 30 кДа), но не для высокомолекулярной фракции гормона (более 60 к Да). Другим важным результатом стал тот факт, что химическая редукция образцов, взятых после занятий физическими упражнениями, приводила к увеличению иммунореактивного СТГ, по данным тестов Nichols IRMA и KIDDKD RIA, более значительному, чем это наблюдалось для образцов, взятых до занятия. Это говорит о том, что физическая нагрузка может специфически увеличивать секрецию молекул гормона и/или их фрагментов, связанных дисульфидными мостиками. По данным этого исследования, наиболее значительное влияние интенсивная физическая нагрузка оказывает на димерную форму гормона. Поскольку комплексы СТГ и СТГ-связывающего белка имеют большую продолжительность существования по сравнению со свободным гормоном, вполне вероятно, что димерная форма также обладает большей продолжительностью жизни. Таким образом, суммарный эффект увеличения изоформ СТГ в данном диапазоне молекулярных масс может заключаться в продлении биологической активности этих форм в период после занятий физическими упражнениями.
В работе Ниндла и его соавторов (Nindl et al., 2000) были представлены результаты сопоставления воздействия физической нагрузки на иммунофункциональный (ИФ) СТГ по сравнению с иммунореактивным (ИР) СТГ. Сравнивали концентрацию ИФ и ИР СТГ у мужчин и женщин до и после занятий интенсивными силовыми упражнениями (т. е. 6 подходов приседаний с нагрузкой 10 ПМ и продолжительностью интервалов для отдыха между ними 2 мин). Концентрация ИФ СТГ определялась с помощью твердофазного иммуноферментного анализа (ELISA, Diagmostic Systems Laboratories, Webster, TX, USA), который был разработан на основе результатов Сфасбургера (Strasburger et al., 1996), а концентрация ИР СТГ с помощью РИА с моноклональными антителами (Nichols IRMA, San Juan Capistrano, CA, USA). В этой работе и у женщин, и у мужчин было продемонстрировано сходное увеличение для ИР (мужчины: 1,47 по сравнению с 25,0 нг-мл_|; женщины: 4,0 по сравнению с 25.4 нг-мл-1) и для ИФ (мужчины: 0,55 по сравнению с 11,7 нг-мл-1; женщины: 1,94 по сравнению с 10.4 нг-мл-1) СТГ после занятий физическими упражнениями. В то же время содержание ИФ СТГ было существенно ниже, чем ИР СТГ, и у мужчин, и у женщин. Корреляция между значениями ИФ СТГ и ИР СТГ после физической нагрузки составила г = 0,83. Одним из выводов данного исследования стало то, что примерно половина изоформ СТГ, обнаруживаемых методом радиоиммуноанализа (Nichols IRMA), характеризуется отсутствием свободных мест связывания 1 и 2, необходимых для димеризации рецептора, что может свидетельствовать об отсутствии биологической у этой части изоформ гормона биологической активности.
В следующем эксперименте учитывали, что секреция СТГ происходит не постоянно, а имеет пульсообразный характер. У 10 мужчин определяли содержание ИФ СТГ, отбирая кровь для анализа каждые 10 мин с 17.00 до 6.00. Эксперимент повторяли дважды. Забор крови осуществляли в контрольной группе и у лиц, подвергавшихся интенсивной физической нафузке (Nindl et al., 2001). Физическая иа-фузка состояла в выполнении силовых упражнений со значительным объемом нафузки в период с 15.00 до 17.00. ИФ СТГ определяли методом радиоиммуноанализа и ИФА с поликлональными антителами. Для характеристики пульсообразного характера секреции СТГ использовали систему детекции пиков Pulsar. Несмотря на значительную корреляцию результатов оценки с использованием всех трех методов (коэффициент корреляции составлял от 0,85 до 0,95), метод радиоиммуноанализа снова показал более высокую среднюю концентрацию СТГ по сравнению с ИФ СТГ (3,98 и 1,83 нг-мл”1 соответственно). Значения максимальной амплитуды пиков секреции СТГ, определенные методом РИА, также оказались более высокими по сравнению с оценками методом ИФА (8,0 и 4,63 нг-мл-1 соответственно).
Общим для всех этих исследований (Nindl et al., 2001, 2002, 2003) стало то, что для одного и того же образца оценка ИФ СТГ составляла примерно половину значения содержания СТГ, определенного методом РИА (Nichols IRMA), который является одним из наиболее распространенных методов количественного определения СТГ при проведении медицинских анализов в США. Поскольку ИФА позволяет определять только биологически активные формы соматотропного гормона (т. е. только формы СТГ, которые способны индуцировать димеризацию рецептора с последующей передачей сигнала), дополнительные изоформы СТГ, которые выявляет РИА, вероятнее всего, представляют собой фрагменты, биологическая активность которых реализуется без участия рецепторов СТГ. Сообщалось о том, что фрагмент 44 — 191 обнаруживается в сыворотке крови человека в значительных количествах и может даже оказывать антагонистическое действие по отношению к СТГ (Rowlinson et al., 1996). Поскольку этот фрагмент лишен N-концевого участка пептидной цепи, он, вероятнее всего, не детектируется ИФ анализом. В то же время он будет выявляться РИА в зависимости от эпитопов, узнаваемых антителами. Возможно также, что дополнительные изоформы СТГ, выявляемые РИА, представляют собой высокомолекулярные комплексы СТГ (Baumann et al., 1991а; Lewis et al., 2000).
Наши исследования окончательно доказали, что, по крайней мере, часть молекул, выбрасываемых в кровеносное русло в моменты максимальной секреции СТГ, способна инициировать димеризацию рецепторов СТГ, в этом смысле она обладает биологической активностью. С другой стороны, наши данные показывают, что как в контрольной группе, так и после воздействия интенсивной физической нагрузки происходит секреция изоформ СТГ, которые не способны передавать сигнал посредством рецепторов гормона роста. Значительная корреляция результатов иммуноанализа и других методов детекции количества пиков секреции и интервалов между ними позволяет считать, что ИФА дает возможность получать качественно сопоставимую картину колебаний уровня СТГ. Причины количественных различий результатов оценки СТГ разными методами еще предстоит выяснить, однако можно предположить, что они обусловлены существованием различных молекулярных изоформ гормона. Кроме того, свой вклад в различия результатов количественной оценки СТГ могут вносить особенности условий реакции, используемых буферов, индикаторных соединений и стандартных образцов (Wood, 2001).
При проведении ИФА следует учитывать влияние, обусловленное присутствием СТГ-связывающих белков (Strasburger et al., 1996; Nindl et al., 2001). В ИФА для связывания с сайтом 1 молекулы СТГ используют рекомбинантный рецептор соматотропного гормона (recombinant growth hormone binding protein, rGHBP). Можно предположить, что данная система анализа не сможет детектировать молекулы СТГ, которые уже находятся в составе комплекса с GHBP, поскольку участок связывания 1 будет недоступным. Кроме того, при образовании комплекса СТГ со связывающим белком может закрываться доступ для моноклональных антител (тАЬ7В11) к сайту связывания 2. Сообщалось о том, что высокоаффиниый GHBP может подавлять связывание СТГ с рецепторами и проявление биологической активности в экспериментах in vitro посредством конкурирования за лиганд (Strasburger et al., 1996). Если справедливо утверждение о том, что комплекс СТГ и связывающего белка имеет слишком большой размер для проникновения в капиллярный эндотелий и связывания с клеточными рецепторами, отсутствие детекции комплексов СТГ методом ИФА представляет собой дополнительное свидетельство функциональной избирательности ИФА.
Сравнение результатов РИА (IRMA, Nichols) и ИФА (IFA, DSL) было проведено еще в одном исследовании (Rubin et al., 2003), в котором принимали участие 6 мужчин, занимавшихся тренировкой аэробной выносливости. В ходе занятия на тредмиле нагрузку увеличивали постепенно следующим образом; 60 % VO2max — 10 мин; 75 % — 10 мин; 90 % — 10 мин; 100 % — 2 мин. Анализ образцов проводили до и после обработки глутатионом (GSH, 10 мМ 18 ч при комнатной температуре), предназначенным для разрыва дисульфидных связей между возможными олигомерными комплексами СТГ. По данным РИА, концентрация соматотропина возрастала после повышения интенсивности нагрузки до 75 % V02max и оставалась повышенной в течение 30 мин после завершения занятия. При анализе образцов, обработанных GSH, РИА выявлял увеличение концентрации СТГ уже при интенсивности нагрузки 60 % V02max, а сохранение повышенного уровня гормона — на протяжении 45 мин после прекращения занятия. При интенсивности нагрузки 75 % количественные оценки СТГ методом РИА были более высокими для образцов, обработанных GSH. При проведении иммуноферментного анализа не обработанных глутатионом проб повышение уровня СТГ наблюдалось уже при интенсивности нагрузки 60 %, тогда как в пробах, инкубировавшихся с GSH повышение возрастание концентрации СТГ обнаруживалось только при увеличении интенсивности нафузки до 75 % V02max. В обоих группах образцов (обработанных и необработанных GSH) повышенный уровень соматотропина наблюдали в течение 30 мин после завершения занятия физическими упражнениями. Эти результаты говорят о том, что инкубация образцов сыворотки в присутствии глутатиона перед проведением количественной оценки СТГ методом радиоиммунометрического анализа может приводить к разрыву дисульфидных связей, удерживающих комплексы молекул СТГ, и последующему изменению значения содержания общего гормона роста.
Результаты тибиатеста и реакция на физическую нагрузку
Решение вопроса о расхождениях в результатах оценки концентрации СТГ с помощью тибиатеста (определение ширины эпифизарного хряща большеберцовой кости крыс после введения препарата гормона роста) и методами иммуноапализа имеет важное значение при планировании будущих экспериментов, направленных на выяснение взаимосвязи между различными изоформами СТГ и физической нагрузкой. Очень важно рассмотреть суммарный СТГ как совокупность изоформ, которые реагируют с высокоаффинными антителами к “нативной”, описанной в учебниках форме соматотрононого гормона с мол. массой 22 кДа (поддающийся оценке иммуно-анализом соматотропин, иСТГ), и тех изоформ, которые не реагируют с этими антителами, но стимулируют ростовые процессы, которые могут быть определены в биологическом тибиатесте (поддающийся оценке биологическими методами соматотропин, 6СТГ). Вполне вероятно, что гипофиз секретирует различные формы соматотропина, которые отличаются по своим функциям (например, имеют липолитическую активность), однако литература по данному вопросу ограничена.
В настоящее время создастся впечатление, что тибиатест является предпочтительным в случае, если речь идет об оценке “функционального статуса” СТГ в исследуемом образце. Несмофя на фудосмкость, а также значительные финансовые и временные затраты, этот тест даст информацию, которую невозможно получить никаким другим способом. Нет сомнений в том, что современному исследователю или врачу удобнее и понятнее работать с данными оценки СТГ в плазме методом иммуноанализа. Однако расчетные концентрации 6СТГ, упоминаемые в научных публикациях, часто составляют сотни или даже тысячи нанофамм в одном миллилитре! Почему так получается? Это происходит потому, что данный метод биологического определения СТГ оценивает биологическую активность, а не нанограммы очищенного гормона. Здесь важно понимать, что очищенный СТГ, полученный из различных источников (человека, быка; мыши), и его 6СТГ дают при оценке в тибиатесте параллельные кривые дозовой зависимости. Аналогичные кривые, описывающие зависимость роста эпифизарной пластинки от количества примененного СТГ, позволяют выразить биологическую активность гормона в виде соответствующего количества стандартного препарата соматотропина с мол. массой 22 кДа.
Так или иначе, очень важно дать хотя бы какую-то оценку сложности и значимости определения наиболее важной оценки СТГ в данном физиологическом контексте. Более того, приведенные далее два примера сравнения оценок 6СТГ и иСТГ могут развеять любой возможный скептицизм в отношении определения 6СТГ тибиатестом.
Различия между оцениваемыми биологическими тестами, соматотропным гормоном и иммунным анализом СТТ
Крысы сыграли важную роль в развитии наших современных представлений и различиях между 6СТГ и иСТГ. Например, многие исследователи сообщают о том, что стимулы (например, пониженные температуры, гипогликемия, физические нагрузки), которые вызывают повышение концентрации СТГ в плазме крови у человека, не оказывают никакого воздействия па уровень иСТГ в кропи. Исследования одного из авторов этой статьи (Р.Г.) позволили установить, что у крыс в ответ на эти стимулы происходит секреция форм СТГ, которые не узнаются антителами к СТГ крысы с мол. массой 22 кДа (Ellis, Grindeland, 1974). Вместе с тем, несмотря на отсутствие иммунореактивности, эти формы гормона вызывают существенный рост экспериментальных крыс (Ellis, Grindeland, 1974).
Полученные результаты позволяют сделать общее, хотя и по-прежнему спекулятивное заключение, что несмотря на отсутствие явной взаимосвязи между иСТГ и 6СТГ у крыс, колебания соотношения биологически активный/ иммунореактивный СТГ человека в биологических образцах имеют тенденцию к изменениям в том же направлении. Однако, поскольку титр иСТГ и 6СТГ человека не прямо пропорциональны между собой, мы считаем, что результаты оценки иСТГ не могут быть использованы в качестве показателя общего содержания СТГ в крови.
Почти совпало с этими ранними исследованиями 6СТГ крысы и человека обнаружение плазмина, проявлявшего протеазную активность н отношении СТГ высших животных (крысы, быка), которая приводила к снижению либо устранению иммунологической активности гормона с мол. массой 22 кДа (Ellis et al., 1968). Вместе с тем в результате такой обработки происходило образование пептидов с нормальной или даже повышенной биологической активностью. Другими исследователями было показано, что иСТГ человека после обработки плазмином человека не теряет иммунореактивности, но увеличивает биологическую активность (Singh et al., 1974; Lewis et al., 1975; Nguyen et al., 1981). Ясно, что соотношение имммунореактивность/биологическая активность молекулы СТГ с мол. массой 22 кДа после ферментативной обработки может существенно изменяться.
Исследования влияния постельного режима на уровень СТГ в крови
У лиц, выполняющих физические упражнения с небольшой нагрузкой (например, сгибание стоп) в течение нескольких минут, наблюдается одно-двукратное увеличение уровня 6СТГ в крови, при этом содержание иСТГ практически не изменяется. Однако в случае абсолютного постельного режима, когда тело находится в горизонтальном положении, аналогичная физическая нагрузка не сопровождается никакими изменениями 6СТГ и иСТГ (McCall et al., 1977). Интересно, что несколько дней спустя после прекращения постельного режима способность к увеличению секреции 6СТГ в ответ на физическую нагрузку восстанавливается.
Что могут означать эти результаты в отношении различных вариантов СТГ и занятий физическими упражнениями? В работах, посвященных вопросам физиологии двигательной активности, в качестве основного механизма стимуляции увеличения секреции СТГ в ответ на увеличение мышечной активности рассматривается изменение концентрации метаболических регуляторов в крови. Интересно, что ни один из наиболее часто упоминаемых метаболических факторов (таких, как лактат, глюкоза крови) не может объяснить снижения концентрации в плазме 6СТГ. Такое явное несоответствие породило у одного из авторов этой главы вопрос о существовании механизма нервной регуляции секреции СТГ. Ответ на этот вопрос, вероятнее всего, “да”, однако здесь окончательное слово должны сказать физиологи.
Афферентные мышечные нервы, регулирующие высвобождение соматотропного гормона у крыс
В первоначальных исследованиях использовали животных, у которых перерезали нервы, иннервирующие задние конечности. При электрической стимуляции дистального конца нерва в течение 15 мин импульсами, напоминающими те, которые возникают у крысы, бегущей со скоростью 2,4 км в час, никаких изменений в содержании 6СТГ и и СТГ в плазме крови и гипофизе обнаружено не было (Gosselink et al., 1998, 2000; McCall et al., 2000).
В то же время при стимуляции проксимального конца перерезанного нерва, иннервирующего быстро-сокращающиеся мышечные волокна, уже через 5 мин наблюдалось существенное (одно-, двухкратное) увеличение уровня 6СТГ в плазме крови! Существенно также и то, что увеличение уровня 6СТГ в плазме крови сопровождалось значительным снижением концентрации 6СТГ в гипофизе. Вместе с тем не обнаруживалось никаких изменений содержания иСТГ ни в плазме крови, ни в гипофизе. Не менее интересен и тот факт, что стимуляция проксимального конца нервов камбаловидной мышцы приводила к снижению концентрации 6СТГ в плазме. Это наблюдение предполагает наличие специфичности действия мышечных групп в этом афферентном пути.
Полученные результаты представляют интерес с двух точек зрения. Во-первых, они подтверждают существование механизма нервной регуляции гипофизарной системы синтеза СТГ, функционирующего наряду с метаболической системой регуляции. Во-вторых, мы считаем, что эти эксперименты позволяют по-новому оценить физиологическое значение 6СТГ. Если предположить, что одной из важнейших функций СТГ является обеспечение постоянного снабжения сердца и мозга глюкозой, то эти результаты укладываются в рамки существующей концепции. Значительный выброс СТГ н ответ на увеличение метаболических потребностей (например, голодание, гипогликемия или пониженная температура внешней среды) и увеличение секреции СТГ в ответ на активацию покоящейся мышцы, отвечающей за движение, предполагают существование механизмов обеспечения возрастающего потребления глюкозы тканями. Это защитные механизмы организма.
Известно, что у человека секреция иСТГ возрастает в ответ па физическую нагрузку, однако этот ответ обнаруживается только спустя 15—20 мин после начала двигательной активности. Предположим, что в состоянии покоя икроножная и другие постуральные (отвечающие за поддержание осанки) мышцы, активность которых сохраняется па 80 % даже в покос, с помощью афферентной системы иннервации подают в гипофиз сигнал к снижению продукции 6СТГ, благодаря чему другие ткани организма, а не только мозг и сердце, получают возможность использовать глюкозу как источник энергии. При активации локомоторных (приводящих тело в движение) мышц в гипофиз поступает сигнал, стимулирующий продукцию 6СТГ. Итоговый эффект предположительно заключается в ограничении использования глюкозы активными мьшщами и стимуляции их перехода на другие источники энергии, такие, как жирные кислоты из жировых запасов.
На рис. предлагаем модель, адаптированную из нашей публикации (McCall et al., 2001), которая описывает мышечно-нейронную цепь обратной связи, обеспечивающую регуляцию секреции СТГ гипофизом. На этом рисунке нервные импульсы поступают в гипоталамические нейроны. Вместе с тем вполне вероятно, что они могут поступать непосредственно в переднюю долю гипофиза. Научных публикаций, в которых упоминается об иннервации гипофиза, очень мало. В одной из относительно недавних работ (Paden et al., 1994, p. 503) говорится об “удивительно обширной иннервации передней доли гипофиза”. Интересно, что нервные окончания, иннервирующие гипофиз, часто ассоциированы с кровеносными сосудами и не похожи на обычные вазомоторные нервные волокна. Их распределение достаточно неравномерно, кажется, что они контактируют только с частью железистых клеток (СТГ/адренокортикотропный гормон; АКТГ).
Острые и хронические эффекты при выполнении силовых упражнений и биологически активный соматотропный гормон
В одном из последних исследований мы (Кремер, Химер и Нипдл) изучали влияние интенсивной силовой тренировки (т. е. 6 подходов приседаний с нагрузкой 10 ПМ с интервалом для отдыха 2 мин) на уровень 6СТГ до и после 6 месяцев периодизированной силовой тренировки у молодых здоровых женщин. Результаты этого исследования показывают, что хотя интенсивная физическая нагрузка не приводит к изменениям уровня 6СТГ в крови, после 6 месяцев регулярных занятий силовыми упражнениями наблюдается заметное повышение уровня 6СТГ. Эти результаты свидетельствуют о том, что одним из положительных эффектов продолжительных регулярных занятий силовой тренировкой является увеличение биологической активности соматотропного гормона в кровеносной системе. Эго новое открытие, возможно, представляет собой один из механизмов, которые обеспечивают благотворное влияние силовой тренировки на скелетно-мышечную систему.
Заключение
Основные положения, которые мы попытались проиллюстрировать в этой главе, можно сформулировать следующим образом.
1. Молекулы СТГ гетерогенны. В этой главе дано определение и рассмотрены различные аспекты гетерогенности СТГ. К ним можно отнести: а) варианты молекул гормона с различной молекулярной массой и размером, которые являются продуктом экспрессии одного гипофизарного гена СТГ; б) гетерогенность, обусловленную различной активностью гормона, которая может быть определена по ответной реакции, которую они вызывают: биологической Шг vivo) или иммунологической (in vitro)', в) гетерогенность клеток гипофиза, которые вырабатывают и секретируют молекулы СТГ.
2. Аэробные и силовые упражнения могут приводить к дифференциальной секреции различных изоформ соматотропного гормона в кровеносную систему. Сегодня существуют только отдельные исследования, посвященные анализу изменений молекулярного состава СТГ, происходящих в ответ на физическую нагрузку. Вместе с тем все они поддерживают точку зрения о том, что физическая нафузка стимулирует секрецию олигомерных форм СТГ с молекулярной массой 22 кДа. Результаты оценки уровня СТГ биологическими методами и иммуноанализом часто не совпадают. Интенсивность и продолжительность упражнений играют главную роль в этом раздвоении активности. После физических тренировок в состоянии покоя происходит увеличение уровня СТГ, который стимулирует рост костей у крыс.
3. Клеточная система продукции СТГ в гипофизе крысы гетерогенно. Для гипофиза человека также может быть характерна подобная гетерогенность клеток, вырабатывающих СТГ, однако провести исследования, которые бы позволили доказать это положение, достаточно сложно. Экспериментальные данные показывают, что секреторные гранулы, содержащие СТГ, а также клетки, производящие СТГ, различаются между собой. Такая гетерогенность, очевидно, имеет определенный биологический смысл. Чтобы установить взаимосвязь между этими компонентами у крыс и человека при воздействии физической нагрузки, требуются дополнительные исследования.
4. Регуляторные механизмы, ответственные за секрецию вариантов СТГ гипофизом, могут включать сигналы от нервных окончаний, расположенных в мышцах, которые подвергаются нагрузке при выполнении физических упражнений. В этой главе нами представлены доказательства существования новой цепи обратной связи между определенными мышцами и гипофизом. Вполне вероятно, что эта цепь существует у человека и у крыс. Эта система регуляции может быть важным фактором контроля выработки и секреции различных изоформ гормона в гипофизе.
В заключение хотелось бы отметить, что читателям этой главы наверняка известно, что информационный взрыв, который мы сейчас переживаем в биологических науках, является результатом не только исследований прошлых лет, по и стремительного развития технологий, а также увеличения количества накопленных данных. Это очевидно. Авторы проанализировали плодотворные исследования, проведенные почти 50 лет назад, и попытались показать, что они не утратили своей значимости и сегодня, помогая более полно, оценить роль, которую различные молекулярные формы СТГ могут играть в положительном воздействии занятий физическими упражнениями на организм человека. Мы попытались показать, что успешное сочетание экспериментальных подходов, которые применяются в эндокринологии, биохимии, клеточной биологии и физиологии двигательной активности, позволяет по-новому взглянуть на значение, которое может иметь молекулярная гетерогенность СТГ в занятиях физическими упражнениями. Несомненно, начало здесь положено, однако предстоит сделать гораздо больше.
Литература
Baumann, G. (1991а) Growth hormone heterogeneity: genes, isohormones, variants, and binding proteins. Endocrine Reviews 12(4), 424-449.
Baumann, G. (1991b) Metabolism of growth hormone (GH) and different molecular forms of GH in biological fluids. Hormone Research 36 (suppl. 1), 5-10.
Baumann, G. (1999) Growth hormone heterogeneity in human pituitary and plasma. Hormone Research 51 (suppl. 1), 2-6.
Baumann, G., Shaw, М., Ambum, K. et al. (1994) Heterogeneity of circulating growth hormone. Nucear Medicine and Biology 21(3), 369-379.
Bigbee, A.J., Gosselink, K.L., Roy, R.R., Grindeland, R.E. & Edger-ton, V.R. (2000) Bioassayable growth hormone release in rats in response to a single bout of treadmill exercise. Journal of Applied Physiology 89(6), 2174-2178.
Cunningham, B.C. & Wells, J.A. (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244(4908), 1081-1085.
Cunningham, B.C., Ultsch, M, De Vos, A.M. et al. (1991) Dimeri-zation of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254(5033), 821-825. Dannies P.S. (1999) Protein hormone storage in secretory granules: mechanisms for concentration and sorting. Endocrine Reviews 20(1), 3-21.
Ellis, S. & Grindeland, R.E. (1974) Dichotomy between bioassayable and immunoassayable growth hormone. In: Advances in Human Growth Hormone Research (Raiti, S., ed.). DHEW Publication No. (NIH) 74-612, US Government Printing Office, Washington, D.C.: 409-433.
Ellis, S., Nuenke, J.M. & Grindeland, R.E. (1968) Identity between the growth hormone degrading activity of the pituitary gland and plasmin. Endocrinology 83(5), 1029-1042.
Farrington, M. & Hymer, W.C. (1990) Growth hormone aggregates in the rat adenohypophysis. Endocrinology 126, 1630-1638.
Gosselink, K.L., Grindeland, R.E., Roy, R.R. et al. (1998) Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary. Journal of Applied Physiology 84(4), 1425-1430. Gosselink, K.L., Grindeland, R.E., Roy, R.R. et al. (2000) Afferent input from rat slow skeletal muscle inhibits bioassayable growth hormone release. Journal of Applied Physiology 88(1), 142-148. Greenspan, F.S., Li, C.H., Simpson, M.E. & Evans, H.M. (1949) Bioassay of hypophyseal growth hormone: the tibia test. Endocrinology 45, 455-463.
Hunter, W.M. & Greenwood, F.C. (1964) A radio-immunoelectropho-retic assay for human growth hormone. Biochemistry Journal 91(1), 43-56.
Hymer, W.C. & McShan, W.H. (1963) Isolation of rat pituitary granules and the study of their biochemical properties and hormonal activities. Journal of Cell Biology 117(1), 67-86.
Hymer, W.C, Kirshnan, K., Kraemer, W., Welsch, J. & Lanham, W. (2000) Mammalian pituitary growth hormone: applications of free flow electrophoresis. Electrophoresis 21(2), 311-317.
Hymer, W.C, Kraemer, W.J., Nindl, B.C. et al. (2001) Characteristics of circulating growth hormone in women after acute heavy resistance exercise. American Journal of Physiology. Endocrinology and Metabolism 281(4), E878-E887.
Lewis, UJ., Pence, S.J., Singh, R.N. & VanderLaan, W.P. (1975) Enhancement of the growth promoting activity of human growth hormone. Biochemical and Biophysical Research Communications 67(2), 617-624.
Lewis, UJ., Sinha, Y.N. & Lewis, G.P. (2000) Structure and properties of members of the hGH family: a review. Endocrine Journal 47 (suppl.), S1-S8.
McCall, G.E., Goulet, C, Grindeland, R.E. et al. (1997) Bed rest suppresses bioassayable growth hormone release in response to muscle activity. Journal of Applied Physiology 83(6), 2086-2090.
McCall, G.E., Goulet, C, Roy, R.R. et al. (1999) Spaceflight suppresses exercise-induced release of bioassayable growth hormone. Journal of Applied Physiology 87(3), 1207-1212.
McCall, G.E., Grindeland, R.E., Roy, R.R. & Edgerton, V.R. (2000) Muscle afferent activity modulates bioassayable growth hormone in human plasma. Journal of Applied Physiology 89(3), 1137-1141.
McCall, G.E., Gosselink, K.L., Bigbee, A.J. et al. (2001) Muscle afferent-pituitary axis: a novel pathway for modulating the secretion of a pituitary growth factor. Exercise and Sport Sciences Reviews 29(4), 164-169.
Nguyen, N.Y., Grindeland, R.E. & Chrambach, A. (1981) Isolation of human growth hormone isohormones D and E in milligram amounts (II), using isoelectric focusing on polyacrylamide gel. Preparative Biochemistry 11(2), 173-189.
Nindl, B.C., Kraemer, W.J. & Hymer, W.C. (2000) Immunofunctional vs. immunoreactive growth hormone responses after resistance exercise in men and women. Growth Hormone and IGF Research 10(2), 99-103.
Nindl, B.C., Hymer, W.C, Deaver, D.R. & Kraemer, WJ. (2001) Growth hormone pulsatility profile characteristics following acute heavy resistance exercise. Journal of Applied Physiology 91(1), 163-172.
Nindl, B.C., Kraemer, W.J., Marx, J.O., Tuckow, A.P. & Hymer, W.C. (2003) Growth hormone molecular heterogeneity and exercise. Exercise and Sport Sciences Reviews 31(4), 161-166.
Paden, C, Moffett, С & Benowitz, L. (1994) Innervation of the rat anterior and neurointermediate pituitary visualized by immunocyto-chemistry for the growth-associated protein GAP-43. Endocrinology 134(1), 503-506.
Papkoff, H. & Li, C.H. (1962) Hypophyseal growth hormone. In: Methods in Hormone Research II (Dorfman, R. ed.). Academic Press, New York: 671-704.
Roswall, E.C, Mukku, V.R., Chen, A.B. et al. (1996) Novel assays based on human growth hormone receptor as alternatives to the rat weight gain bioassay for recombinant human growth hormone. Biologicals 24(1), 25-39.
Roth, J., Glick, S.М., Yalow, R.S. & Berson, S.A. (1963) Secretion of human growth hormone: physiologic and experimental modification. Metabolism 12, 577-579.
Rowlinson, S.W., Waters, M.J., Lewis, UJ. & Barnard, R. (1996) Human growth hormone fragments 1-43 and 44-191: in vitro somatogenic activity and receptor binding characteristics in human and nonprimate systems. Endocrinology 137(1), 90-95.
Rubin, M.R., Kraemer, W.J., Kraemer, R.R. et al. (2003) Responses of growth hormone aggregates to different intermittent exercise intensities. European Journal of Applied Physiology 89(2), 166-170.
Singh, R.N., Seavey, B.K., Rice, V.P., Lindsey, T.T. & Lewis, UJ. (1974) Modified forms of human growth hormone with increased biological activities. Endocrinology 94(3), 883-891.
Stolar, M.W., Amburn, K. & Baumann, G. (1984) Plasma 'big' and 'big-big' growth hormone (GH) in man: an oligomeric series composed of structurally diverse GH monomers. Journal of Clinical Endocrinology and Metabolism 59(2), 212-218.
Strasburger, CJ. (1994) Implications of investigating the structure-function relationship of human growth hormone in clinical diagnosis and therapy. Hormone Research 41 (suppl. 2), 113-119.
Strasburger, CJ., Wu, Z., Pflaum, CD. & Dressendorfer, R.A. (1996) Immunofunctional assay of human growth hormone (hGH) in serum: a possible consensus for quantitative hGH measurement. Journal of Clinical Endocrinology and Metabolism 81(7), 2613-2620.
Wada, М., Uchida, H., Ikeda, M. et al. (1998) The 20-kilodalton (kDa) human growth hormone (hGH) differs from the 22-kDa hGH in the complex formation with cell surface hGH receptor and hGH-binding protein circulating in human plasma. Molecular Endocrinology (Baltimore, Md) 12(1), 146-156.
Wallace, J.D., Cuneo, R.C., Bidlingmaier, M. et ah (2001) The response of molecular isof orins of growth hormone to acute exercise in trained adult males. Journal of Clinical Endocrinology and Metabolism 86(1), 200-206.
Weiss, S., Berg land, R., Page, R., Turpen, C. & Hymer, W.C. (1978) Pituitary cell transplants to the cerebral ventricles promote growth of hypophysectomized rats: Proceedings of the Society for Experimental Biology and Medicine 159, 409-413.
Wood, P. (2001) Growth hormone: its measurement and the need for assay harmonization. Annals of Clinical Biochemistry 38(5), 471-482.
Передняя доля гипофиза
Клеточная организация передней доли гипофиза
Клеточная система передней доли гипофиза, отвечающая за выработку соматотропного гормона, отличается крайней сложностью организации. Как знания об организации этой системы могут помочь в раскрытии тайн и механизмов, лежащих в основе взаимосвязи между физическими упражнениями и соотношением различных молекулярных изоформ гормона роста? Поскольку получение хирургического или посмертного материала для изучения строения гипофиза связано со значительными сложностями, для этой цели был использован гипофиз крысы. Небольшой объем этой главы не позволяет нам подробно рассмотреть данный вопрос, поэтому мы лишь назовем основные результаты нескольких, наиболее значимых с нашей точки зрения, исследований.
Вес гипофиза человека составляет около 350 мг, крысы — 8—12 мг. В клетках одного гипофиза человека содержится около 4—8 мг соматотропного гормона; в клетках одного гипофиза крысы — примерно 20 мкг гормона. Соматотропин составляет около 80 % всей гормональной продукции клеток гипофиза.
Количественную экстракцию СТГ осуществляют путем гомогенизации тканей гипофиза при щелочном pH (9—10). При проведении электрофореза образцов гипофизарных экстрактов, денатурированных додецилсульфатом натрия, в полиакриламидном геле (ДСН—ПААГ) в нередуцирующих условиях обнаруживается несколько форм СТГ с различной молекулярной массой в диапазоне от 14 до 88 кДа. После химической редукции дисульфидных связей наблюдается 4 — 6-кратное увеличение иммунореактивности изоформ СТГ с молекулярной массой более 50 кДа (табл. 7.4). Высокомолекулярные формы СТГ представляют собой агрегаты отдельных молекул гормона, соединенных между собой дисульфидными связями, которые образуются между цистиновыми остатками пептидных цепей двух мономеров соматотропина (Lewis et al., 1975). Агрегаты соматотропина выделяются клетками гипофиза и обнаруживаются в плазме крови.
Агрегаты СТГ упакованы в секреторные гранулы диаметром около 300 мкм. Эти гранулы содержат биологически активный соматотропин (Hymer, McShan, 1963). Как отмечает Деннис (Dannies, 1999, р. 3), о молекулярных механизмах компановки гормона в гранулы известно немного, а вопрос о том, “как клетка концентрирует гормоны, остается основным вопросом эндокринологии, на который до сих пор не найдено ответа”. Для некоторых клеточных систем упаковки гормонов существуют убедительные доказательства того, что различные секретируемые белки упаковываются в различные гранулы в одной и той же клетке. Вполне возможно, что гетерогенность упакованного СТГ имеет непосредственное отношение в вопросу изменения соотношений изоформ гормона под действием физической нагрузки.
Субпопуляции секреторных гранул, содержащих СТГ крысы, могут быть разделены при помощи порточного электрофореза. При разделении выделенных из посмертного материала гипофизарных гранул, содержащих СТГ, также были обнаружены различные субпопуляции. Предварительные исследования показывают, что наиболее быстро мигрирующие в электрическом поле частицы богаты гормоном, проявляющим биологическую активность в тибиатесте, и содержат сравнительно мало ИР СТГ.
По крайней мере, два типа гипофизарных клеток крысы могут быть разделены стандартным методом центрифугирования в градиенте плотности. Соматотропный гормон, проявляющий биологическую активность в тибиатесте, содержится преимущественно в клетках с большей плотностью и представлен олигомерными формами (Farrington, Hymer, 1990).
Имплантация клеток, секретирующих СТГ в мозговые желудочки крыс с удаленным гипофизом, приводит к увеличению их массы тела и длины большеберцовых, бедренных и тазовых костей (Weiss et al., 1978). Имплантация в мозг крыс СТГ-синтезирующих клеток из фракции с большей плотностью не только приводит к увеличению массы тела, но и к увеличению ширины гипофизарной пластинки и массы икроножной мышцы (Grindeland, Hymer, unpublished).
В целом все эти данные свидетельствуют в пользу точки зрения, согласно которой существование различных изоформ соматотропного гормона обусловлено не только молекулярными механизмами, но и особенностями биологии клеток гипофиза.
Белки, связывающие соматотропный гормон
Содержание
 [убрать] 
1 Белки, связывающие соматотропный гормон1.1 История1.2 Природа и химические свойства2 Механизмы и места образования СТГ-связывающих белков3 СТТ-связывающие белки в биологических жидкостях4 Функциональные аспекты5 Регуляция выработки СТГ-связывающего белка6 СТГ-связывающий белок и заболевания7 Методы определения СТГ-связывающих белков7.1 Влияние высокоаффинного СТГ-связывающего белка на результаты оценки уровня СТГ в сыворотке крови8 Заключение9 Читайте также10 ЛитератураБелки, связывающие соматотропный гормон
Белки, связывающие соматотропный гормон (growth hormone binding proteins, GHBP), — растворимые белки, которые формируют комплексы с гормоном роста (СТГ) в кровеносной системе. Они представляют собой интегральную часть системы регуляции функции и транспорта соматотропного гормона в крови.
История
Первые сообщения о существовании в крови белков, связывающих соматотропный гормон, появились в 1960-х годах (Irie, Barctt, 1962; Touber, Maingay, 1963; Collip et al., 1964; Hadden, Prout, 1964), но в то время этим данным, как правило, еще не придавалось физиологического значения (Bcrson, Yalow, 1966а, 1966b). В 1977 г. был описан фактор, связывающий СТГ, в сыворотке беременной мыши (Peeters, Friesen, 1977). На это сообщение также не обратили особого внимания. Так продолжалось до момента, когда Бауманн и Херингтон независимо описали, охарактеризовали и частично очистили GHBP из сыворотки человека и кролика (Ymer, Herrington, 1985; Baumann et al., 1986; Hcrington et al., 1986b). Начиная с этого времени, белки, связывающие соматотропный гормон, начали рассматривать как реально существующее явление. Были описаны два СТГ-связывающих белка, один с высоким сродством к гормону, другой — с низким (Baumann et al., 1986). Поскольку с высокоаффииным GHBP работать оказалось довольно просто, он уже вскоре был идентифицирован как эктокомпонент рецептора СТГ (Leung D.W. et al., 1987; Baumann et al., 1988), а для характеристики низкоаффинного СТГ-связывающего белка понадобилось несколько лет исследований (Baumann et al., 1990; Tar et al., 1990), результатом которых стала его идентификация как трансформированного альфа2-макроглобулима (Kratzsch ct al., 1995b). В общем термин СТГ-связывающий белок или GHBP используют для обозначения белков, обладающих высоким сродством (высокоаффинных) к СТГ, и мы в этой главе также будем придерживаться этого правила, если только это не будет оговорено специально.
Природа и химические свойства
Высокоаффинный GHBP представляет собой внеклеточный компонент рецептора СТГ (Leung D.W. et al., 1987; Spencer ct al., 1988). Это гликопротеид, который состоит из одной пептидной цепи, молекулярная масса которого варьирует в широких пределах у разных видов от 28 кДа у кур до 65 кДа у человека. Такие колебания молекулярной массы в значительной степени обусловлены различным характером гликозилирования. Молекулярная масса пептидного остова составляет примерно 28—30 кДа с незначительными отклонениями от этого значения у разных видов животных. Белок, связывающий СТГ, характеризуется значительной эволюционной консервативностью, начиная от рыб и заканчивая человеком, он обнаружен в крови у всех исследованных видов позвоночных. У одних видов он образуется в результате протеолиза рецептора СТГ, у других (грызуны) — синтезируется как самостоятельный белковый продукт (см. далее). Точная структура СТГ -связывающего белка известна лишь для отдельных видов животных, во многих случаях неизвестна структура С-концевого участка. Были обнаружены два субкомпонента, каждый из которых имеет в своем составе р-складчатые листы; субкомпонент 1 на N-конце содержит сайт связывания СТГ, а С-концевой субкомпонент 2 отвечает за димеризацию рецепторов СТГ. Субкомпонент 2 и трансмембранную спираль рецептора СТГ соединяет линейный участок белка, состоящий примерно из 10 аминокислотных остатков (Baumann, Frank, 2002). Точное расположение места расщепления, которое приводит к образованию СТГ-связывающего белка, недавно было картировано на последовательности рецептора соматотропного гормона кролика: расщепление происходит во внеклеточной части белка в области аминокислотного стержня, соединяющего субкомпонент 2 и трансмембранный компонент, так что 238-й аминокислотный остаток становится С-концом GHBP, т. е. расщепление происходит на расстоянии 8 аминокислотных остатков от внешней стороны клеточной мембраны (Wang et al., 2002). На основании сходства последовательности рецептора СТГ кролика на человека в участке, соединяющем внеклеточный компонент с трансмембранным участком белка, можно предполагать, что GHBP имеет аналогичную длину, однако это предположение еще не получило прямых экспериментальных доказательств. У грызунов GHBP представляет собой продукт альтернативного образования мРНК рецептора СТГ, синтез которого происходит de novo. Он содержит на карбоксильном конце “хвост” из 27 и 17 аминокислотных остатков соответственно у мыши и крысы, гомологичный трансмембранному компоненту рецептора (Baumbach et al., 1989; Smith et al., 1989). Последовательность СТГ-связывающего белка мыши содержит соответственно 273 и крысы — 255 аминокислотных остатков. Степень гликозилирования СТГ-связывающего белка варьирует у различных видов, однако сведения в отношении остатков сахаров в составе GHBP крайне ограничены. Белок, связывающий СТГ сыворотки мыши, подвергается гликозидированию по трем аспарагиновым остаткам, тогда как тканевые GHBP (см. далее) содержат меньше углеводов в своем составе и гликозилированы всего по двум аспарагиновым остаткам (Cerio et al., 2002). У крысы СТГ-связывающий белок сыворотки крови содержит сиаловую кислоту, а тканевые GHBP—остатки маннозы (Frick et al., 1998). О подробном строении боковых углеводных цепей не известно ничего. У человека существуют два высокоаффинных СТГ-связывающих белка, которые отличаются наличием в их составе последовательности, кодируемой экзоном 3 гена GHR (Kratzsch et al., 1997b). Эти различия обусловлены полиморфизмом гена GHR в области экзона 3 (Pantel et al., 2000; Seidel et al., 2003). Наличие в составе рецептора СТГ или СТГ-связывающего белка последовательности, кодируемой экзоном 3, не имеет существенного функционального значения для связывания с соматотропный гормоном. В то же время сообщалось о небольших отличиях в корреляциях между содержанием двух изоформ СТГ-связы-вающего белка в сыворотке крови и антропометрическими и/или метаболическими параметрами (Seidel et al., 2003).
Высокоаффинный СТГ-связывающий белок соединяется с константой диссоциации в диапазоне 10-8—10~9 моль (Ymer, Herington, 1985; Baumann et al., 1986b; Smith et al., 1988; Massa et al., 1990). В отношении изоформы соматотропного гормона с молекулярной массой 20 кДа СТГ-связывающий белок обладает несколько меньшим сродством — К, 10"6— 10~7 (Baumann et al., 1986). Как и рецептор СТГ, СТГ-связывающий белок обладает способностью формировать тройные комплексы с СТГ (2 GHBP 1 СТГ), однако вследствие низкой концентрации белка в биологических жидкостях в физиологических условиях преобладают комплексы 1 : 1 GHBP-СТГ (Baumann et al., 1994). Скорость ассоциации СТГ с GHBP человека достаточно высока — примерно 2 х 107 моль~'мин-1 при 37 ”С, максимальное связывание 80 % гормона происходит в течение 5 мин, скорость диссоциации составляет 3,7 х 10-2 мин"1 при 37 °С, время диссоциации половины комплексов | 20 мин (Baumann et al., 1986; Veldhuis et al., 1993; Baumann, 1995).
Низкоаффинный СТГ-связывающий белок является компонентом плазмы, который соединяет Кd в микромолярном диапазоне (Baumann ct al., 1986, 1990; Massa et al., 1990; Tar ct al., 1990; Leung K.C. et al., 2000). Этот белок обладает значительными связывающими способностями и у человека представляет собой модифицированную форму α2-макроглобулина (“трансформированный α2-макроглобулин") (Kratzsch et al., 1995b). О молекулярной природе низкоаффинных СТГ-связывающих белков животных практически ничего не известно.
Механизмы и места образования СТГ-связывающих белков
Как отмечалось выше, высокоаффинный СТГ-связывающий белок в зависимости от вила животного может образовываться с участием различных механизмов. У человека, кролика и некоторых других видов образование GHBP происходит путем протеолитического расщепления, граничащего с мембраной участка внешнеклеточного компонента рецептора СТГ, в английском языке этот процесс получил название “shedding”, буквально — сбрасывание. Недавно был идентифицирован гормон, осуществляющий расщепление рецептора СТГ. Это цинковая металлопротеиназа из семейства ADAM, которая получила название ТАСЕ (tumor necrosis factor converting enzyme — фермент, конвертирующий фактор а некроза опухолей). Она также известна как ADAM-17 (Black et al., 1997; Chang et al., 2000). Зрелый, каталитически активный фермент ТАСЕ — это расположенный в клеточной мембране белок, который взаимодействует с рецептором СТГ и расщепляет его, в результате чего клетка “сбрасывает внешнюю часть рецептора, внутренняя часть которого также вовлекается в определенные внутриклеточные процессы. ТАСЕ отвечает за расщепление ряда трансмембранных белков, приводящее к утрате ими растворимых внеклеточных компонентов, подобно тому как это происходит в случае рецептора СТГ. Вполне возможно, что другие ферменты из этого семейства также вносят свои вклад в расщепление СТГ, однако прямых данных, которые бы подтверждали это предположение, пока не существует. Конформацнонныс изменения, происходящие с рецептором СТГ после связывания с соматотропным гормоном (димеризацня или изменения в предварительно димеризованном рецепторе СТГ), делает его менее подверженным протеолизу по сравнении} с мономерным, не связанным с гормоном рецептором СТГ (Zhang et al., 2001). На основании данных о локализации ТАСЕ и того, что рецепторы СТГ, которые на протяжении долгого времени находятся на мембране (утратившие цитоплазматический компонент), являются наиболее вероятным источником для GHBP, считают, что “сбрасывание” GHBP происходит главным образом, если не исключительно, на поверхности клетки (DAstol ct al., 1996).
Образование СТГ-связывающих белков у грызунов происходит с использованием совершенно иного механизма. У крыс и мышей гены ghr содержат специальный экзон (экзон 8А), кодирующий гидрофильный участок GHBP (см. выше), расположенный между экзонами 7 и 8 (Edens et al., 1994; Zhou et al., 1994, 1996). Экзон 8 кодирует трансмембранную спираль. Альтернативный синтез мРНК, при котором эк* зон 7 может соединяться с экзонами 8А или 8, приводит к образованию РНК, кодирующей СТГ -связывающий белок или рецептор СТГ соответственно (рис. 8.3). Оба продукта транскрипции экспрессируются в одних и тех же тканях, однако неизвестно, как именно осуществляется регуляция их относительной экспрессии. Следует отметить, что рецептор СТГ мыши может подвергаться протеолизу ТАСЕ, но крайней мере, при индукции клеток форболовым эфиром. Однако расщепление рецептора СТГ мыши происходит почти па два порядка менее эффективно но сравнению с расщеплением аналогичного белка кролика (G.Baumann, неопубликованные данные). Представляется, что in vivo большая часть, если не весь СТГ-связывающий белок, циркулирующий в системе кровообращения , образуется в результате альтернативного синтеза мРНК (Saleghi et al., 1990). Два различных механизма образования СТГ-связывающих белков схематически показаны на рис.
У макак-резус образование СТГ-связывающего белка происходит как путем протеолиза, так и с помощью альтернативного синтеза (Martini et al., 1997). В этом случае альтернативная мРНК, кодирующая GHBP, образуется в результате считывания части иптрона 7. В итоге трансмембранный компонент замещается “хвостом” из 7 аминокислотных остатков, после триплетов которых в интроне 7 расположен стоп-кодон. Какой механизм у макак отвечает за считывание альтернативной мРНК, кодирующей СТГ-связывающий белок, неизвестно.
Тканевая специфичность продукции СТГ-связывающего белка особенно хорошо изучена на грызунах; у которых GHBP легко распознать и отличить от рецептора СТГ как на уровне мРНК, так и на уровне белка, по характерной последовательности, расположенной на карбоксильном конце. Образование GHBP происходит во всех тканях, обычно белок коэкспрес-сируется с рецептором СТГ (Carlson В. et al., 1990; Lobie et al., 1992). Однако регуляция их образования не всегда происходит однотипно (Walker et al., 1992). Интересно, что значительная часть GHBP у грызунов остается связанной с клеточной (а также внутриклеточными) мембраной. Природа этой связи пока неизвестна (Frick et al., 1994, 1998). Предполагается, что последовательность Arg-Gly-Asp СТГ-связывающего белка может образовывать связь с мембраной путем взаимодействия с мембранными интегринами (Cerio et al., 2002). GHBP, который циркулирует в системе кровообращения, отличается по гликозилирующим остаткам от ассоциированной с тканями формы. Связанные с мембранами формы GHBP описаны только для грызунов. В каких тканях происходит образование СТГ-связывающих белков у видов, которые используют для этого, протеолитическое расщепление рецептора СТГ менее понятно, поскольку здесь гораздо труднее дифференцировать рецептор СТГ и СТГ-связывающий белок. Поскольку рецептор СТГ и ТАСЕ экспрессируются практически всеми клетками организма, все ткани могут теоретически рассматриваться как источник GHBP. В то же время количественные аспекты выработки СТГ-связывающих белков отдельными тканями четко не определены. На основании относительно высокой представленности рецепторов СТГ в печени принято считать, что именно этот орган является основным источником GHBP. При этом следует иметь в виду, что это мнение не имеет под собой прямых экспериментальных доказательств. Исследование градиентов СТГ-связывающего белка в венозной крови, оттекающей от различных внутренних органов, не обнаружило какого-то одного основного места выработки СТГ-связывающего белка (Segel et al., подано в печать). Вероятнее всего, что многие ткани вносят свой вклад в продукцию СТГ-связывающего белка, циркулирующего в кровеносной системе, однако относительный вклад каждой из них еще предстоит определить.
СТТ-связывающие белки в биологических жидкостях
Высокоаффинный СТГ-связывающий белок обнаруживается в крови и большинстве других биологических жидкостей, таких, как моча, лимфа, молоко, сперма, фолликулярная и амниотическая жидкость (Hattori et al., 1990; Postel-Vinay et al., 1991a; Amit ct al., 1993; Maheshwari et al., 1995; Harada et al., 1997). В спинномозговой жидкости GHBP обнаружено не было (Nixon, Jordan, 1986). В отличие от молока кролика GHBP, выделенный из молока человека, похоже в большей степени имеет отношение к рецептору пролактина, а не соматотропного гормона (Mercado, Baumann, 1994). Содержание GHBP в крови может варьировать в 10-кратном диапазоне и обычно составляет наномолярные или субнаномолярные концентрации. Такой уровень наряду с высоким сродством к СТГ позволяет СТГ-связывающему белку выступать в роли буфера и динамического модулятора, циркулирующего в кровеносной системе соматотропного гормона. При физиологических условиях в состоянии покоя около 45 % СТГ, циркулирующего в системе кровообращения, находится в связанном состоянии с высокоаффиппым GHBP (Baumann et al., 1988, 1990). Это значение динамически изменяется после секреторного выброса СТГ (Veldhuis et al., 1993).
Белок, связывающий СТГ, выявляется также в клетках (Herrington et al., 1986а; Lobie ct al., 1991; Frick et al., 1994), однако источники, предназначение и функция внутриклеточного GHBP неясны.
Низкоаффинный СТГ-связывающий белок обнаружен только в крови, где он содержится в микромолярных концентрациях (Baumann ct al., 1990; Leung К.С. et al., 2000). У человека в составе комплекса СТГ — низкоаффинный СТГ-связывающий белок находится примерно 8 % СТГ, циркулирующего в системе кровообращения. Подсчитано, что у крысы около 20 % СТГ связано с низкоаффинным GHBP (Barsano, Baumann, 1989; Baumann et al., 1989a; Leung K.C. et al., 2000).
Функциональные аспекты
Основная установленная функция СТГ-связывающих белков — образование комплекса с СТГ. Количественно эта функция имеет большее значение для высокоаффинного GHBP, чем для низкоаффинного белка. Непрямой “функцией” образования СТГ-связывающего белка является инактивация рецепторов СТГ за счет расщепления и удаления их эктокомпонента, этот процесс можно рассматривать как "обезглавливание" рецептора. Связывание с СТГ может иметь различные последствия. На локальном (клеточном/тканевом) уровне GHBP конкурирует за лиганд с рецептором СТГ, что приводит к ослаблению действия соматотропного гормона (рис. 8.5). Этот эффект легко продемонстрировать in vitro, когда GHBP ингибирует связывание СТГ с рецепторами и подавляет эффект гормона дозозависимым образом (Lim et al., 1990; Mannorctal., 1991). Еще одной возможной причиной снижения воздействия СТГ является формирование непродуктивных, не дающих сигналов димеров рецептора СТГ/GHB, поскольку трансдукция сигнала происходит только при димеризации рецепторов СТГ и правильной конформации димера. Димер рецептора СТГ/GHBP не способен выполнять функцию передачи сигнала. Подавление эффекта гормона за счет формирования таких гетеродимеров и связывания СТГ должно происходить дозозависимо от концентрации GHBP. И действительно, подобный эффект был продемонстрирован для естественно встречающихся и мутантных форм СТГ, лишенных внутриклеточного компонента (Ayling et al., 1997; Ross et al., 1997; Iida et al., 1999). Непосредственных доказательств существования такого же явления для растворимого GHBP не получено, поэтому это предположение пока что остается гипотетическим. Укороченный (с отщепленным эктокомпонентом) рецептор СТГ, в отличие от GHBP, имеет трансмембранный компонент и остается связанным с мембраной. Если рецептор СТГ существует в мембране в предварительно димеризованной форме, даже при отсутствии связывания с СТГ (Ross et al.,2001) мембранная укороченная форма рецептора будет предоставлять возможность для образования гетеродимерных комплексов, поэтому концепция гетеродимеров рецептор СТГ/GHBP по-прежнему нуждается в экспериментальном обосновании.
В отличие от своего ингибирующего воздействия in vitro, in vivo GHBP проявляет тенденцию к усилению действия соматотропного гормона. Белок, связывающий СТГ, продлевает время существования СТГ благодаря формированию комплекса большого размера, что препятствует эффективной гломерулярной фильтрации интактного гормона и выведению его с мочой — основной путь клиренса гормона роста (Baumann et al., 1987а, 1989b). Комплекс также снижает клиренс гормона, происходящий при участии рецептора СТГ путем клеточной интернализации гормона, и замедляет его химическую деградацию. У крыс СТГ в комплексе с GHBP имеет метаболический клиренс в 10 раз ниже по сравнению со свободным гормоном (Baumann et al., 1989b). У человека время полураспада комплекса СТГ—GHBP в плазме крови составляет 25—29 мин, тогда как для свободного гормона оно равно 4—9 мин (Veldhuis et al., 1993). Комплекс СТГ—GHBP, циркулирующий в кровеносной системе, служит своеобразным резервуаром гормона роста, который динамически гасит колебания его концентрации, возникающие вследствие пульсообразного характера секреции. Показано, что несмотря на свой ингибирующий эффект in vitro, GHBP в больших дозах усиливает биологическую активность СТГ in vivo (Clark et al., 1996). Таким образом, суммарный эффект высокоактивного СТГ-связывающего белка на действие СТГ в интактном организме является комплексным, зависит от концентрации и места, а также трудно предсказуем.
О модуляции действия СТГ низкоаффинным СТГ-связывающим белком известно крайне мало.
Учитывая его низкое сродство к гормону, вполне вероятно, что он формирует с гормоном роста слабый комплекс, который легко подвергается диссоциации, поэтому, вероятнее всего, что на динамику СТГ и его действие он оказывает крайне ограниченное воздействие.
Регуляция выработки СТГ-связывающего белка
У видов, в которых образование СТГ-связывающего белка происходит путем протеолиза, уровень его выработки зависит от экспрессии рецептора СТГ и регуляции активности ТАСЕ. Экспрессия рецептора СТГ зависит от стадии развития, пола, видовых особенностей, метаболического состояния; кроме того, она варьирует в различных тканях организма. О регуляции активности ТАСЕ в настоящее время не известно практически ничего. У грызунов продукция GHBP связана с экспрессией альтернативного варианта мРНК, кодирующего этот белок. Регуляция этого процесса также достаточно сложна, зависит от типа ткани и метаболического состояния организма, к тому же систематических исследований, которые бы позволили достаточно глубоко проникнуть в эту проблему, не существует. Из-за такой ограниченности данных мы будем обсуждать главным образом регуляцию уровня GHBP в сыворотке крови.
У человека основными физиологическими факторами, определяющими содержание СТГ-связывающего белка в сыворотке крови, являются степень развития организма, пол, возрастное старение и характер питания. По неизвестным причинам концентрация GHBP в сыворотке у здоровых субъектов варьирует в 10-кратном диапазоне приблизительно 0,3—3,0 нМоль (Rajkovic et al., 1994; Maheshwari et al., 1996). О возможном биологическом значении такой вариабельности также ничего не известно. Не обнаружено заметных вариаций в концентрации СТГ-связываюшего белка в сыворотке крови в течение суток (Snow et al., 1990; Carmignac et al., 1992; Carlsson L.M. et al., 1993), однако у детей обнаружены незначительные сезонные колебания с минимумом в августе (Gelander et al., 1998). Содержание GHBP в сыворотке крови крайне низкое у плода, резко возрастает в раннем детстве, остается постоянным в период полового созревания и зрелом возрасте и снова снижается, начиная с 60 лет (Daughaday et al., 1987; Holl et al., 1991; Martha et al., 1993; Maheshwari et al., 19%). Аналогичные изменения уровня СТГ-связывающего белка наблюдаются в онтогенезе у крыс (Mulumba et al., 1991). Уровень GHBP у женщин выше, чем у мужчин, подобные половые различия еще сильнее выражены у грызуном (Massa ct al., 1990; Hattori ct al., 1991; Rajkovic ct al., 1994). Вероятно, это в значительной степени обусловлено эффектом эстрогенов. В период беременности происходят изменения содержания СТГ-спязывающсго белка, которые в значительной мере проявляются у разных видов. У человека это незначительное возрастание GHBP (Blumcnfcld et al., 1992), тогда как у мыши содержание GHBP в сыворотке крови (а также мембранного GHBP в печени) возрастает очень сильно (Cramer et al., 1992; Camarillo ct al., 1998). Именно последний феномен послужил причиной первого упоминания о GHBP (Pccters, Friesen, 1977). У крыс в период беременности также происходит возрастание уровня СТГ-связывающего белка в сыворотке, но в меньшей степени по сравнению с мышами (Frick et al., 1998). Важным фактором, определяющим уровень GHBP, является питание. Неправильное питание приводит к снижению, а переедание — к возрастанию GHBP в сыворотке. Между индексом массы тела и уровнем СТГ-связывающего белка существует достоверная корреляция, особенно она выражена в случае зависимости количества висцеральных жировых отложений и уровня GHBP (Hochberg et al., 1992; Martha ct al., 1992; Roelen ct al., 1997b). Эти изменения происходят параллельно с изменениями содержания ИФР-1 и, вероятно, отражают эффект инсулина на экспрессию рецептора СТГ и соответственно уровень СТГ-связывающего белка (Baxter, Turtle, 1978; Mercado et al., 1992; Kratzsch ct al., 1996).
У грызунов возрастание СТГ приводит к росту количества СТГ-связывающего белка (Sanchez-Jimenez ct al., 1990; Carmignac ct al., 1992), однако данные no этому вопросу для человека противоречивы и не согласуются между собой (см. обзор Baumann, 2001). Из этого можно заключить, что СТГ не оказывает существенного влияния на уровень GHBP у человека. Интересно, что акромегалия — заболевание, связанное с постоянным повышенным уровнем СТГ, — в большинстве случаев ассоциирована с низким или сниженным уровнем GHBP (Amit et al., 1992; Roelen ct al., 1992; Mercado et al., 1993; Kratzsch ct al., 1995a; Fiskcr ct al., 1996). Возможно, это не обусловлено прямым воздействием СТГ, но может быть результатом других изменений, происходящих при акромегалии. Тиреоидный гормон увеличивает уровень GHBP (Amit et al., 1991; Romero et al., 1996). Эстрогены, особенно при пероралыюм применении, повышают уровень GHBP в сыворотке у человека и грызунов, но снижают его у кролика (Weissberger ct al., 1991; Carmignac ct al., 1993; Yu ct al., 1996). Андрогены понижают содержание GHBP в сыворотке (Postcl-Vinay ct al., 1991 b; Keenan ct al., 1996; Yu et al., 1996). Глюкокортикоиды снижают уровень GHBP у человека и грызунов, но повышают его у кроликов (Heinrichs ct al., 1994; Miell et al., 1994; Gabrielsson ct al., 1995). Инсулин поиышаст уровень GHBP (Mercado et al., 1992; Massa et al., 1993; Kratzsch et al., 1996), в то время как ИФР-1 понижает его (Silbergcld et al., 1994).
Двигательная активность и физические тренировки влияют на уровень GHBP в плазме крови. Интенсивная физическая нагрузка, например велоэргометрия, стимулирует кратковременное небольшое повышение GHBP (Wallace et al., 1999). Показано, что в результате продолжительных занятий аэробными упражнениями или фитнесом в большинстве случаев наблюдается снижение СТГ-связывающего белка в сыворотке крови на 10—40 % (Rocmmich, Sinning, 1997; Eliakim et al., 1998b, 2001; Scheett et al., 2002), олнако в одном из подобных исследований обнаружили небольшое увеличение GHBP (Roelen et al., 1997а). Уровень GHBP в крови обратно пропорционален пиковому потреблению кислорода и уровню физической подготовленности (Eliakim et al., 1998а). Это отчасти обусловлено упомянутой выше взаимосвязью между ожирением и GHBP. Физиологическое значение таких изменений GHBP, обусловленных двигательной активностью и физическими тренировками, еще предстоит понять до конца.
СТГ-связывающий белок и заболевания
С отклонениями от нормы уровня СТГ-связывающего белка в сыворотке крови связаны несколько патологических состояний. В большинстве случаев изменения GHBP происходят параллельно с изменением чувствительности к соматотропному гормону, поэтому предполагают, что количественные изменения GHBP отражают повышенный уровень тканевого рецептора СТГ. Наиболее распространенным среди нарушений, при которых наблюдаются отклонения от нормы GHBP, является синдром нарушения чувствительности к СТГ, обусловленный инактивирующей мутацией гена CHR (синдром Ларона), при котором происходит существенное замедление роста и нанизм (Rosenfeld et al., 1994). Отсутствие или нарушение функции рецептора СТГ обычно является прямым следствием мутантного гена GHR, который либо не экспрессируется (в случае делеции гена или нонсенс-мутации), подвергается преждевременной деградации или утрачивают сигнал, определяющий локализацию в плазматической мембране (в случае некоторых миссенс-мутаций), либо не способен связываться с СТГ (определенные миссенс-мутации) (обновленный список известных мутаций гена GHR можно найти в работе Baumann, 2002). Отсутствие GHBP-актииности в сыворотке крови пациентов с синдромом Ларона стало первым веским доказательством того, что СТГ-связывающий белок является фрагментом рецептора СТГ (Baumann et al., 1987b; Daughaday, Trivedi, 1987). Примерно у 80 % больных синдромом Ларона GHBP в крови содержится в крайне низких концентрациях или не обнаруживается вообще (Woods et al., 1997). У остальных уровень СТГ-связывающего белка нормальный или в редких случаях даже повышенный. У таких больных мутации гена GHR выражаются в утрате способности к димеризации рецептора или в отсутствии у рецептора внутриклеточного сигнального компонента (Du-quesnoy et al., 1994; Ayling et al., 1997; Kaji et al., 1997; Iida et al., 1998; Gastier et al., 2000). В случае мутации, сопровождающейся утратой трансмембранного компонента, происходит значительное возрастание активности GHBP в сыворотке крови, которая в этом случае отражает наличие мутантного растворимого рецептора СТГ, а не нормального GHBP (Woods et al., 1996; Silbergeld et al., 1997).
Некоторые заболевания, обусловленные приобретенной нечувствительностью к соматотропному гормону, также характеризуются аномально низким уровнем СТГ-связывающего белка. Катаболические нарушения, такие, как нарушение питания, неконтролируемый диабет, обусловленный инсулинорезистентностыо, посттравматичсские состояния и острые заболевания, являются примерами приобретенной устойчивости к СТГ, которая характеризуется низким уровнем ИФР-1, несмотря на нормальный или повышенный уровень секреции СТГ. В случае серьезных нарушений могут происходить нарушения роста (синдром Мориака, состояние плохо компенсируемого диабета в сочетании с гепатомегалией и задержкой роста) (Mandell, Berenberg, 1974; Mauraset al., 1991). Тот факт, что содержание GHBP в сыворотке снижается в случае нарушений, связанных с утратой чувствительности к СТГ, подтверждают представления о том, что концентрация GHBP в сыворотке крови отражает количественную представленность рецептора СТГ в тканях организма. На животных моделях катаболические состояния связаны со снижением уровня рецептора СТГ в печени и снижением чувствительности к СТГ (Baxter, Turtle, 1978; Postel-Vinay et al., 1982; Massa et al., 1993). После устранения процесса заболевания, лежащего в основе этих нарушений, чувствительность к СТГ, экспрессия рецептора СТГ и уровень СТГ-связывающего белка возвращаются к норме. Считают, что изменения экспрессии рецептора СТГ и последующего протеолитического образования GHBP в значительной степени опосредованы инсулином (Mercado et al., 1992; Hanaire-Broutin et al., 1996).
Противоположность отсутствию чувствительности к СТГ — гиперчувствителыюсть к СТГ — ассоциирована с повышенным уровнем GHBP. Единственным хорошо распознаваемым нарушением в этой группе является переедание/ожирение, которое характеризуется нормальным или повышенным уровнем ИФР-1 вследствие подавленной секреции СТГ. Уже давно обнаружено, что дети с избыточной массой тела растут быстрее по сравнению с худыми детьми (Forbes, 1977). Ожирение связано с повышенным уровнем GHBP в сыворотке крови, что может отражать повышенную активность тканевого рецептора СТГ (Hochberg et al., 1992; Kratzsch et al., 1997a; Roelen et al., 1997b). Таким образом, по биохимическим параметрам и функциональным аспектам системы СТГ-ИФР ожирение является прямой противоположностью недостаточного питания.
Об изменениях уровня низкоаффинного СТГ-связывающего белка в сыворотке крови в норме и при различных заболеваниях практически ничего не известно.
Методы определения СТГ-связывающих белков
Классические методы определения высокоаффинных и низкоаффинных СТГ-связывающих белков основаны на оценке их функциональной способности связываться с мечеными и радиоактивными изотопами СТГ с последующим разделением свободного СТГ и комплексов с GHBP методом эксклюзионной хроматографии (Baumann et al., 1986; Herington et al., 1986b). В большинстве случаев этот метод позволяет получить количественную оценку, поскольку в физиологических условиях GHBP находятся в сыворотке преимущественно в несвязанном состоянии. Поправку на связывание высокоаффинного GHBP с эндогенным СТГ следует вносить при концентрациях гормона, превышающих 10 нг-мл-1 (Baumann et al., 1989а). Варианты этого базового метода определения GHBP связыванием с СТГ используют другие методы разделения свободного и связанного СТГ, например сорбцией активированным углем или иммунопреципитацией с антителами к рецептору СТГ (Barnard et al., 1989; Amit et al., 1990; Ho et al., 1993). Для грызунов были разработаны специфические методы анализа, позволяющие различить СТГ-связывающие белки и рецептор СТГ с использованием антител против уникального гидрофильного “хвоста” молекулы GHBP фызунов (Barnard et al., 1994). Однако этот подход нельзя использовать для тех видов, где образование GHBP происходит путем протеолиза рецептора СТГ (т. е. человека, кролика и др.). Для детекции высокоаффинного СТГ-связывающего белка человека был разработан двухсайтный сэндвич-анализ, использующий некоторые принципы твердофазного иммуноанализа ELISA, — гормон-опосредованный иммунно-функциональный анализ (ligand-mediated immuno-functional assay, LIFA) (Carlsson et al., 1991). Результаты, полученные с помощью этого анализа, хорошо согласуются с оценками стандартных методик, основанными на образовании комплекса GHBP—СТГ, однако по неизвестным причинам он дает абсолютные количественные оценки GHBP ниже по сравнению с другими методами (Mercado et al., 1993). Существует одно сообщение о разработке метода определения GHBP человека, основанного на применении принципов классического радиоиммуниого анализа (меченый радиоактивными изотопами GHBP и антитела против GHBP) (Kratzsch et al., 1995а). Этот метод анализа не зависит от способности GHBP связываться с СТГ и поэтому может быть использован для количественной оценки мутантных форм СТГ-связывающего белка, неспособных образовывать комплексы с гормоном роста (как в случае некоторых вариантов синдрома Ларона). Кроме того, был разработан специфический метод радиоиммунологического анализа для GHBP человека, содержащего экзон 3 (Kratzsch et al., 1997b). Существуют также сообщения о применении других вариантов методов оценки GHBP различных видов животных, включая человека, крысу и мышь, которые основаны на тех же принципах и подходах. К сожалению, о корреляции результатов всех этих методов анализа информации практически нет. В продаже имеются коммерческие наборы для анализа СТГ-связывающих белков, однако и для них сведения о согласованности с уже существующими методами оценки, как правило, отсутствуют. Определение СТГ-связывающих белков все еще остается преимущественно исследовательской задачей, основное практическое применение этих методов в практической медицине ограничивается диагностикой нечувствительности к СТГ при синдроме Ларона.
Для анализа низкоаффинного GHBP стандартизованных методов не существует. Количественную оценку этого компонента плазмы проводили методом образования комплексов с СТГ и последующим разделением эксклюзионной хроматографией (Baumann et al., 1989а; Tar et al., 1990) либо иммунопреципитацией с антителами против альфа2-макроглобулина (Kratzsch et al., 1995b).
Влияние высокоаффинного СТГ-связывающего белка на результаты оценки уровня СТГ в сыворотке крови
Высокоаффинный СТГ-связывающий белок может препятствовать проведению иммуиоанализа СТГ в сыворотке крови из-за конкуренции с антителами за связывание с СТГ. Как правило, антитела, особенно поликлональные, обладают более высоким сродством к СТГ, чем GHBP. Тем не менее, в зависимости от условий проведения анализа величина ошибки, обусловленной присутствием в анализируемых образцах GHBP, может оказаться достаточно большой. К числу особенно подверженных такой ошибке методик можно отнести те, в которых используются моноклональные антитела против СТГ, которые обладают сравнительно низкой аффинностью, методы экспресс-анализа с ограниченным временем инкубации в неравновесных условиях, а также малочувствительные методики, где используются значительные объемы сыворотки крови. Проведение количественного анализа в неравнозначных условиях представляется довольно проблематичным, поскольку для перехода СТГ из комплекса СТГ—GHBP в комплекс с антителом требуется определенное время. По данным различных исследований, величина ошибки при определении СТГ, обусловленных присутствием СТГ-связывающего белка, может варьировать от несущественной до весьма заметной (Jan et ql., 1991; Chapman et al., 1994; Jansson et al., 1997; Fisker et al., 1998). Очень важно оценивать степень ошибки, вносимой присутствием GHBP, в случае каждой отдельной методики определения СТГ, поскольку все факторы, которые могут влиять на величину этой ошибки, неизвестны. Кроме того, протоколы проведения оценки должны быть оптимизированы, с тем чтобы сделать такую ошибку минимальной.
Заключение
В крови и других биологических жидкостях обнаружены два СТГ-связывающих белка (GHBP). Высокоаффинный GHBP представляет собой эктокомпонент рецептора соматотропного гормона, который образуется либо в результате специфического протеолитического расщепления мембранных рецепторов СТГ ферментом ТАСЕ — представителем (ADAM-17) семейства металлопротеииаз ADAM, либо секретируется в виде самостоятельного продукта мРНК, образующейся в результате альтернативного синтеза. Расщепление с участием ТАСЕ происходит в участке белка, расположенном в непосредственной близости к мембране. GHBP оказывает комплексное воздействие на транспорт СТГ в кровеносной системе, клиренс и проявление физиологического эффекта гормона роста, усиливая и ослабляя его воздействие в различных ситуациях. Физиологическое значение СТГ-связывающего гормона в регуляторной системе соматотропного гормона еще окончательно не раскрыто. Уровень GHBP в крови, по-видимому, отражает чувствительность организма к соматотропному гормону, это предположительно обусловлено количественной взаимозависимостью GHBP и рецептора СТГ. Механизмы регуляции уровня СТГ-связывающего белка в сыворотке достаточно сложны и варьируют у разных видов, в числе основных определяющих факторов — процессы онтогенеза и развития, характер питания, пол/уровень эстрогенов, у грызунов — состояние беременности. В диагностике применение СТГ-связывающих белков сегодня ограничивается обнаружением синдрома Ларона — генетически обусловленного заболевания, вызванного нечувствительностью организма к СТГ. Присутствие GHBP может вносить ошибку при количественном определении соматотропного гормона, что требует дальнейшей оптимизации методов анализа СТГ.
Низкоаффинный СТГ-связывающий белок представляет собой трансформированный а2-макроглобулин, который, очевидно, играет незначительную роль в биологии соматотропного гормона.
Литература
Amit, Tv Barkey, R.J., Youdim, М.В. & Hochberg, Z. (1990) A new and convenient assay of growth hormone-binding protein activity in human serum. Journal of Clinical Endocrinology and Metabolism 71, 474-480.
Amit, Т., Hertz, P., Ish-Shalom, S. et al. (1991) Effects of hypo or hyper-thyroidism on growth hormone-binding protein. Clinical Endocrinology 35, 159-162.
Amit, Т., Ish-Shaiom, S., Glaser, B., Youdim, M.B. & Hochberg, Z. (1992) Growth-hormone-binding protein in patients with acromegaly. Hormone Research 37, 205 -211.
Amit, Т., Dimfeld, М., Barkey, R.J. et al. (1993) Growth hormone-binding protein (GHBP) levels in follicular fluid from human preovulatory follicles: correlation with serum GHBP levels. Journal of Clinical Endocrinology and Metabolism 77, 33-39.
Ayling, R.M., Ross, R., Towner, P. et al. (1997) A dominant-negative mutation of the growth hormone receptor causes familial short stature. Nature Genetics 16, 13-14.
Barnard, R., Quirk, P. & Waters, M.J. (1989) Characterization of the growth hormone-binding protein of human serum using a panel of monoclonal antibodies. Journal of Endocrinology 123, 327-332. Barnard, R., Mulcahy, J., Garcia-Aragon, J. et al. (1994) Serum growth hormone binding protein and hepatic GH binding sites in the Lewis dwarf rat: effects of IGF-I and GH. Growth Regulation 4, 147-154.
Barsano, C.P. & Baumann, G. (1989) Simple algebraic and graphic methods for the apportionment of hormone (and receptor) into bound and free fractions in binding equilibria; or how to calculate bound and free hormone? Endocrinology 124, 1101-1106.
Baumann, G. (1995) Growth hormone binding to a circulating receptor fragment-the concept of receptor shedding and receptor splicing. Experimental and Clinical Endocrinology and Diabetes 103(1), 2-6.
Baumann, G. (2001) Growth hormone binding protein 2001. Journal of Pediatric Endocrinology and Metabolism 14, 355-375.
Baumann, G. (2002) Genetic characterization of growth hormone deficiency and resistance: implications for treatment with recombinant growth hormone. American Journal of Pharmacogenomics 2, 93-111.
Baumann, G. & Frank, S.J. (2002) Metalloproteinases and the modulation of growth hormone signalling. Journal of Endocrinology 174, 361-368.
Baumann, G. & Shaw, M.A. (1988) Immunochemical similarity of the human plasma growth hormone-binding protein and the rabbit liver growth hormone receptor. Biochemical and Biophysical Research Communications 152, 573-578.
Baumann, G. & Shaw, M.A. (1990) A second, lower affinity growth hormone-binding protein in human plasma. Journal of Clinical Endocrinology and Metabolism 70, 680-686.
Baumann, G., Stolar, M.W., Ambum, K., Barsano, C.P. & DeVries, B.C. (1986) A specific growth hormone-binding protein in human plasma: initial characterization. Journal of Clinical Endocrinology and Metabolism 62, 134-141.
Baumann, G., Amburn, K.D. & Buchanan, T.A. (1987a) The effect of circulating growth hormone-binding protein on metabolic clearance, distribution, and degradation of human growth hormone. Journal of Clinical Endocrinology and Metabolism 64, 657-660.
Baumann, G., Shaw, M.A. & Winter, R.J. (1987b) Absence of the plasma growth hormone-binding protein in Laron-type dwarfism. Journal of Clinical Endocrinology and Metabolism 65, 814-816.
Baumann, G., Ambum, K. & Shaw, M.A. (1988) The circulating growth hormone (GH)-binding protein complex: a major constituent of plasma GH in man. Endocrinology 122, 976-984.
Baumann, G., Shaw, M.A. & Amburn, K. (1989a) Regulation of plasma growth hormone-binding proteins in health and disease. Metabolism 38, 683-689.
Baumann, G., Shaw, M.A. & Buchanan, T.A. (1989b) In vivo kinetics of a covalent growth hormone-binding protein complex. Metabolism 38, 330-333.
Baumann, G., Vance, M.L., Shaw, M.A. & Thorner, M.O. (1990) Plasma transport of human growth hormone in vivo. Journal of Clinical Endocrinology and Metabolism 71, 470-473.
Baumann, G., Lowman, H.B., Mercado, M. & Wells, J.A. (1994) The stoichiometry of growth hormone-binding protein complexes in human plasma: comparison with cell surface receptors. Journal of Clinical Endocrinology and Metabolism 78, 1113-1118.
Baumbach, W.R., Homer, D.L. & Logan, J.S. (1989) The growth hormone-binding protein in rat serum is an alternatively spliced form of the rat growth hormone receptor. Genes and Development 3, 1199-1205.
Baxter, R.C. & Turtle, J.R. (1978) Regulation of hepatic growth hormone receptors by insulin. Biochemical and Biophysical Research Communications 84, 350-357.
Berson, S.A. & Yalow, R.S. (1966a) Peptide hormones in plasma. Harvey Eectures 62, 107-163.
Berson, S.A. & Yalow, R.S. (1966b) State of human growth hormone in plasma and changes in stored solutions of pituitary growth hormone. Journal of Biological Chemistry 241, 5745-5749.
Black, R.A., Rauch, C.T., Kozlosky, C.J. et al. (1997) A metallopro-teinase disintegrin that releases tumour-necrosis factor-a from cells. Nature 385, 729-733.
Blumenfeld, Z., Barkey, R.J., Youdim, M.B., Brandes, J.M. & Amit, T. (1992) Growth hormone (GH)-binding protein regulation by estrogen, progesterone, and gonadotropins in human: the effect of ovulation induction with menopausal gonadotropins, GH, and gestation. Journal of Clinical Endocrinology and Metabolism 75, 1242-1249.
Camarillo, I.G., Thordarson, G., Ilkbahar, Y.N. & Talamantes, F. (1998) Development of a homologous radioimmunoassay for mouse growth hormone receptor. Endocrinology 139, 3585-3589.
Carlsson, B., Billig, H., Rymo, L. & Isaksson, O.G. (1990) Expression of the growth hormone-binding protein messenger RNA in the liver and extrahepatic tissues in the rat: co-expression with the growth hormone receptor. Molecular and Cellular Endocrinology 73, R1-R6.
Carlsson, L.M., Rowland, A.M., Clark, R.G., Gesundheit, N. & Wong, W.L. (1991) Ligand-mediated immunofunctional assay for quantitation of growth hormone-binding protein in human blood. Journal of Clinical Endocrinology and Metabolism 73, 1216-1223.
Carlsson, L.M., Rosberg, S., Vitangcol, R.V., Wong, W.L. & Albertsson-Wikland, K. (1993) Analysis of 24-hour plasma profiles of growth hormone (GH)-binding protein, GH/GH-binding pro-tein-complex, and GH in healthy children. Journal of Clinical Endocrinology and Metabolism 77, 356-361.
Carmignac, D.F., Wells, Т., Carlsson, L.M., Clark, R.G. & Robinson, I.C. (1992) Growth hormone (GH) -binding protein in normal and GH-deficient dwarf rats. Journal of Endocrinology 135, 447-457.
Carmignac, D.F., Gabrielsson, B.G. & Robinson, I.C. (1993) Growth hormone binding protein in the rat: effects of gonadal steroids. Endocrinology 133, 2445-2452.
Cerio, R.J., Xing, F., Fatula, R.J. et al. (2002) Structurally distinct membrane-associated and soluble forms of GH-binding protein in the mouse. Journal of Endocrinology 172, 321-331.
Chapman, I.М., Hartman, M.L., Straume, M. et al. (1994) Enhanced sensitivity growth hormone (GH) chemiluminescence assay reveals lower postglucose nadir GH concentrations in men than women. Journal of Clinical Endocrinology and Metabolism 78, 1312-1319.
Clark, R.G., Mortensen, D.L., Carlsson, L.M. et al. (1996) Recombinant human growth hormone (GH)-binding protein enhances the growth-promoting activity of human GH in the rat. Endocrinology 137, 4308-4315.
Collipp, P.J., Kaplan, S.A., Boyle, D.C. & Shimizu, C.S.N. (1964) Protein-bound human growth hormone. Metabolism 13, 532-538.
Cramer, S.D., Barnard, R., Engbers, C, Thordarson, G. & Talamantes, F. (1992) A mouse growth hormone-binding protein RIA: concentrations in maternal serum during pregnancy. Endocrinology 130, 1074-1076.
Dastot, F., Sobrier, M.L., Duquesnoy, P. et al. (1996) Alternatively spliced forms in the cytoplasmic domain of the human growth hormone (GH) receptor regulate its ability to generate a soluble GH-binding protein. Proceedings of the National Academy of Sciences of the United States of America 93, 10 723-10 728.
Daughaday, W.H. & Trivedi, B. (1987) Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism). Proceedings of the National Academy of Sciences of the United States of America 84, 4636-4640.
Daughaday, W.H., Trivedi, B. & Andrews, B.A. (1987) The ontogeny of serum GH binding protein in man: a possible indicator of hepatic GH receptor development. Journal of Clinical Endocrinology and Metabolism 65, 1072-1074.
Duquesnoy, P., Sobrier, M.L., Duriez, B. et al. (1994) A single amino acid substitution in the exoplasmic domain of the human growth hormone (GH) receptor confers familial GH resistance (Laron syndrome) with positive GH-binding activity by abolishing receptor homodimerization. EMBO Journal 13, 1386-1395.
Edens, A., Southard, J.N. & Talamantes, F. (1994) Mouse growth hormone-binding protein and growth hormone receptor transcripts are produced from a single gene by alternative splicing. Endocrinology 135, 2802-2805.
Eliakim, A., Brasel, J.A., Barstow, T.J., Mohan, S. & Cooper, D.M. (1998a) Peak oxygen uptake, muscle volume, and the growth hormone-insulin-like growth factor-I axis in adolescent males. Medicine and Science in Sports and Exercise 30, 512-517.
Eliakim, A., Brasel, J. A., Mohan, S., Wong, W.L. & Cooper, D.M. (1998b) Increased physical activity and the growth hormone-IGF-I
axis in adolescent males. American Journal of Physiology 275, R308-R314.
Eliakim, A., Scheett, T.P., Newcomb, R., Mohan, S. & Cooper, D.M. (2001) Fitness, training, and the growth hormone-insulin-like growth factor I axis in prepubertal girls. Journal of Clinical Endocrinology and Metabolism 86, 2797-2802.
Fisker, S., Frystyk, J., Skriver, L. et al. (1996) A simple, rapid immunometric assay for determination of functional and growth hormone-occupied growth hormone-binding protein in human serum. European Journal of Clinical Investigation 26, 779-785.
Fisker, S., Ebdrup, L. & Orskov, H. (1998) Influence of growth hormone binding protein on growth hormone estimation in different immunoassays. Scandinavian Journal of Clinical and Laboratory Investigation 58, 373-381.
Forbes, G.B. (1977) Nutrition and growth. Journal of Pediatrics 91, 40-42.
Frick, G.P., Tai, L.R. & Goodman, H.M. (1994) Subcellular distribution of the long and short isoforms of the growth hormone (GH) receptor in rat adipocytes: both isoforms participate in specific binding of GH. Endocrinology 134, 307-314.
Frick, G.P., Tai, L.R., Baumbach, W.R. & Goodman, H.M. (1998) Tissue distribution, turnover, and glycosylation of the long and short growth hormone receptor isoforms in rat tissues. Endocrinology 139, 2824-2830.
Gabrielsson, B.G., Carmignac, D.F., Flavell, D.M. & Robinson, I.C. (1995) Steroid regulation of growth hormone (GH) receptor and GH-binding protein messenger ribonucleic acids in the rat. Endocrinology 136, 209-217.
Gastier, J.M., Berg, M.A., Vesterhus, P., Reiter, E.O. & Francke, U. (2000) Diverse deletions in the growth hormone receptor gene cause growth hormone insensitivity syndrome. Human Mutation 16, 323-333.
Gelander, L., Bjamason, R., Carlsson, L.M. & Albertsson-Wikland, K. (1998) Growth hormone-binding protein levels over 1 year in healthy prepubertal children: intraindividual variation and correlation with height velocity. Pediatric Research 43, 256-261.
Hadden, D.R. & Prout, T.E. (1964) A growth hormone binding protein in normal human serum. Nature 202, 1342-1343.
Hanaire-Broutin, H., Sallerin-Caute, B., Poncet, M.F. et al. (1996) Effect of intraperitoneal insulin delivery on growth hormone binding protein, insulin-like growth factor (IGF)-I, and IGF-binding protein-3 in IDDM. Diabetologia 39, 1498-1504.
Harada, I., Tsutsumi, O., Momoeda, M. et al. (1997) Comparative concentrations of growth hormone-binding protein in maternal circulation, fetal circulation, and amniotic fluid. Endocrine Journal 44, 111-116.
Hattori, N., Shimatsu, A., Kato, Y. & Imura, H. (1990) Growth hormone and growth hormone binding protein in human urine. Kidney International 37, 951-954.
Hattori, N., Kurahachi, H., Ikekubo, K. et al. (1991) Effects of sex and age on serum GH binding protein levels in normal adults. Clinical Endocrinology 35, 295-297.
Heinrichs, C, Yanovski, J.A., Roth, A.H. etal. (1994) Dexamethasone increases growth hormone receptor messenger ribonucleic acid levels in liver and growth plate. Endocrinology 135, 1113-1118.
Herington, A.C., Ymer, S., Roupas, P. & Stevenson, J. (1986a) Growth hormone-binding proteins in high-speed cytosols of multiple tissues of the rabbit. Biochimica ct Biophysica Acta 881, 236-240.
Herington, A.C., Ymer, S. & Stevenson, J. (1986b) Identification and characterization of specific binding proteins for growth hormone in normal human sera. Journal of Clinical Investigation 77, 1817-1823.
Но, K.K., Valiontis, E., Waters, MJ. & Rajkovic, I.A. (1993) Regulation of growth hormone binding protein in man: comparison of gel chromatography and immunoprecipitation methods. Journal of Clinical Endocrinology and Metabolism 76, 302-308.
Hochberg, Z., Hertz, P., Colin, V. et al. (1992) The distal axis of growth hormone (GH) in nutritional disorders: GH-binding protein, insulin-like growth factor-I (IGF-I), and IGF-I receptors in obesity and anorexia nervosa. Metabolism 41, 106-112.
Hoi I, R.W., Snehotta, R., Siegler, B., Scherbaum, W. & Heinze, E. (1991) Binding protein for human growth hormone: effects of age and weight. Hormone Research 35, 190-197.
Iida, K., Takahashi, Y., Kaji, H. et al. (1998) Growth hormone (GH) insensitivity syndrome with high serum GH-binding protein levels caused by a heterozygous splice site mutation of the GH receptor gene producing a lack of intracellular domain. Journal of Clinical Endocrinology and Metabolism 83, 531-537.
Iida, K., Takahashi, Y., Kaji, H. et al. (1999) Functional characterization of truncated growth hormone (GH) receptor-(1-277) causing partial GH insensitivity syndrome with high GH-binding protein. Journal of Clinical Endocrinology and Metabolism 84, 1011-1016.
Irie, M. & Barrett, R.J. (1962) Immunologic studies of human growth hormone. Endocrinology 71, 277-287.
Jan, Т., Shaw, M.A. & Baumann, G. (1991) Effects of growth hor-mone-bin ding proteins on serum growth hormone measurements. Journal of Clinical Endocrinology and Metabolism 72, 387-391.
Jansson, C, Boguszewski, C, Rosberg, S., Carlsson, L.M. & Albertsson-Wikland, K. (1997) Growth hormone (GH) assays: influence of standard preparations, GH isoforms, assay characteristics, and GH-binding protein. Clinical Chemistry 43, 950-956.
Kaji, H., Nose, 0., Tajiri, H. et al. (1997) Novel compound heterozygous mutations of growth hormone (GH) receptor gene in a patient with GH insensitivity syndrome. Journal of Clinical Endocrinology and Metabolism 82, 3705-3709.
Keenan, B.S., Richards, G.E., Mercado, M. et al. (1996) Androgen regulation of growth hormone binding protein. Metabolism 45, 1521-1526.
Kratzsch, J., Blum, W.F., Ventz, M. et al. (1995a) Growth hormone-binding protein-related immunoreactivity in the serum of patients with acromegaly is regulated inversely by growth hormone concentration. European Journal of Endocrinology 132, 306-312.
Kratzsch, J., Selisko, T. & Birkenmeier, G. (1995b) Identification of transformed a2-macrogiobulin as a growth hormone-binding protein in human blood. Journal of Clinical Endocrinology and Metabolism 80, 585-590.
Kratzsch, J., Keliner, K., Zilkens, T. et al. (1996) Growth hormone-binding protein related immunoreactivity is regulated by the degree of insulinopenia in diabetes mellitus. Clinical Endocrinology 44, 673-678.
Kratzsch, J., Dehmel, B., Pulzer, F. et al. (1997a) Increased serum GHBP levels in obese pubertal children and adolescents: relationship to body composition, leptin and indicators of metabolic disturbances. International Journal of Obsesity and Related Metabolic Disorders 21, 1130-1136.
Kratzsch, J., Schreiber, G., Selisko, T. et al. (1997b) Measurement of serum exon 3-retaining growth hormone-binding protein in children and adolescents by radioimmunoassay. Hormone Research 48, 252-257.
Leung, D.W., Spencer, S.A., Cachianes, G. et al. (1987) Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330, 537-543.
Leung, K.C., Doyle, N. & Но, K.K. (2000) Characterization of a low affinity binding protein for growth hormone in rat serum. Endocrinology 141, 138-145.
Lim, L., Spencer, S.A., McKay, P. & Waters, M.J. (1990) Regulation of growth hormone (GH) bioactivity by a recombinant human GH-binding protein. Endocrinology 127, 1287-1291.
Lobie, P.E., Barnard, R. & Waters, MJ. (1991) The nuclear growth hormone receptor binding protein. Antigenic and physicochemical characterization. Journal of Biological Chemistry 266, 22 645-22 652.
Lobie, P.E., Garcia-Aragon, J., Wang, B.S., Baumbach, W.R. & Waters, M.J. (1992) Cellular localization of the growth hormone binding protein in the rat. Endocrinology 130, 3057-3065.
Maheshwari, H., Liliioja, S., Castillo, C.E., Mercado, M. & Baumann, G. (1995) Growth hormone-binding protein in human lymph. Journal of Clinical Endocrinology and Metabolism 80, 3582-3584.
Maheshwari, H., Sharma, L. & Baumann, G. (1996) Decline of plasma growth hormone binding protein in old age. Journal of Clinical Endocrinology and Metabolism 81, 995-997.
Mandell, F. & Berenberg, W. (1974) The Mauriac syndrome. American Journal of Diseases of Children (1960) 127, 900-902.
Mannor, D.A., Winer, L.M., Shaw, M.A. & Baumann, G. (1991) Plasma growth hormone (GH)-binding proteins: effect on GH binding to receptors and GH action. Journal of Clinical Endocrinology and Metabolism 73, 30-34.
Martha, P.M., Jr., Reiter, E.O., Davila, N. et al. (1992) The role of body mass in the response to growth hormone therapy. Journal of Clinical Endocrinology and Metabolism 75, 1470-1473.
Martha, P.M., Jr., Rogol, A.D., Carlsson, L.M., Gesundheit, N. & Blizzard, R.M. (1993) A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. I. Serum growth hormone-binding protein. Journal of Clinical Endocrinology and Metabolism 77, 452-457.
Martini, J.F., Pezet, A., Guezennec, C.Y. et al. (1997) Monkey growth hormone (GH) receptor gene expression. Evidence for two mechanisms for the generation of the GH binding protein. Journal of Biological Chemistry 272, 18 951-18 958.
Massa, G., Mulumba, N., Ketelslegers, J.M. & Maes, M. (1990) Initial characterization and sexual dimorphism of serum growth hormone-binding protein in adult rats. Endocrinology 126, 1976-1980.
Massa, G., Verhaeghe, J., Vanderschueren-Lodeweyckx, M. & Bouillon, R. (1993) Normalization of decreased plasma concentrations of growth hormone-binding protein by insulin treatment in spontaneously diabetic В В rats. Hormone and Metabolic Research 25, 325-326.
Mauras, N., Merimee, T. & Rogol, A.D. (1991) Function of the growth hormone-insulin-like growth factor I axis in the profoundly growth-retarded diabetic child: evidence for defective target organ responsiveness in the Mauriac syndrome. Metabolism 40, 1106-1111.
Mercado, M. & Baumann, G. (1994) A growth hormone/prolactin-binding protein in human milk. Journal of Clinical Endocrinology and Metabolism 79, 1637-1641.
Mercado, М., Molitch, M.E. & Baumann, G. (1992) Low plasma growth hormone binding protein in IDDM. Diabetes 41, 605-609.
Mercado, М., Carlsson, L.M., Vitangcol, R. & Baumann, G. (1993) Growth hormone-binding protein determination in plasma: a comparison of immunofunctional and growth hormone-binding assays. Journal of Clinical Endocrinology and Metabolism 76, 1291-1294.
Miell, J.P., Buchanan, C.R., Norman, M.R., Maheshwari, H.G. & Blum, W.F. (1994) The evolution of changes in immunoreactive serum insulin-like growth factors (IGFs), IGF-binding proteins, circulating growth hormone (GH) and GH-binding protein as a result of short-term dexamethasone treatment. Journal of Endocrinology 142, 547-554.
Mulumba, N., Massa, G., Ketelslegers, J.M. & Maes, M. (1991) Ontogeny and nutritional regulation of the serum growth hormone-binding protein in the rat. Acta Endocrinologica 125, 409-415.
Nixon, D.A. & Jordan, R.M. (1986) Conversion of CSF monomeric growth hormone to large growth hormone with exposure to serum. Acta Endocrinologica 111, 289-295.
Pantel, J., Machinis, K., Sobrier, M.L. et al. (2000) Species-specific alternative splice mimicry at the growth hormone receptor locus revealed by the lineage of retroelements during primate evolution. Journal of Biological Chemistry 275, 18 664-18 669.'
Peeters, S. & Friesen, H.G. (1977) A growth hormone binding factor in the serum of pregnant mice. Endocrinology 101, 1164-1183.
Postel-Vinay, M.C., Cohen-Tanugi, E. & Charrier, J. (1982) Growth hormone receptors in rat liver membranes: effects of fasting and refeeding, and correlation with plasma somatomedin activity. Molecular and Cellular Endocrinology 28, 657-669.
Postel-Vinay, M.C., Belair, L., Kayser, C, Kelly, P.A. & Djiane, J. (1991a) Identification of prolactin and growth hormone binding proteins in rabbit milk. Proceedings of the National Academy of Sciences of the United States of America 88, 6687-6690.
Postel-Vinay, M.CV Tar, A., Hocquette, J.F. et al. (1991b) Human plasma growth hormone (GH)-binding proteins are regulated by GH and testosterone. Journal of Clinical Endocrinology and Metabolism 73, 197-202.
Rajkovic, LA., Valiontis, E. & Ho, K.K. (1994) Direct quantitation of growth hormone binding protein in human serum by a ligand immunofunctional assay: comparison with immunoprecipitation and chromatographic methods. Journal of Clinical Endocrinology and Metabolism 78, 772-777.
Roelen, C.A., Donker, G.H., Thijssen, J.H., Koppeschaar, H.P. & Blankenstein, M.A. (1992) High affinity growth hormone binding protein in plasma of patients with acromegaly and the effect of octreotide treatment. Clinical Endocrinology 37, 373-378.
Roelen, C.A., de Vries, W.R., Koppeschaar, H.P. et al. (1997a) Plasma insulin-like growth factor-I and high affinity growth hormone-bind-ing protein levels increase after 2 weeks of strenuous physical training. International journal of Sports Medicine 18, 238-241.
Roelen, C.A., Koppeschaar, H.P., de Vries, W.R. et al. (1997b)I Visceral adipose tissue is associated with circulating high affinity growth hormone-binding protein. Journal of Clinical Endocrinology and Metabolism 82, 760-764.
Roemmich, J.N. & Sinning, W.E. (1997) Weight loss and wrestling training: effects on growth-related hormones. Journal of Applied Physiology 82, 1760-1764.
Romero, G.S., Stephan, D.A., Sperling, M.A. & Menon, R.K. (1996) Distinct sexual dimorphism in the effect of hypothyroidism on the expression of the growth hormone receptor and growth hormone-binding protein gene in rat liver. Hormone Research 45, 273-278. Rosenfeld, R.G., Rosenbloom, A.L. & Guevara-Aguirre, J. (1994) Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocrine Reviews 15, 369-390.
Ross, RJ., Esposito, N., Shen, X.Y. et al. (1997) A short isoform of the human growth hormone receptor functions as a dominant negative inhibitor of the full-length receptor and generates large amounts of binding protein. Molecidar Endocrinology 11, 265-273. Ross, RJ., Leung, K.C., Maamra, M. et al. (2001) Binding and functional studies with the growth hormone receptor antagonist, B2036-PEG (pegvisomant), reveal effects of pegylation and evidence that it binds to a receptor dimer. Journal of Clinical Endocrinology and Metabolism 86, 1716-1723.
Sadeghi, H., Wang, B.S., Lumanglas, A.L., Logan, J.S. & Baumbach, W.R. (1990) Identification of the origin of the growth hormone-binding protein in rat serum. Molecular Endocrinology 4, 1799-1805.
Sanchez-Jimenez, F., Fielder, P.J., Martinez, R.R., Smith, W.C. & Talamantes, F. (1990) Hypophysectomy eliminates and growth hormone (GH) maintains the midpregnancy elevation in GH receptor and serum binding protein in the mouse. Endocrinology 126, 1270-1275.
Scheett, T.P., Nemet, D., Stoppani, J. et al.(2002) The effect of endurance-type exercise training on growth mediators and inflammatory cytokines in prepubertal and early pubertal males. Pediatric Research 52, 491-497.
Seidel, B., Glasow, A., Schutt, M. et al. (2003) Association between the GH receptor /exon 3 genotype and the level of exon 3-positive GH-binding protein in human serum. European Journal of Endocrinology 148, 317-324.
Silbeigeld, A., Klinger, B., Keret, R. et al. (1994) Serum growth hormone-binding protein (GHBP) activity is decreased by administration of insulin-like growth factor I in three Laron syndrome siblings with normal GHBP. Proceeding of the Society for Experimental Biology and Medicine 206, 324-327.
Silbeigeld, A., Dastot, F., Klinger, B. etal. (1997) Intronic mutation in the growth hormone (GH) receptor gene from a girl with Laron syndrome and extremely high serum GH binding protein: extended phenotypic study in a very large pedigree. Journal of Pediatric Endocrinology and Metabolism 10, 265-274.
Smith, W.C. & Talamantes, F. (1988) Gestational profile and affinity cross-linking of the mouse serum growth hormone-binding protein. Endocrinology 123, 1489-1494.
Smith, W.C., Kuniyoshi, J. & Talamantes, F. (1989) Mouse serum growth hormone (GH) binding protein has GH receptor extracellular and substituted transmembrane domains. Molecular Endocrinology (Baltimore, Md) 3, 984-990.
Snow, K.J., Shaw, M.A., Winer, L.M. & Baumann, G. (1990) Diurnal pattern of plasma growth hormone-binding protein in man. Journal of Clinical Endocrinology and Metabolism 70, 417-420.
Spencer, S.A., Hammonds, R.G., Henzel, WJ. et al. (1988) Rabbit liver growth hormone receptor and serum binding protein. Purification, characterization, and sequence. Journal of Biological Chemistry 263, 7862-7867.
Tar, A., Hocquette, J.F., Souberbielle, J.C. et al. (1990) Evaluation of the growth hormone-binding proteins in human plasma using high pressure liquid chromatography gel filtration. Journal of Clinical Endocrinology and Metabolism 71, 1202-1207.
Touber, J.L. & Maingay, D. (1963) Heterogeneity of human growth hormone. Its influence on a radio-immunoassay of the hormone in | serum. Lancet 1, 403-405.
Veldhuis, J.D., Johnson, M.L., Faunt, L.M., Mercado, M. & Baumann, G. (1993) Influence of the high-affinity growth hormone (GH) -binding protein on plasma profiles of free and bound GH and on the apparent half-life of GH. Modeling analysis and clinical applications. Journal of Clinical Investigation 91, 629-641.
Walker, J.L., Moats-Staats, B.M., Stiles, A.D. & Underwood, L.E. (1992) Tissue-specific developmental regulation of the messenger ribonucleic acids encoding the growth hormone receptor and the growth hormone binding protein in rat fetal and postnatal tissues. Pediatric Research 31, 335-339.
Wallace, J.D., Cuneo, R.C., Baxter, R. et al. (1999) Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. Journal of Clinical Endocrinology and Metabolism 84, 3591-3601.
Wang, X., He, K., Gerhart, M. et al. (2002) Metalloprotease-media-ted GH receptor proteolysis and GHBP shedding. Determination of extracellular domain stem region cleavage site. Journal of Biological Chemistry 277, 50 510-50 519.
Weissbeiger, A.J., Ho, K.K. & Lazarus, L. (1991) Contrasting effects of oral and transdermal routes of estrogen replacement therapy on 24-hour growth hormone (GH) secretion, insulin-like growth factor I, and GH-binding protein in postmenopausal women. Journal of Clinical Endocrinology and Metabolism 72, 374-381.
Woods, K.A., Fraser, N.C, Postel-Vinay, M.C, Savage, M.O. & Clark, A.OJ. (1996) A homozygous splice site mutation affecting the intracellular domain of the growth hormone (GH) receptor resulting in Laron syndrome with elevated GH-binding protein. Journal of Clinical Endocrinology and Metabolism 81, 1686-1690.
Woods, K.A., Dastot, R, Preece, M.A. et al. (1997) Phenotype: genotype relationships in growth hormone insensitivity syndrome. Journal of Clinical Endocrinology and Metabolism 82, 3529-3535. Ymer, S.I. & Herington, A.C. (1985) Evidence for the specific binding of growth hormone to a receptor-like protein in rabbit serum. Molecular and Cellular Endocrinology 41, 153-161.
Yu, Y.M., Domene, H.M., Sztein, J., Counts, D.R. & Cassorla, F. (1996) Developmental changes and differential regulation by testosterone and estradiol of growth hormone receptor expression in the rabbit. European Journal of Endocrinology 135, 583-590.
Zhang, Y., Jiang, J., Black, R. A., Baumann, G. & Frank, SJ. (2000) TACE is a growth hormone binding protein (GHBP) sheddase: the metalloprotease TACE/ADAM-17 is critical for (PMA-induced) growth hormone receptor proteolysis and GHBP generation. Endocrinology 141, 4342-4348.
Zhang, Y., Guan, R., Jiang, J. et al. (2001) Growth hormone (GH)-induced dimerization inhibits phorbol ester-stimulated GH receptor proteolysis. Journal of Biological Chemistry 276, 24 565-24 573.
Zhou, Y., He, L. & Kopchick, JJ. (1994) An exon encoding the mouse growth hormone binding protein (mGHBP) carboxy terminus is located between exon 7 and 8 of the mouse growth hormone receptor gene. Receptor 4, 223-227.
Zhou, Y,, He, L. & Kopchick, JJ. (1996) Structural comparison of a portion of the rat and mouse growth hormone receptor/binding protein genes. Gene 177, 257-259.
Силовая тренировка: влияние на гормон роста
Содержание
 [убрать] 
1 Силовая тренировка: острые и хронические изменения концентрации соматотропного гормона1.1 Секреция и контроль уровня соматотропного гормона2 Молекулярная гетерогенность соматотропного гормона3 Секреция соматотропного гормона4 Изменения концентрации соматотропного гормона, индуцированные силовыми упражнениями5 Читайте такжеСиловая тренировка: острые и хронические изменения концентрации соматотропного гормона
Силовые упражнения представляют собой вид двигательной активности, обладающий наиболее выраженным анаболическим воздействием на мышцы и соединительные ткани (Kraemer et al., 1996). Соматотропный гормон (СТГ), который еще называют гормоном роста, — это плейотропный полипептид, который благодаря опосредованному участию во множестве процессов роста и обмена веществ оказывает разнообразное действие на метаболическое состояние организма человека. Сложность системы продукции и секреции СТГ аденогипофизом, наличие различных комплексов и СТГ-связывающих белков (GHBP) только начинают обсуждаться в публикациях, посвященных занятиям силовыми упражнениями и силовой тренировке, и по-прежнему остаются головоломкой, многие части которой все еще требуют тщательного изучения (Nindl et al., 2003). Как бы там ни было, понимание ответных реакций и адаптационных изменений СТГ с мол. массой 22 кДа будет и в дальнейшем оставаться важным компонентом наших представлений об адаптационных реакциях организма к занятиям силовой направленности. При образовании гена hGH-N в аденогипофизе образуется основной представитель семейства СТГ с молекулярной массой 22 кДа. Этот белок состоит из 191 аминокислотного остатка (мономер с мол. массой 22 к Да составляет около 21 % всего СТГ, циркулирующего в кровеносной системе). Следующим по представленности является белок с молекулярной массой 20 кДа, составляющий около 6 % СТГ плазмы крови. Эта форма — продукт передачи мРНК, образованной в результате альтернативного синтеза, при котором утрачиваются 32—46-й аминокислотные остатки. Кроме того, гормон роста человека может подвергаться посттрансляционным модификациям и протеолитическому расщеплению в периферических тканях, вследствие чего образуются разнообразные варианты и агрегаты (т. е. димеры, тримеры, пентамеры), а также фрагменты, обнаруживаемые в крови. Существование высоко- и низкоаффинного СТГ-связывающих белков (которые секретируются гипофизом, а также образуются в результате протеолитического расщепления рецептора СТГ) еще более увеличивают комплексность природы и пространственного распределения вариантов СТГ в системе кровообращения.
Секреция и контроль уровня соматотропного гормона
Выработка и секреция многих гипофизарных гормонов находится под контролем гипоталамуса. Для стимуляции и подавления секреции СТГ организм использует гипоталамические гормоны соматолиберин (соматотронин-рилизинг-фактор) и соматостатин соответственно. Эти регуляторные факторы секретируются нейронами, расположенными в дугообразном, пери- и паравентрикулярном ядрах гипоталамуса, окончания аксонов которых достигают срединного возвышения гипоталамуса. Соматолиберин и соматостатин выделяются в портальную систему венозных капилляров, которая выполняет роль гуморального пути их передачи непосредственно в переднюю долю гипофиза. Портальная кровеносная система начинается от капиллярных петель в области срединного возвышения серого бугра гипоталамуса и по портальным венам ножки гипофиза попадает в гипофиз. В передней доле гипофиза (аденогипофизе) портальные сосуды разделяются на синусоиды, которые обеспечивают снабжение клеток питательными веществами. Эти сосуды имеют очень небольшой диаметр и чрезвычайно высокую проницаемость стенок. Благодаря этому регуляторные факторы из гипоталамуса попадают в секреторные клетки аденогипофиза (т. е. соматотрофы). Использование центрифугирования в градиенте плотности позволило выделить функционально различные типы соматотрофов (т. с. клетки типа I и II, или полосы I и II). Соматотрофные нейроны из этих двух фракций различаются также морфологически по характеру окраски и ультраструктуре клетки. Кроме того, было показано, что они различаются по своей чувствительности к гипоталамическим регуляторным факторам — клеткам типа I присуща более высокая чувствительность (Snyder et al., 1977). Вопрос о физиологическом значении такой клеточной гетерогенности, равно как и о возможном дифференциальном воздействии физической нагрузки на разные типы клеток, остается нерешенным, представляя собой привлекательное поле для будущих исследований, поскольку известно, что комплексность индуцированной двигательной активностью секреции и адаптационных изменений взаимосвязана с гетерогенностью различных молекулярных изоформ соматотропного гормона и его агрегатов.
Согласно классическим представлениям, центральным механизмом, лежащим в основе волнообразного характера секреции СТГ, является повышение уровня соматолиберина в портальной системе гипофиза в сочетании со спадом секреции соматостатина. Точные молекулярные механизмы волнообразного характера секреции пока что не выходят за рамки предположений. На основной механизм контроля накладывается влияние других регуляторных факторов, определяющих чувствительность соматотрофов в любой текущий момент времени. Существуют доказательства того, что соматолиберин стимулирует биосинтез соматотропина и его секрецию, тогда как соматостатин подавляет секрецию, не оказывая влияния на выработку гормона. Предполагают также, что соматолиберин необходим для инициации выброса СТГ, а соматостатин определяет величину этого выброса. Последнее подтверждается исследованиями, в которых было показано, что повышение уровня СТГ, индуцированное соматолиберином, усиливается в случае применения антагонистов соматостатина (а именно, пиридостигмина — ингибитора ацетилхолинэстеразы — и гексапептида стимулирующих секрецию СТГ пептидов) (Сарра et al., 1993). Клонирование рецептора, стимулирующего секрецию СТГ, также продемонстрировало существование еще одного белкового фактора, стимулирующего секрецию СТГ, лиганда этого рецептора, который дникак не удавалось идентифицировать до последнего времени, когда было установлено, что это фелин — элемент новой физиологической системы регуляции секреции СТГ.
Достоверно установлен факт циклического, волнообразного характера секреции СТГ аденогипофизом в течение суток с максимальным всплеском секреции во время фазы медленноволнового сна. Такой волнообразный характер секреции СТГ обусловлен регуляторным воздействием двух гипоталамических гормонов, один из которых — соматолиберин — стимулирует, а другой — соматостатин — подавляет выделение гормона роста. Соотношение этих двух гормонов определяет относительную величину выброса СТГ аденогипофизом.
Создается впечатление, что СТГ может оказывать негативное обратное воздействие на собственную секрецию. При введении одноразовой дозы СТГ человеку последующее увеличение секреции гормона в ответ на стимуляцию соматолиберином значительно уменьшается или не обнаруживается вообще (Scanlon et al., 1996). Такое снижение чувствительности соматотрофов может быть предотвращено предварительной активацией холинергических путей. В настоящий момент представляется, что изменения в уровне секреции СТГ опосредованы через подавление секреции соматостатина через холинергические пути (Giustina, Veldhuis, 1998). Как отмечалось выше, соматостатин подавляет секрецию СТГ, но не синтез гормона. Это очень важно, поскольку позволяет объяснить быстрое восстановление секреции СТГ после применения и последующего удаления соматостатина (Giustina, Veldhuis, 1998).
Существует множество нейромодуляторов (нейропептиды, нейротрансмиттеры, физиологические состояния), которые могут играть ту или иную роль в регуляции секреции СТГ посредством соматолиберина и соматостатина и которые подверглись пристальному вниманию при исследовании регуляторных механизмов. Было высказано предположение, что “специфический контроль секреции соматолиберина и соматостатина, осуществляемый половыми стероидами, может обусловливать половые различия, тогда как неизвестные (не с половыми отличиями) факторы могут определять способность физической нагрузки в значительной степени противостоять эффекту аутоингибирования СТГ" (Veldhuis ct al., 2004). В табл. обобщены данные об известных модуляторах секреции СТГ. Их действие может состоять в стимуляции (а1-адренергетики, аминокислоты, дофамин, мускариновые холинергетики, ГАМК(-В), галанин, соматотропин рилизинг пептид, гистамин, гипогликемия, нейромедин С, опиаты, серотонин, диабет, разовые и продолжительные физические нагрузки, недостаточное питание и стресс) либо в подавлении (а2-адренергетики, иммунизация, кортизон /глюкокортикоиды, глюкоза, гипотиреоз, ожирение, старение) секреции СТГ. Периферическая цепь обратной связи, регулирующая секрецию СТГ соматотрофами, опосредуется комплексом воздействий СТГ на мишени, а именно, инсулиноподобный фактор роста I (ИФР-1), глюкоза и жирные кислоты могут по отдельности оказывать регуляторное воздействие на активность гипоталамо-гипофизарной системы. Представленная в табл. совокупность разнообразных нейрорегуляторных факторов, оказывающих влияние па секрецию СТГ, еще раз подчеркивает комплексность системы регуляции секреции СТГ. Взаимодействие физических нагрузок и многих из этих факторов в отношении контроля секреции СТГ пока остается неясным.
Молекулярная гетерогенность соматотропного гормона
Соматотропный гормон обладает двумя уникальными особенностями: волнообразным характером секреции и значительной молекулярной гетерогенностью. При экспрессии гена GH-N образуется основной представитель семейства СТГ — изоформа гормона с молекулярной массой 22 к Да. Этот белок представляет собой одну полипептидпую цепь из 191 аминокислотного остатка, имеющую два внутренних дисульфидных мостика (мономерный СТГ с мол. массой 22 к Да составляет около 21 % всего гормона, циркулирующего в кровеносной системе). Следующей по представленности формой является молекула с массой 20 кДа (мономерный СТГ с мол. массой 20 к Да составляет около 6 % гормона, циркулирующего в кровеносной системе) — продукт трансляции мРНК, которая образуется в результате альтернативного синтеза, приводящего к утрате участка с аминокислотами 32 — 46. СТГ человека может также подвергаться посттрансляционным модификациям и протеолитическому расщеплению в местах своего воздействия, что приводит к формированию дополнительных вариантов, агрегатов (димеров, тримеров, и пентамеров), а также фрагментов гормона, часто обнаруживаемых в крови. Существование высокоаффинного и низкоаффинного СТГ-связывающих белков (GHBP), которые образуются путем секреции гипофизом и при протеолитическом расщеплении рецептора гормона роста, еще более усложняет состав и пространственное распределение разнообразных форм и комплексов гормона роста. Такая молекулярная гетерогенность может иметь определенное физиологическое значение, поскольку было показано, что различные формы гормона могут обладать различной биологической активностью (т. е. оказывать различное по величине воздействие в биологических тестах), а также различной иммунореактивностыо. Содержимое клеток гипофиза, формирующих полосу I и II при центрифугировании в градиенте плотности, может оказывать влияние па количественное соотношение различных изоформ СТГ н крови и в результате может помочь разобраться в разнообразии физиологических реакций, имеющих отношение к СТГ, которые не может объяснить одна только изоформа гормона с молекулярной массой 22 кДа (Hymer et al., 2001).
Секреция соматотропного гормона
Секреция СТГ подвержена влиянию ряда факторов, к которым относятся возраст, пол, характер питания, стресс, уровень других гормонов (таких, как половые стероиды, гормоны щитовидной железы и ИФР-1), наличие жировой клетчатки, уровень физической подготовленности и двигательной активности.
Все эти показатели могут влиять на содержание СТГ в крови. Со времени первых исследований Хантера (Hunter et al., 1965) установлено, что двигательная активность является естественным стимулятором секреции СТГ. В свою очередь СТГ имеет непосредственное отношение к стимуляции анаболических процессов в мышечной и соединительной тканях, в частности он усиливает на клеточном уровне потребление аминокислот и синтез белка в скелетных мышцах, результатом чего является гипертрофия мышечных волокон обоих типов (Noal et al., 1957; Ullman, Oldfors, 1989; Crist etal., 1991). СТГ также способен стимулировать рост хрящей и образование костной ткани, что проявляется в увеличении минеральной плотности костной ткани и в виде других признаков (Isaksson et al., 1990; van der Veen, Netelenbos, 1990; Parfitt, 1991; Bikle et al., 1995; Orwoll, Klein, 1995). Несмотря на экспериментальные данные, демонстрирующие существование обширного семейства СТГ, была выдвинута классическая догма, утверждающая, что большая часть анаболических эффектов СТГ опосредована через секрецию ИФР-1 клетками печени и других тканей (Florini et al., 1996). Это предположение, несомненно, могло бы быть достоверным в случае, если бы СТГ был представлен одной изоформой с мол. массой 22 кДа, однако факт существования суперсемейства полипептидов СТГ и связывающих белков требует ее внимательного пересмотра. Как бы там ни было, индуцированная физической нагрузкой секреция СТГ хотя бы отчасти ответственна (прямо или опосредованно) за анаболический эффект занятий физическими упражнениями. Более того, существуют полученные на крысах экспериментальные данные, которые показывают стимуляцию соматотропным гормоном аутокринной и паракринной продукции ИФР-1 скелетными мышцами, хрящевой и костной тканью (Turner et al., 1988; Isaaksson et al., 1990; Bikle et al., 1995). И наконец, СТГ может прямо или опосредованно взаимодействовать с андрогенами (Jorgensen et al., 19%), эстрогенами (Holmes, Shalet, 1996) и тиреоидными гормонами (Weiss, Refetoff, 1996) в отношении секреции и воздействия на ткани-мишени.
Изменения концентрации соматотропного гормона, индуцированные силовыми упражнениями
За последние 15 лет стало очевидным, что изменения содержания СТГ в крови определяются особенностями программы занятий физическими упражнениями. Чтобы разобраться в комбинации факторов, которые могут опосредовать такой дифференцированный ответ на множество разнообразных тренировочных программ, применяемых в силовой тренировке, необходимо рассмотреть некоторые из ключевых параметров, определение которых происходит при выборе элементов программирования в ходе разработки тренировочной программы (Fleck, Kraemer, 2004). Очевидно также, что взаимодействие различных параметров тренировочного занятия может играть важную роль в определении величины изменений уровня СТГ. К числу ключевых внешних факторов, стимулирующих возрастание концентрации СТГ в системе кровообращения, относятся:
объем вовлеченных в выполнение работы мышц;
величина нагрузки (отягощений), используемой при выполнении упражнений;
объем физической нагрузки;
продолжительность интервалов отдыха между этапами выполнения упражнений.
Активация достаточного количества мышечной ткани имеет критическое значение для увеличения концентрации СТГ в плазме крови. Объем мышц, вовлекаемых в выполнение работы, зависит от используемой нагрузки, общего объема выполненной работы и типа упражнений (например, упражнения для небольших мышечных групп по сравнению с упражнениями для крупных мышечных групп). Первые данные, подтверждающие эти представления, были получены Ванхелдером (Vanhcldcr et al., 1984). По результатам этого исследования, уровень СТГ существенно возрастал по сравнению с состоянием покоя после выполнения 7 подходов приседаний с нагрузкой 85 % 7ПМ. В то же время при снижении величины отягощения до 28 % 7ПМ, при равных по продолжительности интервалов для отдыха и количестве общей выполняемой работы, никаких изменений уровня СТГ в крови не наблюдалось. На основании “принципа размера” для преодоления сопротивления, равного 28 %, нагрузки необходимо меньшее количество двигательных единиц, чем для 85 %. Таким образом, активация достаточного объема мышечной ткани является одним из определяющих элементов тренировочного воздействия, вызывающего существенное повышение концентрации СТГ.
Объем физической нагрузки или общее количество выполняемой работы также играют роль в определении величины ответной реакции. При условии постоянства прочих элементов программирования — сила упражнений, последовательности их выполнения, продолжительности интервалов отдыха и величины отягощений — и увеличения только количества подходов, а следовательно, и объема выполняемой работы, наблюдали возрастание величины ответной секреции СТГ. Этот эффект был продемонстрирован для мужчин и женщин с использованием комплексной программы силовых упражнений для мышц всего тела с величиной отягощений, равной 10 ПМ (Mulligan et al., 1996; Gotshalk ct al., 1997). Кроме того, более высокий уровень силовой физической подготовленности может позволить занимающемуся выполнить больший объем физической работы, что также может способствовать достижению более значительного увеличения секреции СТГ (Ahtiainen et al., 2003). О пороговых количествах физической работы, необходимых для стимуляции увеличения СТГ в крови, известно мало, однако весьма вероятно, что этот параметр должен находиться в определенной связи с другими элементами программирования (продолжительность интервалов отдыха, количество вовлеченной в работу мышечной ткани, используемая масса отягощений).
В целом комплексный эффект различных вариантов сочетания элементов программирования (выбор упражнений (например, для крупных и небольших мышечных групп), последовательность выполнения упражнений (например, вначале для крупных или для небольших мышечных групп), продолжительность интервалов отдыха (короткие или продолжительные), величина используемых отягощений (например, 5 ПМ или 10 ПM) и количество подходов или общий объем выполняемой работы | малый или большой |) при планировании занятий силовыми упражнениями может выражаться в различной ответной реакции в смысле увеличения уровня СТГ. Несмотря на большое количество возможных комбинаций, предварительные исследования показали, что при сравнении программ занятий с использованием комплекса упражнений для мышц всего тела можно выделить три фактора, которые оказывают наиболее заметное влияние на изменения уровня СТГ у мужчин и женщин, а именно: сочетание большого объема выполненной работы, короткая продолжительность интервалов для отдыха (1 мин между этапами выполнения упражнений) и использование средней величины отягощений 10 ПM (Kraemer et al., 1990, 1993).
Поскольку при проведении тренировочных занятий применяется широкий спектр различных сочетаний элементов программирования, ответное возрастание уровня СТГ зависит от выбора параметров занятий. Складывается впечатление, что и силовой тренировке должны существовать некоторые основные принципы формирования тренировочного стимула. Наиболее ошеломляющим открытием, имеющим отношение к переменным элементам программирования и СТГ, стало влияние, которое они оказывают на кислотно-щелочной баланс, играющий главную роль в стимуляции секреции СТГ в кровеносную систему. Каждым из четырех упомянутых выше факторов можно манипулировать для оказания воздействия на метаболические процессы, сопровождающиеся ограниченным или, наоборот, повышенным накоплением ионов водорода и снижением pH крови, которое в свою очередь ответственно почти за половину суммарного изменения выработки СТГ. Таким образом, сдвиг кислотно-щелочного баланса (а именно, увеличение гидролиза АТФ, снижение pH, возрастание концентрации ионов водорода) становится главным фактором, определяющим содержание изоформы СТГ с мол. массой 22 кДа в крови (Gordon et al.,1994). Показано, что сокращение продолжительности интервалов для отдыха между подходами при выполнении физических упражнений приводит к наиболее заметному увеличению лактатного ответа при выполнении силовых упражнений (Kraemer et al., 1990, 1993). Вместе с тем сокращение интервалов отдыха будет также влиять на массу отягощений, которую сможет поднять занимающийся (Kraemer et al., 1987), следовательно, имеет место критическая модуляция массы используемого отягощения, а также объема ткани, вовлекаемой в выполнение работы, которые определяют ответное увеличение СТГ. Однако Така рада (Takarada et al., 2000) показал, что окклюзия (нарушение кровообращения) руки может существенно влиять на уровень СТГ, заметно увеличивая концентрацию гормона при относительно низкой интенсивности (20 % от 1 ПМ), в то время как без окклюзии никаких изменений уровня гормона не наблюдалось. Можно предположить, что в регуляции секреции изоформы СТГ с мол. массой 22 кДа гипоксия и нарушение кислотно-щелочного баланса играют основную роль (Sutton et al., 1983). Тренировочные занятия силовой направленности с короткими интервалами для отдыха (1 мин между подходами и упражнениями), средним уровнем интенсивности (нагрузка в диапазоне 8—10 ПМ) и комплексом из 8 —10 упражнений для мышц всего тела могут вызывать такой физиологический ответ и приводить к выраженному изменению уровня СТГ в крови).
Основная масса исследований по данному вопросу была посвящена изучению срочных изменений содержания СТГ в период восстановления (обычно не более 2 ч после завершения занятия). Вклад волнообразного характера секреции в различное время суток и роль СТГ п различные фазы периода восстановления после физической нагрузки силовой направленности еще предстоит оценить. МакМюррей (McMurray et al., 1995) представил результаты исследований изменений типичного профиля секреции СТГ в ночное время после занятий физическими упражнениями силовой направленности. Программа занятия включала выполнение 3 подходов с нагрузкой 6—8 ПМ для 6 различных упражнений (всего 18 подходов). Образцы крови для анализа отбирали в промежуток времени с 21.00 до 07.00. Исследователи не обнаружили никакого влияния занятий силовыми упражнениями на характер секреции СТГ в ночное время. Однако Ниндп (Nindl et al., 2001) исследовал профиль секреции СТГ на протяжении более длительного времени. Интенсивное занятие силовой тренировки начиналось в 15.00, включало значительный объем тренировочной нагрузки — всего 50 подходов упражнений, предусматривавших использование крупных мышечных групп. Кровь отбирали каждые 10 мин с 17.00 до 6.00 в контроле и после силовой тренировки. Данные этого исследования показывают, что интенсивное занятие силовыми упражнениями во второй половине дня приводит к снижению амплитуды максимального ночного выброса СТГ. Вместе с тем среднее содержание гормона роста в крови существенным изменениям не подвергалось. Это объяснялось тем, что интенсивные занятия силовыми упражнениями оказывали дифференциальное влияние на характер секреции СТГ в ночное время: концентрация СТГ в первой половине ночи была несколько ниже по сравнению с контролем, а во второй половине ночи этот показатель был выше, чем в контрольной группе. Средние значения максимальной концентрации СТГ и амплитуды секреторных выбросов гормона были ниже после занятий физическими упражнениями.
Было предложено несколько возможных объяснений полученных результатов, которые основаны на предположении о возрастании секреции соматостатина после занятий физическими упражнениями. Хотя соматостатин ингибирует секрецию СТГ, он не оказывает негативного воздействия на биосинтез гормона. Это очень важно, поскольку позволяет объяснить быстрое восстановление секреции СТГ после удаления соматостатина. Снижение амплитуды ночных пиков в группе лиц, занимавшихся силовой тренировкой, по сравнению с контрольной группой наблюдалось в период с 23.00 до 03.00 с 03.00 до 06.00 амплитуда выбросов СТГ была выше в экспериментальной группе. Несмотря на отсутствие существенных отличий между средними значениями концентрации СТГ в контрольной и экспериментальной группах, занятия физическими упражнениями в дневное время влияют на временной характер секреции СТГ. С механистической точки зрения интенсивная силовая тренировка может сопровождаться повышением интенсивности секреции соматостатина в период с 23.00 до 03.00. В это время происходит некоторое подавление секреции СТГ, при этом биосинтез гормона никаким воздействиям не подвергается. Около 03 — 00 происходит снижение интенсивности секреции соматостатина и увеличение выделения СТГ, синтез и накопление которого происходили в то время, когда секреция была подавлена. В ходе этих исследований было также показано, что ИФР-1 в данном случае, вероятнее всего, не принимает участия в регуляции секреции СТГ клетками гипофиза, поскольку существенных отличий в концентрации ИФР-1 в крови в контрольных и экспериментальных образцах не выявлено. Вполне вероятно также, что наблюдавшиеся изменения в характере секреции СТГ могут быть обусловлены рядом других метаболических и гормональных сигналов, например изменениями секреции соматолиберина, гексапептидов или грелина.
Возраст и гормон роста
Содержание
 [убрать] 
1 Секреция соматотропина и возраст человека2 Тренировочные адаптации3 Половые отличия4 Специфичность упражнений5 Физиологическое воздействие6 Заключение7 ЛитератураСекреция соматотропина и возраст человека
Установлено, что у пожилых лиц изменения соматропина в ответ на интенсивные занятия физическими упражнениями в некоторой степени ограничены (Craig et al., 1989; Рука etal., 1992; Kraemer et al., 1999). Гормон роста и соматотропин (СТГ) это синонимы. Основной причиной такого ограниченного увеличения уровня СТГ может быть более низкая физическая нагрузка, обусловленная неспособностью выполнять такой же общий объем работы во время тренировочного занятия. Существуют сообщения о том, что более низкий уровень лактата в крови лиц старшего возраста при выполнении упражнений силовой направленности является подтверждением предположений, согласно которым количество усилий, прикладываемых при выполнении силовых упражнений, может повлиять на последующие изменения уровня СТГ (Рука et al., 1992). Негативное воздействие старения на буферную емкость крови и способность переносить ацидоз представляют собой те факторы, которые могут помочь объяснить снижение индуцированного физическими упражнениями возрастания уровня гормона роста после интенсивного занятия силовыми упражнениями (Godfrey et al., 2003). Непродолжительные тренировочные занятия (10—12 недель) не приводят к изменению картины (Craig et al., 1989; Kraemer et al., 1999). У молодых людей и у лиц старшего возраста после выполнения периодизированной программы силовой тренировки продолжительностью 10 недель не обнаружено достоверных изменений уровня СТГ в состоянии покоя или после занятия физическими упражнениями (Kraemer et al.,1999). При использовании одной и той же относительной нагрузки изменение уровня лактата в крови после интенсивной силовой тренировки у лиц старшего возраста было ниже, чем у молодых людей, а увеличение уровня молочной кислоты не сопровождалось нарушениями кислотно-щелочного баланса (Rogers et al., 2004), что может служить признаком снижения метаболических потребностей и поддержания кислотно-щелочного баланса. Это частично объясняет менее выраженные изменения уровня гормона роста у лиц старшего возраста. Снижение концентрации СТГ в состоянии покоя и менее заметное возрастание уровня гормона после занятий физическими упражнениями не изменяется после выполнения непродолжительной программы тренировки.
Представления об эффектах физических упражнений и процессов старения на физиологические механизмы, которые лежат в основе явления соматопаузы (т. е. снижения активности системы СТГ-ИФР-1) находятся в зачаточном состоянии. Поскольку считается, что эта система эндокринной регуляции имеет огромное значение для поддержания нормального состояния скелетно-мышечной системы, вполне обоснованно предположить, что следует попробовать воздействовать на нее средствами тренировочных программ силовой направленности. Учитывая значительную молекулярную гетерогенность СТГ и то, что стандартный радиоиммунный анализ (РИА) предназначен для обнаружения изоформы гормона с мол. массой 22 кДа, эта проблема представляет собой особо важное направление для будущих исследований. При этом следует также принять во внимание предположительно более высокую биологическую активность форм СТГ с большей молекулярной массой и то, что отсутствие изменений или снижение иммунореактивного СТГ может не отражать в полной мере адаптационных изменений всех вариантов гормона роста в ответ на занятия физическими упражнениями. Иными словами, определение одной только изоформы соматотропного гормона с мол. массой 22 кДа может не давать полного представления об адаптивных изменениях секреции СТГ гипофизом.
Тренировочные адаптации
По имеющимся данным, силовая тренировка не влияет на содержание изоформы СТГ с мол. массой 22 кДа в крови в состоянии покоя. Это поразительно, но у мужчин и женщин разного возраста изменений концентрации СТГ в крови в состоянии покоя после занятий силовыми упражнениями не обнаружено (Kraemer et al., 1999; McCall et al., 1999; Hakkinen et al., 2000; Marx et al., 2001). Отличий в величине реакции СТГ с мол. массой 22 кДа на физическую нагрузку, а также секреции СТГ в покое при сравнении с лицами, характеризующимися более низким уровнем физической подготовленности, не выявлено даже у постоянно тренирующихся на протяжении длительного времени профессиональных тяжелоатлетов и культуристов (Hakkinen et al., 1998; Ahtiainen et al., 2003). Эти результаты согласуются с существованием механизмов динамической обратной связи и волнообразным характером секреции СТГ, а также многообразием функций, которые может выполнять этот гормон в гомеостатическом контроле ряда метаболических и восстановительных процессов. Обнаружена корреляция между уровнем СТГ в состоянии покоя и степенью гипертрофии мышечных волокон типов I и II (г = 0,62 и 0,74 соответственно) (McCall et al., 1999). Эти взаимосвязи могут свидетельствовать о роли повторяющегося увеличения секреции СТГ, индуцированного регулярными занятиями силовыми упражнениями, для клеточной адаптации в тренированных мышцах. Изменения чувствительности рецептора СТГ, различия в механизмах функционирования цепей обратной связи, стимуляция опосредованная ИФР-1, взаимодействие со связывающими белками, стимуляция образования других молекулярных изоформ гормона в соматотропных клетках гипофиза, а также суточные колебания концентрации гормона — все это может играть определенную роль в опосредовании ответной реакции СТГ с мол. массой 22 к Да.
Половые отличия
Индуцированная физическими упражнениями секреция гормона роста у женщин сопоставима по абсолютной величине с таковой у мужчин, однако относительное повышение содержания СТГ по сравнению с состоянием покоя у них оказывается несколько меньшим (Kraemer et al., 1991). Это относится и к реакции на интенсивную физическую нагрузку. Отдельные программы тренировочных занятий (например, использование отягощений 5 ПМ, интервалов для отдыха 3 мин либо малый объем общей выполняемой работы), которые вызывают незначительное увеличение уровня СТГ в крови у мужчин, у женщин вследствие более высокого уровня гормона в состоянии покоя, никаких существенных изменений не происходит (Kraemer et al., 1991, 1993). Каким образом столь незначительные по величине изменения уровня СТГ в ответ на интенсивные физические нагрузки приводят к адаптационным изменениям в тренируемых тканях, остается неизвестным.
Предполагается, что более высокая концентрация соматотропного гормона в состоянии покоя у женщин, возможно, компенсирует низкий уровень других анаболических гормонов, что может сводить к минимуму роль резкого повышения секреции гормона при физической нагрузке. Эти наблюдения были сделаны в начале фолликулярной фазы менструального цикла. Наши последние данные показывают, что эстроген, принимаемый в качестве орального контрацептива, оказывает минимальное воздействие на изменение секреции СТГ в ответ на занятия физическими упражнениями силовой направленности (неопубликованные данные). Наряду с тем, что менструальный цикл оказывает определенное влияние на изменения содержания соматотропного гормона в крови, еще одним объяснением обнаруженных половых отличий могут являться различные варианты секреции СТГ гипофизом, поскольку регуляция объема и характера секреции СТГ у мужчин и женщин также может иметь свои особенности (Pincus et al.,1996).
Специфичность упражнений
Одним из базовых принципов биологии, как и силовой тренировки, является принцип специфичности. Этот принцип проявляется также и в ответе соматотропина на занятия силовыми упражнениями. В исследовании, проведенном Кремером и его коллегами (Kraemer et al., 2001), участвовали четыре различных группы. На протяжении 19 недель занимающиеся первой группы выполняли упражнения с концентрическими сокращениями, второй группы — те же упражнения, но с увеличенным вдвое объемом, третья группа занималась по обычной программе силовой тренировки, включавшей упражнения с концентрическими и эксцентрическими сокращениями, лица из четвертой группы ни в каких тренировочных программах участия не принимали (контрольная группа). После завершения тренировочных программ занимавшимся было предложено выполнить два теста с физической нагрузкой, один из которых включал 3 подхода по 30 изокинетических концентрических сокращений, а другой — 3 подхода по 30 изокинетических эксцентрических сокращений при разгибании колена. Тесты проводили с перерывом 48 ч. Срочный ответ на концентрические сокращения был одинаковым, однако при выполнении эксцентрических сокращений у лиц группы, занимавшейся по обычной программе силовой тренировки, содержащей эксцентрические и концентрические сокращения, увеличение уровня соматотропина было наибольшим. Этот результат может свидетельствовать о чувствительности их организма к специфическим эксцентрическим стимулирующим воздействиям, которые входили ранее в состав выполнявшейся ими тренировочной программы. После детренировки ответная реакция на оба теста во всех четырех группах возвратилась к одному уровню. Эти данные показывают, что секреция СТГ может быть чувствительной к специфическим мышечным сокращениям, применяемым в силовой тренировке. Это предположение подтверждается относительно новыми данными о том, что аденогипофиз может иметь собственную прямую иннервацию нервными волокнами с синапсами на кортико- и соматотропных клетках (Ju, 1999). Кроме того, предполагается, что нейрогуморальная регуляция секреции гормона роста происходит следующим образом: вначале в ответ на стресс наблюдается быстрый ответ нервной системы, за которым постепенно развивается гуморальная фаза (Ju, 1999). Если это действительно так, тогда вполне возможно, что центры головного мозга (например, двигательная область коры головного мозга) принимают активное участие в регуляции секреции СТГ во время занятий силовыми упражнениями, и этот регуляторный механизм обладает чувствительностью к специфическим мышечным сокращениям, применяемым во время силовой тренировки.
Физиологическое воздействие
Из-за многообразия биологических активностей и сложности соматотропного гормона как биологического эффектора его роль в гипертрофии скелетных мышц и анаболических процессах других тканей только начинают распределять между упрощенными гипотезами прямого и опосредованного воздействия. Считают, что в индуцированную силовой тренировкой гипертрофию скелетных мышц вносит свой вклад множество взаимодействующих между собой факторов, и некоторые исследователи не исключают возможности того, что выраженный рост уровня СТГ в крови после занятий силовыми упражнениями также может быть в их числе. Это предположение подтверждается тем, что в условиях оптимальной физической нагрузки силовой направленности у крыс с удаленным гипофизом наблюдается нарушение процессов гипертрофии скелетных мышц, которые можно возобновить путем введения синтетического или экстрагированного из гипофиза соматотропина (Goldberg, Goodman, 1969; Grindeland ct al., 1994). В то же время в прямом противоречии с данной гипотезой находится тот факт, что интенсивные занятия аэробными упражнениями также сопровождаются значительным ростом концентрации СТГ в крови, который, однако, не оказывает практически никакого эффекта на скелетные мышцы (Kraemer et al., 1995), поэтому, допуская важную роль увеличения уровня соматотропина в крови для гипертрофии мышц и анаболических процессов в других тканях, можно предполагать, что интенсивная силовая и аэробная тренировки различаются по характеру влияния не на уровень иммунореактивного СТГ в сыворотке крови, а на количество биологически активного гормона. Этому предположению в последнее время уделяется большое внимание (Нуmег et al., 2001). Более того, эти различия могут быть обусловлены активацией разных групп двигательных нейронов и особенностями комплекса последующих событий, которые в определенной мере стимулируются процессом электромеханической активации сокращающихся мышечных волокон. Однако, иммунореактивный СТГ может стимулировать секрецию гипофизом высокомолекулярных связывающих белков и формировать с ними агрегаты в крови. Каждая из этих гипотез требует подтверждения прямыми экспериментальными данными (Nindl et al., 2003).
Важное значение для линейного роста имеет также волнообразный характер секреции СТГ. При измерениях в течение суток и более продолжительного времени было установлено, что процесс роста является эпизодическим и дискретным. Например, у грызунов наибольшая скорость линейного роста наблюдается в случае, когда секреторные выбросы гормона роста разделены интервалами времени продолжительностью около 3 ч, характеризующимися очень низким уровнем СТГ, как это происходит у самцов. Скорость линейного роста значительно ниже, если отклонения содержания гормона в крови от некоторого базового уровня имеют незначительную величину, как у самок крыс. Таким образом, механизмы, регулирующие волнообразный характер секреции СТГ, характеризуются половым диморфизмом (выбросы, приводящие к значительному повышению уровня СТГ, и низкий уровень гормона в промежутках между ними у самцов, а также менее регулярные выбросы и более высокий базовый уровень гормона у самок) и могут в определенной степени обусловливать различия в скорости роста самцов и самок крыс (Slob, Van der Werff Ten Bosch, 1975; Jaffe et al., 1998). Кроме того, динамика секреции СТГ сочетается также с изменениями ключевых ферментов, ответственных за продольный рост костей, и, возможно, более важно анализировать характер волнообразных изменений содержания СТГ в крови, вместо оценки одиночных статических показателей. Это положение очень хорошо демонстрирует приведенный выше пример полового диморфизма, обусловленного различными временными характеристиками процесса секреции СТГ.
Вместе с тем существуют экспериментальные данные, полученные на животных моделях, которые свидетельствуют о важности индуцирования физической нагрузкой секреции СТГ для соматического роста и гипертрофии мышц. В частности, было показано, что у золотистых хомячков (животная модель непрерывного роста), подвергавшихся физической нагрузке, наблюдался повышенный базальный волнообразный уровень СТГ, увеличение длины элементов скелета, непрерывное увеличение массы тела и снижение массы жировой ткани по сравнению с контрольными животными, которые вели пассивный образ жизни (Borer, 1989, 1995). Поскольку волнообразный характер секреции СТГ представляет собой интегральный компонент функции гормона, создастся впечатление, что этим параметром, равно как и гетерогенностью суперсемейства изоформ и комплексов гормона, нельзя пренебрегать при изучении аналогичных процессов у человека. В то же время следует отметить, что эти эксперименты проводились на самках хомячков и рост происходил только в пределах определенного возрастного периода развития, а именно во время полового созревания.
Заключение
Интенсивные силовые тренировки могут быть потенциальным стимулом секреции изоформы соматотропного гормона с молекулярной массой 22 кДа. Степень увеличения секреции зависит от особенностей применяемой тренировочной программы. Занятия силовыми упражнениями не оказывают существенного влияния па уровень 22 кДа гормона роста в состоянии покоя у лиц разного пола и возраста. Вместе с тем изменения волнообразного характера секреции СТГ могут быть одним из проявлений эффекта интенсивных силовых тренировок, и эти изменения, по-видимому, отличаются у мужчин и женщин. Наличие цепей обратной связи и взаимодействия с другими гормональными системами (такими, как ИФР, СТГ-связывающие белки, стимуляция образования агрегатов) обусловливают значительную сложность понимания биологических эффектов СТГ и требуют проведения дальнейших исследований процессов, происходящих на уровне тканей-мишеней. Очевидно, что углубление понимания физиологических условий функционирования и роли СТГ будет способствовать лучшему пониманию изменений и адаптационных реакций.
Литература
Ahtiainen, J.P., Pakarinen, A., Kraemer, W.J. & Hakkinen, К. (2003) Muscle hypertrophy, hormonal adaptations and strength develop* ment during strength training in strength-trained and untrained men. European Journal of Applied Physiology 89, 555*563.
Bikle, D.D., Harris, J., Halloran, B.P. et al. (1995) The molecular response of bone to growth hormone during skeletal unloading: regional differences. Endocrinology 136, 2099*2109.
Scanlon, MI'., Isa, B.C. & Dicgucz, C. (1996) Regulation of growth hormone secretion. Hormone Research 46, 149-154.
Slob, A.K. & Van der Werff Ten Bosch, JJ. (1975) Sex differences in body growth in the rat. Physiology and Behavior 14, 353-361.
Snyder, G., Hymer, W.C. & Snyder, D.J. (1977) Functional heterogeneity somatotrophs isolated from the rat anterior pituitary. Endocrinology 101(3), 788-799.
Sutton, J.R. (1983) The hormonal responses to exercise at sea level and at altitude. Progress in Clinical and Biological Research 136, 325-341.
Takarada. Y . Nakamura, Y., Aruga, S. et al. (2000) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of Applied Physiology 88(1). 61-65.
Turner. J.D.. Rotwein. P., Novakofoki, J. 4 Bechtel. P.J. (1988) Induction at mRNA for IGF-I and -II during growth hormone-stimulated muscle hypertrophy. American Journal of Physiology 255, E5I3-E5I7.
Ullman, M. & Oldfors, A. (1989) Effects of growth hormone on skeletal muscle. I. Studies on normal adult rats. Acta Physiologica Scandinavica 135, 531-536.
Vanhelder, W.P., Radomski, M.W. & Goode, R.C. (1984) Growth hormone responses during intermittent weight lifting exercise in men. European Journal of Applied Physiology and Occupational Physiology 53(1), 31-34.
van der Veen, E.A. & Netelenbos, J.C. (1990) Growth hormone (replacement) therapy in adults: bone and calcium metabolism. Hormone Research 33 (suppl. 4), 65-68.
Veldhuis, J.D., Patrie, J., Wideman, L. et al. (2004) Contrasting negative-feedback control of endogenously driven and exercise-stimulated pulsatile growth hormone secretion in women and men. Journal of Clinical Endocrinology and Metabolism 89(2), 840-846
Weiss, R.E. & Refetoff, S. (1996) Effect of thyroid hormone on growth: lessons from the syndrome of resistance to thyroid hormone. Endocrinology and Metabolism Clinics of North America 25(3), 719-730.
Аэробные упражнения: влияние на гормон роста
Содержание
 [убрать] 
1 Острые и хронические изменения соматотропного гормона в ответ на занятия аэробными упражнениями1.1 Острые изменения секреции соматотропного гормона при занятиях аэробными упражнениями2 Регулярные занятия аэробными упражнениями и секреция соматотропного гормона3 Нейроэндокринный контроль секреции соматотропного гормона, индуцированной физической нагрузкой4 Заключение5 Читайте также6 ЛитератураОстрые и хронические изменения соматотропного гормона в ответ на занятия аэробными упражнениями
Секреция соматотропного гормона (СТГ) в передней доле гипофиза имеет волнообразный характер. В плазме крови, наряду с преобладающей изоформой гормона с мол. массой 22 кДа, обнаруживаются также другие его варианты и олигомеры (Baumann, 1991; Lewis et al., 2001; Nindl et al., 2003). Характер изменений минорных изоформ гормона в ответ на физическую нагрузку нельзя считать однообразным. Активация клеток под действием СТГ происходит путем димеризации рецепторов гормона роста и запуска каскада реакций фосфорилирования, которые осуществляют передачу сигнала в ядро.
Количество СТГ, секретируемое при каждом выбросе, находится под физиологическим контролем пептидных соединений агонистов и антагонистов (Arval et al., 1998; Mueller et al., 1999; Farhy et al., 2001; Bowers, 2002). Соматолиберин, вырабатываемый в головном мозге (гипоталамусе), стимулирует синтез и секрецию СТГ, в то время как соматостатин подавляет секрецию гормона, не оказывая влияния на его синтез (Giustina, Veldhuis, 1998; Hartman, 2000). Соматотропин рилизинг пептид грелин, синтезируемый в желудке, аденогипофизе и гипоталамусе, усиливает секрецию СТГ посредством активации специфических рецепторов (Giustina, Veldhuis, 1998; Kojima et al., 1999; Hartman, 2000). Инактивация рецепторов соматотропин рилизинг пептида в ЦНС у трансгенных мышей снижает секрецию СТГ на треть (Shuto et al., 2002). Эти три биологически активные молекулы осуществляют регуляцию СТГ с помощью конвергентных механизмов (Veldhuis, Bowers, 2003Ь). Многие метаболические эффекты СТГ опосредованы инсулиноподобным фактором роста I (ИФР-1), синтез которого происходит в печени и всех остальных тканях под контролем СТГ и тканеспецифических гормонов (Giustina, Veldhuis, 1998).
Начиная с 40 лет, секреция СТГ постепенно снижается примерно на 14 % каждые десять лет (Rudman et al., 1981; Zadik et al., 1985; Iranmanesh et al., 1991). Кроме того, секреция СТГ заметно ниже у лиц, страдающих ожирением, даже в молодом возрасте (Veldhuis et al., 1991, 1995). У юношей в период полового созревания выработка СТГ за 7 лет снижается на 50 % (Iranmanesh et al., 1991; Veldhuis et al., 1995), тогда как у женщин в предклимактерическом периоде это происходит в два раза медленнее (Asplin et al., 1989; Winer et al., 1990; Weltman A. et al., 1994; van den Berg et al., 1996). Многие возрастные изменения напоминают те, которые выявляются у лиц зрелого возраста с недостатком СТГ, включая снижение массы мышечной ткани и способности переносить физическую нагрузку, увеличение жировых отложений, особенно в области живота, неблагоприятные изменения липидного и липопротеидного профиля, снижение минеральной плотности костной ткани, а также заболевания нервной и сердечно-сосудистой системы. Что здесь является причиной, а что следствием, установить сложно, поскольку увеличенное количество внутрибрюшной жировой ткани и ограниченная двигательная активность также могут быть использованы в качестве показателей для прогноза сниженной секреции СТГ (Vahl et al., 1997; Clasey et al., 2001). Далее рассмотрим влияние занятий физическими упражнениями на секрецию СТГ. Обсуждение роли других физиологических факторов можно найти в следующих обширных обзорах (Veldhuis 1996а, 1996b; Veldhuis etal., 1997; Giustina, Veldhuis, 1998; Hartman, 2000; Veldhuis, Bowers, 2003a, 2003b).
Острые изменения секреции соматотропного гормона при занятиях аэробными упражнениями
Стимуляция секреции СТГ наблюдается уже через 15 мин после начала выполнения аэробных упражнений, а своего максимального значения содержание гормона в крови достигает в конце или почти в конце занятия (Lassarre et al., 1974; Sutton, Lasarus, 1976; Kozlowski et al., 1983; Raynaud et al., 1983; Bunt et al., 1986; Chang et al., 1986; Felsing ct al., 1992; Luger et al., 1992; Weltman A. et al., 1992, 1994; Cappon et al., 1994; Chwablinska-Moneta et al., 1996; Pritzlaff et al., 1999, 2000; Wideman et al., 1999, 2000a). Интенсивность и продолжительность аэробной нагрузки, уровень физической подготовленности, пол и возраст — все эти факторы влияют на степень изменений соматотропного гормона в ответ на физические упражнения. Несмотря на существовавшие ранее представления о том, что стимуляция изменений СТГ происходит только после превышения определенного порога интенсивности физических упражнений (Chang et al., 1986; Felsing et al., 1992; Chwalbinska-Moneta et al., 1996), исследования, проводившиеся случайным образом в отдельные дни, показали, что между интенсивностью упражнений и уровнем секреции СТГ существует линейная дозовая зависимость (Pritzlaff et al., 2000; Pritzlaff -Roy et al., 2002).
У женщин всех возрастов сохраняется уровень СТГ более высокий, чем у их сверстников-мужчии. Кроме того, у них менее выражен волнообразный характер секреции (Hartman et al., 1990; Veldhuis et al., 1995; van den Berg et al., 1996; Pincus et al., 1996; Engstrom et al., 1998; Giustina, Veldhuis, 1998; Wideman ct al., 1999). Динамика изменений секреции СТГ не различается у лиц разного пола (Lassarre et al., 1974; Bunt et al., 1986), однако женщины имеют ряд характерных особенностей, а именно: упреждающее повышение уровня СТГ до начала занятия и более быстрое достижение пикового уровня гормона во время занятия (Wideman et al., 1999; Pritzlaff-Roy et al., 2002). Эффект физической нагрузки практически не зависит от циркадных ритмов, поскольку не было обнаружено никакой зависимости изменений СТГ от времени проведения занятий в течение суток, по крайней мере, у молодых мужчин (Kanaley et al., 2001). Максимальные абсолютные концентрации СТГ во время занятий физическими упражнениями у женщин и мужчин не отличаются (Wideman et al., 1999), однако величина прироста секреции по отношению к базовому уровню у мужчин выше (Bunt et al., 1986; Wideman et al., 2000a).
На рис. представлены данные, демонстрирующие влияние пола на индуцированную физической нагрузкой секрецию СТГ в зависимости от интенсивности упражнений лиц старшего зрелого возраста (Pritzlaff et al., 1999; Pritzlaff-Roy et al., 2002). В этом исследовании молодые мужчины и женщины принимали участие в 6 занятиях физическими упражнениями различного уровня интенсивности (одно контрольное занятие без физической нагрузки (К) и 5 занятий с физической нагрузкой), проводившихся в случайном порядке. Занятие включало 30 мин бега па тредмиле при одной из следующих интенсивностей (нормализованных но отношению к индивидуальному лактатному порогу (ЛП); 25 и 75 % разницы между ЛП и состоянием покоя (0,25 и 0,75 ЛП соответственно), ЛП, а также 25 и 75 % разницы между ЛП и V02max (1,25 ЛП и 1,75 ЛП соответственно). Уровень секреции СТГ возрастал пропорционально увеличению интенсивности упражнений (Pritzlaff et al., 1999; Pritzlaff-Roy et al., 2002). С помощью простого регрессионного анализа было установлено, что у женщин кривая зависимости секреции СТГ от интенсивности упражнений пересекает ось ординат в точке с более высоким значением (более высокий базовый уровень секреции), а также имеет больший угол наклона (более высокая чувствительность).
Насколько применимы эти зависимости, описывающие быстрые изменения секреции СТГ, в случае продолжительных занятий аэробными упражнениями с различной интенсивностью, ничего не известно.
Увеличение секреции СТГ в ответ на физическую нагрузку у молодых лиц выше по сравнению с более старшими занимающимися (Weltman et al., 2000b, 2001). Аналогичные сравнения зависимости интенсивность упражнений — изменения СТГ показали, что у мужчин старение приводит к постепенному ослаблению эффективности физической нагрузки (в 3,9 раза при оценке по уровню наклона кривой зависимости). Остается нерешенным вопрос: можно ли достичь у мужчин старшего возраста такого же уровня секреции СТГ, как у молодых, путем увеличения нагрузки (Weltman et al., 2000b).
Уровень стимулированной физической нагрузкой секреции СТГ у женщин в постклимактерическом периоде в 5,7—7,3 раза ниже по сравнению с предклимактерическим независимо от того, принимала ли женщина замещающие гормоны (Marcel 1 et al., 1999; Weltman A. ct al., 2001). Возможными причинами последовательного снижения уровня секреции СТГ у лиц старшего возраста могут быть возрастание секреции соматостатина либо недостаточная секреция соматолиберина или грtлина. Действительно, продолжительная стимуляция соматолиберином или синтетическим соматотронин-рилизинг-пептидом (заменитель грелина) уже через 1—3 месяца приводит к росту секреции СТГ у лиц старшего возраста (Evan et al., 2001; Richmond et al., 2001).
Снижение уровня секреции СТГ в ответ на физические упражнения может также наблюдаться у мужчин среднего возраста (Zaccaria et al., 1999). Этот вывод сделан на основании результатов исследования, в котором принимали участие небольшая группа молодых мужчин (N = 5, возраст 21 год) и мужчин среднего возраста (N = 7, возраст 42 года), выполнявших тест со ступенчатой нагрузкой (50 Вт каждые 3 мин) до наступления утомления.
У мужчин среднего возраста возрастание секреции происходит более медленно и максимальный уровень СТГ ниже. Если этот результат подтвердится, то такое снижение чувствительности СТГ к физической нагрузке может послужить поводом для поиска ранних упреждающих стратегий, направленных на поддержание оптимального для анаболических процессов уровня секреции гормона.
Повышение объема жировых отложений, а также выраженное ожирение приводят к снижению базового содержания СТГ в крови и снижению секреторного ответа на физическую нагрузку (Veldhuis et al., 1995; Weltman A. et al., 2000b; Weltman J.Y. et al., 2002). При сравнении с различными фармакологическими и физиологическими стимулами секреция СТГ в ответ на физическую нагрузку у лиц с ожирением может превосходить по величине выделение гормона, индуцированное L-допа или клонидином (Cordido et al., 1990; Tanaka et al., 1990), но не обязательно соматолиберином, пиридостигмином или L-аргинином (Williams et al., 1984; Cordido ct al., 1990, 1993; Maccario et al., 1997; Kelijman, Frohman, 1998). Только соматостатин-рилизинг-пептид и комбинированные стимуляторы секреции сохраняют средний (но не максимальный) уровень эффективности (Cordido ct al., 1990, 1993; Maccario et al., 1997). Немногочисленные исследования взаимного влияния пола, ожирения и физических упражнений показывают, что внутренние жировые отложения в области живота могут оказывать основное влияние на величину стимулированной секреции СТГ (Classey et al., 2001). Результаты исследования индуцированной физическими упражнениями секреции СТГ у женщин без признаков ожирения, а также с отложениями жира в области нижних конечностей или верхней части туловища (внутренней жировой клетчатки в области живота) представлены на рис. 10.4 (Kanaley et al., 1999).
Максимальные значения концентрации СТГ после воздействия физической нагрузки в этих исследованиях составили 13,7 мкг-л"1 у женщин без признаков ожирения, 6,8 мкг-л"! у женщин с преимущественной локализацией жировых отложений в области нижних конечностей и 3,5 мкг-л"1 у женщин с жировыми отложениями в области живота. Для проверки этих антропометрических выводов необходимо проведение точного радиологического определения локализации жировых тканей.
Регулярные занятия аэробными упражнениями и секреция соматотропного гормона
Продолжительные тренировки аэробной выносливости ограничивают величину острых изменений концентрации СТГ в ответ на физические упражнения одинаковой интенсивности (Hartley et al., 1972; Weltman A. et al., 1997). У молодых мужчин подавление секреции СТГ, индуцированной физической нагрузкой, наблюдается уже через 3 недели тренировочных занятий (рис. 10.5) (Weltman A. et al., 1997).
Однако у лиц, занимавшихся аэробной тренировкой с интенсивностью, превышающей лактатный порог, отмечено повышение суммарной (на протяжении 24 ч) секреции СТГ, которое наблюдалось даже в дни, свободные от тренировочных занятий(Weltman A. et al., 1992).
Каким образом естественные возрастные изменения, половые особенности и повышенные отложения жировой ткани могут модулировать долговременные эффекты тренировки аэробной выносливости, пока не известно. В одном исследовании с участием пожилых мужчин в возрасте 50—78 лет не было обнаружено отличий в содержании в сыворотке крови ИФР-1 у лиц, занимавшихся марафонским бегом, и их сверстников, которые вели малоподвижный образ жизни (Deuschle et al., 1998). В другой работе не было обнаружено изменений суммарной суточной секреции СТГ у здоровых пожилых людей (возраст 59—79 лет) после года организованных занятий аэробными (4 раза в неделю) или силовыми упражнениями (3 раза в неделю) (Hartman et al., 2000). Причинами такого отсутствия выраженного ответа могут быть: а) недостаточный тренировочный стимул; б) незначительные изменения объема жировых отложений, в частности жировой ткани в области живота, количество которых негативно коррелирует с уровнем секреции СТГ и имеет тенденцию к возрастному увеличению; в) и/или естественное возрастное снижение чувствительности эндокринной системы СТГ-ИФР-1.
У женщин, страдающих ожирением, через 16 недель тренировки аэробной выносливости обнаружено достоверное тренировочное воздействие (например, увеличение V02peak), вместе с тем у них не отмечено изменений срочной секреции СТГ в ответ на физическую нагрузку одной интенсивности (рис. 10.7) (Kanaley et al., 1999). Однако после выполнения 4-месячной тренировочной программы у этих занимавшихся не обнаружено изменений массы и состава тела (по оценкам толщины жировых складок и биоэлектрического импеданса). Происходило ли в этой ситуации увеличение суммарной суточной секреции СТГ, неизвестно. Остается неясной взаимосвязь между срочными изменениями содержания СТГ в крови в ответ на физическую нагрузку и долговременными изменениями средней выработки гормона (в дни без тренировочных занятий) под воздействием продолжительных занятий физическими упражнениями.
Нейроэндокринный контроль секреции соматотропного гормона, индуцированной физической нагрузкой
Система нейроэндокринной регуляции секреции соматотропного гормона, индуцированной физической нагрузкой, чрезвычайно сложна, и многие ее элементы по-прежнему неизвестны (Giustina, Veldhuis, 1998; Wideman et al., 2000a). В предполагаемых регуляторных механизмах важное место занимают соматолиберии, соматостатин и грелин(Veldhuis, Bowers, 2003b).
К гипотетическим регуляторам можно отнести катехоламины, мукарииовые производные, опиатэргические пептиды, ГАМК и, возможно, аминокислоты, обладающие стимулирующим эффектом (Thompson et al., 1993; Giustina, Veldhuis 1998; Weltman A. et al., 2000a). Несмотря на чисто корреляционный характер этих данных, повышение концентрации норадреналина в плазме крови в ответ на физическую нагрузку происходит до повышения СТГ и пропорционально ему у молодых мужчин независимо от того, занимались ли они ранее физическими упражнениями (Weltman A. et al., 1997, 2000а). Эти данные согласуются, но не являются доказательством, с фактом существования центральной норадренергической (бета2-адренорецепторной) системы. Концентрация грелина в сыворотке крови у лиц, страдающих ожирением, ниже, чем у худых (Veldhuis, Bowers, 2003b) и не изменяется в течение 45 мин занятий физическими упражнениями и последующего периода восстановления продолжительностью до 3 ч (Dali et al., 2002).
К веществам, способным оказывать влияние на секрецию СТГ, относятся L-аргинин и соматотропии-рилизинг-пептид-2, которые индуцируют снижение уровня соматостатина и, соответственно, имитируют действие грелина. Соматотропин-рилизинг-пептид-2 также усиливает эффект соматолиберина и подавляет действие соматостатина (Bowers et al., 1994; Pihoker et al., 1995; Popovic et al., 1995; Giustina, Veldhuis, 1998; Bowers, Granda-Ayala, 1999; Mueller et al., 1999; Veldhuis, Bowers, 2003b). Чувствительность ко всем трем активным веществам отличается у лиц разного пола (Merimee et al., 1969; Benito et al., 1991; Bercu et al., 1991; Bowers, 1993; Penelva et al., 1993; Veldhuis, 1996a, 1998, 2003; Giustina, Veldhuis, 1998; Jaffc et al., 1998; Veldhuis et al., 2001; Veldhuis, Bowers, 2003a). В состоянии покоя базальный и стимулированный L-аргинином (но не сома-тотропии-рилизинг-пептидом-2) уровень секреции СТГ у женщин был выше, чем у мужчин (рис. 10.9) (Wideman et al., 2000b).
При выполнении физических упражнений до наступления утомления синергичность действия исследованных активных веществ в абсолютных значениях оказалась эквивалентной у мужчин и у женщин. Выполнение физических упражнений усиливало секрецию СТГ, стимулированную L-аргинином и соматотропин-рилизинг-пептидом-2 как по отдельности, так и вместе взятыми, и ответ, выраженный в абсолютных единицах, был сопоставимым для лиц разного пола(Wideman et al., 2000а).
Относительное увеличение концентрации СТГ (во сколько раз по сравнению с исходным уровнем) после применения комбинированного стимула у мужчин оказалось в два раза больше по сравнению с женщинами. Поскольку соматолиберин явно усиливает действие соматотропин-рилизинг-пептида-2 и L-аргинина, синергичное действие этих двух стимуляторов во время занятий физическими упражнениями является веским подтверждением вывода о том, что при выполнение физической работы до утомления приводит к секреции гипоталамусом соматолиберина. Этот вывод, однако, нуждается в дополнительной проверке с использованием селективных антагонистов рецептором соматолиберина.
Дополнительным подтверждением эффектов со-матотропин-рилизииг-пептида-2 и L-аргинина (Widеman et al., 2000a, 2000b) может быть оценка стимулированного секреторного выброса СТГ (Veldhuis et al., 1990). Однако действие соматолиберина, соматостатина и предположительно эндогенного грелина модулируется ингибирующим (p-адренергическим и а1-норадренергическим) и стимулирующим (холинергическим и опиатергическим) сигналами (Chigo et al., 1993, 1994; Thompson ct al., 1993; Giustina, Veldhuis, 1998; Mueller et al„ 1999; Veldhuis, Yoshida, 2000). Создастся впечатление, что физические упражнения стимулируют значительное число нейротрансмиттеров центральной нервной системы (Sutton, Lasarus, 1974; Uusitupa et al., 1982; Morctti et al., 1983; Bowers et al., 1984; Thompson et al., 1993; Giustina, Veldhuis, 1998). И совокупное действие всех этих факторов является одной из сложнейших проблем физиологии спорта и двигательной активности.
Возникает важный вопрос о том, до какой степени специфические стимуляторы секреции СТГ могут усиливать эффективность занятий физическими упражнениями у лиц старшего возраста. В одном из предварительных исследований с участием пожилых людей комбинированная стимуляция соматотропин-рилизинг-пептид-2 и аэробные упражнения вызывала более значительный выброс соматотропного гормона (суммарная секреция), чем каждый из этих факторов в отдельности, однако их воздействие не происходило по-настоящему синергично (сверхаддитивный эффект) (Weltman A. et al., 2002). Эти результаты могут свидетельствовать о значительном со-матостатинергическом ограничении секреции СТГ, нарушении секреции эндогенного соматолиберина (который действует синергично с соматостатин-рилизинг-пептидом) и/или негативной регуляции сома-тостатин-рилизинг-пептид сигнального пути, о чем могут также свидетельствовать другие независимые исследования с участием пожилых людей и экспериментальных животных (Veldhuis et al., 2001, 2002; Veldhuis, 2003). Из имеющихся сегодня экспериментальных данных логически вытекает вопрос, каким образом нее три фактора; занятия физическими упражнениями, возраст и пол, регулируют секрецию соматотропного гормона (Brill et al., 2002).
Заключение
Аэробные упражнения представляют собой эффективный стимул секреции соматотронного гормона, особенно у молодых мужчин и женщин. Возраст и ожирение приводят к заметному снижению секреторного ответа предположительно за счет модификации метаболических сигналов к регуляторной системе и эффектов трех ее основных компонентов: соматолиберина (стимулирующего), соматостатина (подавляющего) и грелина (усиливающего). Еще одним фактором, определяющим особенности секреции СТГ в ответ на физическую нагрузку независимо от возраста, является пол человека. В целом, снижение физиологического уровня секреции СТГ у лиц, ведущих малоподвижный образ жизни, страдающих от ожирения, а также пожилых людей является одной из причин увеличения жировых отложений в брюшной области, возникновения дислипидемии, относительной нечувствительности к инсулину, снижения массы мышечной и костной тканей и (вполне вероятно) снижения качества жизни.
Литература
Arvat, Е., Ceda, G.P., Di Vito, L. et al. (t998) Age-related variations in the neuroendocrine control, more than impaired receptor sensitivity, cause the reduction in the GH-releasing activity of GHRPs in human aging. Pituitary 1, 51*58.
AspUn, CM., Faria, A.C., Carlsen, E.C. et al. (1989) Alterations in the pulsatile mode of growth hormone release in men and women with Insulin-dependent diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 69, 239*245.
Baumann, G. Growth hromone heterogeneity: genes, isohormones, variants and binding proteins. Endocrine Reviews 12, 424-449.
Benito, P., Avila, L., Corpas, M.S. et al. (1991) Sex differences in growth hormone response to growth hormone-releasing hormone. Journal of Endocrinological Investigation 14, 265-268.
Bercu, B.B., Weideman, C.A. & Walker, R.F. (1991) Sex differences in growth hormone (GH) secretion by rats administered GH-relea-sing hexapeptide. Endocrinology 129, 2592*2598. van den Berg, G., Veldhuis, J.D., Frolich, M. et al. (1996) An amplitude-specific divergence in the pulsatile mode of GH secretion underlies the gender difference in mean GH concentrations in men and premenopausal women. Journal of Clinical Endocrinology and Metabolism 81, 2460-2466.
Bowers, C.Y. (1993) GH releasing peptides-structure and kinetics. Journal of Pediatric Endocrinology 6, 21*31.
Bowers, C.Y. (2002) New insight into the control of growth hormone secretion. In: Central and peripheral Mechanisms in Pituitary Disease (Kleinberg, D.L. & Clemmons, D.R., eds.). BioScientifica, Bristol, UK: 163-176.
Bowers, C.Y. A Granda-Ayala. R. (1999) Stimulated release of GH in normal younger and older men and women. In: Sex-Steroid Interactions with Growth Hormone (Veldhuis, J.D. & Giustina, A., eds.). Serooo Symposia, Norwell, MA: 277-289.
Bowers, C.Y., Maumenee, F.A., Reynolds, G.A. & Hong, A. (1984) On the in vitro and In vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology 114, 1537-1545.
Bowen, C.Y., Veeraragavan, K. & Sethumadhavan, K. (1994) Atypical growth hormone releasing peptides. In: Growth Hormone. II. Basic Clinical Aspects (Bercu, B.B. & Walker, R.F., eds.). Springer-Verlag. New York: 203*222.
Brill, K.T., Weltman, J.Y., Anderson. S. et al. (2002) Relative rank order of discrete secretagogue actions in the healthy aged male. Paper presented at the 84th Annual Meeting of the Endocrine Society, San Francisco, CA.
Bunt, J.C, Boiieau, R.A., Bahr, J.M., Nelson. R.A. (1986) Sex and training differences in human growth hormone during prolonged exercise. Journal of Applied Physiology 61, 1796-1801.
Cappon, J.P., Brasel, J., Mohan, S. et al. (1994) Effect of brief exercise on circulation insulin-like growth factor I. Journal of Applied Physiology 76, 2490-2496.
Chang, F.E., Dodds, W.G., Sullivan Kim, M.H. & Malarkey, W.B. (1986) The acute effects of exercise on prolactin and growth hor* mone secretion: comparison between sedentary women and women runners with normal and abnormal menstrual cycles. Journal of Clinical Endocrinology and Metabolism 62, 551*556. Chwalbinska-Moneta, J., Krysztofiak, H., Ziemba, A. et al. (1996) Threshold increases in plasma growth hormone in relation to plasma catecholamine and blood lactate concentrations during progressive exercise in endurance-trained athletes. European Journal of Applied Physiology 73, 117-120.
Clasey, J.L., Weltman, A., Patrie, J. et al. (2001) Abdominal visceral fat and fasting insulin are important predictors of 24-hour GH release independent of age, gender and other physiological factors. Journal of Clinical Endocrinology and Metabolism 86, 3845-3852. Cordido, F., Dieguez, C. & Casanueva, F.F. (1990) Effect of central cholinergic neurotransmission enhancement by pyridostigmine on the growth hormone secretion elicited by clonidine, arginine, or hypoglycemia in normal and obese subjects. Journal of Clinical Endocrinology and Metabolism 70, 1361-1370.
Cordido, F., Penalva, A., Dieguez, C. et al. (1993) Massive growth hormone (GH) discharge in obese subjects after the combined administration of GH-releasing hormone and GHRP-6: evidence for a marked somatotroph secretory capability in obesity. Journal of Clinical Endocrinology and Metabolism 76, 819-823.
Dali, R., Kanaley, J., Hansen, Т.К. et al. (2002) Plasma ghrelin levels during exercise in healthy subjects and in growth hormone-deficient patients. European Journal of Endocrinology 147, 65-70. Deuschle, М., Blum, W.F., Frystyk, J. et al. (1998) Endurance training and its effect upon the activity of the GH-IGFs system in the elderly. International Journal of Sports Medicine 19, 250-254. Engstrom, B.E., Karlsson, F.A. & Wide, L. (1998) Marked gender differences in ambulatory morning growth hormone values in young adults. Clinical Chemistry 44(6), 1289-1295.
Evan, W.S., Bowers, C.Y. & Veldhuis, J.D. (2001) Estradiol supplementation enhances pituitary sensitivity to recombinant human (RH) GHRH-1, 44-amide in somatostatin (SS)-withdrawn postmenopausal women. Paper presented at the Endocrine Society 83rd Meeting, Denver, CO.
Farhy, L.S., Straume, М., Johnson, M.L. et al. (2001) A construct of interactive feedback control of the GH axis in the male. American Journal of Physiology 281, R38-R51.
Felsing, N.E., Brasel, J.A. & Cooper, D.M. (1992) Effect of low and high intensity exercise on circulating growth hormone in men. Journal of Clinical Endocrinology and Metabolism 75, 157-162. Ghigo, E., Arvat, E., Bellone, J., Ramunni, J. & Camanni, F. (1993) Neurotransmitter control of growth hormone secretion in humans. Journal of Pediatric Endocrinology 6, 263-266.
Ghigo, E., Arvat, E., Gianotti, L. et al. (1994) Interaction of salbuta-mol with pyridostigmine and arginine on both basal and GHRH-stimulated GH secretion in humans. Clinical Endocrinology 40, 799-802.
Giustina, A. & Veldhuis, J.D. (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocrine Reviews 19(6), 717-797.
Hartley, L.H., Mason, J.W., Hogan, R.P. et al. (1972) Multiple hormonal responses to graded exercise in relation to physical training. Journal of Applied Physiology 33, 602-606.
Hartman, M.L. (2000) Physiological regulators of growth hormone secretion. In: Growth Hormone in Adults, 2nd edn. (Juul, A. & Jorgensen, J.O.L., eds.). Cambridge University Press, Cambridge, UK: 3-53.
Hartman, M.L. Veldhuis, J.D., Vance, M.L. et al. (1990) Somatotropin pulse frequency and basal concentrations are increased in acromegaly and are reduced by successful therapy. Journal of Clinical Endocrinology and Metabolism 70, 1375-1384.
Hartman, M.L., Weltman, J.Y., Patrie, J.T. et al. (2000) Exercise training for I year does not increase 24-h GH secretion in older adults. Paper presented at the 82nd Annual Meeting of the Endocrine Society, Toronto, Canada.
Iranmanesh, A., Lizarralde, G. & Veldhuis, J.D. (1991) Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. Journal of Clinical Endocrinology and Metabolism 73, 1081-1088.
Iranmanesh, A., South, S., Liem, A.Y. et al. (1998) Unequal impact of age, percentage body fat, and serum testosterone concentrations on the somatotrophic, IGF-I, and IGF-binding protein responses to a 3-day intravenous growth hormone-releasing hormone pulsatile infusion in men. European Journal of Endocrinology 139, 59-71. Jaffe, C.A., Ocampo-Lim, B., Guo, W. et al. (1998) Regulatory mechanisms of growth hormone secretion are sexually dimorphic. Journal of Clinical Investigation 102, 153-164.
Kanaley, J.A., Weatherup-Dentes, M.M., Jaynes, E.B. et al. (1999) Obesity attenuates the growth hormone response to exercise. Journal of Clinical Endocrinology and Metabolism 84, 3156-3161. Kanaley, J.A., Weltman, J.Y., Pieper, K.S. et al. (2001) Cortisol and growth hormone responses to exercise at different times of day. Journal of Clinical Endocrinology and Metabolism 86, 2881-2889. Kelijman, M. & Frohman, L.A. (1988) Enhanced growth hormone (GH) responsiveness to GH-releasing hormone after dietary manipulation in obese and nonobese subjects. Journal of Clinical Endocrinology and Metabolism 66, 489-494.
Kojima, М., Hiroshi, H., Date, Y. et al. (1999) Ghrelin is a growth-hormone releasing acylated peptide from stomach. Nature 402, 656-666.
Kozlowski, S., Chwalbinska-Moneta, J., Vigas, M. et al. (1983) Greater serum GH response to arm than to leg exercise performed at equivalent oxygen uptake. European Journal of Applied-Physiology 52, 11-135.
Lassarre, C, Girard, F., Durand, J. et al. (1974) Kinetics of human growth hormone during submaximal exercise. Journal of Applied Physiology 37, 826-830.
Lewis, UJ., Sinha, Y.N., Lewis, G.P. (2000) Structure and properties of members of the hGH family: a review. Endocrine Journal 47 (suppl.), S1-S8.
Luger, A., Watschinger, B., Duester, P. et al. (1992) Plasma growth hormone and prolactin responses to graded levels of acute exercise and to a lactate infusion. Neuroendocrinology 56, 112*117.
Maccario, М., Valetto, M.R., Savio, P. et al. (1997) Maximal secretory capacity of somatotrope cells in obesity: comparison with GH deficiency. International Journal of Obesity 21, 27-32.
Marcell, TJ., Wiswell, R.A., Hawkins, S.A. et al. (1999) Age-related blunting of growth hormone secretion during exercise may not be solely due to increased somatostatin tone. Metabolism 48(6), 665-670.
Merimee, T.J., Rabinowitz, D. & Fineberg, S.E. (1969) Arginine-ini-tiated release of human growth hormone: factors modifying the response in normal man. New England Journal of Medicine 280, 1434-1438.
Moretti, C, Fawri, A., Gnessi, L. et al. (1983) Naloxone inhibits exercise-induced release of PRL and GH in athletes. Clinical Endocrinology 18, 135-138.
Mueller, E.E., Locatelli, V. & Cocchi, D. (1999) Neuroendocrine control of growth hormone secretion. Physiological Reviews 79, 511-607.
Nindl, B.C., Kraemer, W.J., Marx, J.O. et al. (2003) Growth hormone molecular heterogeneity and exercise. Exercise and Sport Sciences Reviews 31, 161-166.
Penelva, A., Pombo, М., Carballo, A. et al. (1993) Influence of sex, age and adrenergic pathways on the growth hormone response to GHRP-6. Clinical Endocrinology 38, 87-91.
Pihoker, C, Middleton, R., Reynolds, G.A., Bowers, C.Y. & Badger, T.M. (1995) Diagnostic studies with intravenous and intranasal growth hormone-releasing peptide-2 in children of short stature. Journal of Clinical Endocrinology and Metabolism 80, 2987-2992. Pincus, S.M., Gevers, E., Robinson, I.C.A.F. et al. (1996) Females secrete growth hormone with more process irregularity than males
in both human and rat. American Journal of Physiology, Endocrinology and Metabolism 270, El 07-El 15.
Popovic, V., Damjanovic, S., Micic, D. et ai. (1995) Blocked growth' hormone-releasing peptide (GHRP-6)-induced GH secretion and absence of the synergic action of GHRP-6 plus GH-releasing hormone in patients with hypothalamopituitary disconnection: evidence that GHRP-6 main action is exerted at the hypothalamic level. Journal of Clinical Endocrinology and Metabolism 80, 942-947.
Pritzlaff, C.J., Wideman, L., Weltman, J.Y. et al. (1999) Impact of acute exercise intensity on pulsatile growth hormone release in men. Journal of Applied Physiology 87, 498-504.
Pritzlaff, CJ., Wideman, L., Blumer, J. et al. (2000) Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men. Journal of Applied Physiology 89, 937-946.
Pritzlaff-Roy, CJ., Wideman, L., Weltman, J.Y. et al. (2002) Gender governs the relationship between exercise intensity and growth hormone release in young adults. Journal of Applied Physiology 92, 2053-2060.
Raynaud, J., Capderou, A., Martineaud, J.-P. et al. (1983) Intersubject variability of growth hormone time course during different types of work. Journal of Applied Physiology 55, 1682-1687.
Richmond, E.J., Rogol, A.D., Clark, W., Dasdemir, D. & Veldhuis, J.D. (2001) Paradoxically heightened susceptibility to GH autonegative feedback in midpuberty compared with prepuberty in healthy boys. Paper presented at the Endocrine Society 83rd Meeting, Denver, CO.
Rudman, D„ Kutner, M.H., Rogers, CM. et al. (1981) Impaired growth hormone secretion in the adult population. Journal Clinical Investigation 67, 1361-1369.
Shuto, Y., Shibasaki, Т., Otagiri, A. et al. (2002) Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. Journal Clinical Investigation 109, 1429-1436.
Sutton, J. & Lazarus, L. (1974) Effect of adrenergic blocking agents on growth hormone responses to physical exercise. Hormone and Metabolic Research 6, 428-429.
Sutton, J. & Lazarus, L. (1976) Growth hormone in exercise: comparison of physiological and pharmacological stimuli. Journal of Applied Physiology 41, 523-527.
Tanaka, K., Inoue, S., Numata, K. et al. (1990) Very-low*calorie diet-induced weight reduction reverses impaired growth hormone secretion responses to growth hormone-releasing hormone, arginine and L-dopa in obesity. Metabolism 39, 892-896.
Thompson, D.L., Weltman, J.Y., Rogol, A.D. et al. (1993) Cholinergic and opioid involvement in release of growth hormone during exercise and recovery. Journal of Applied Physiology 75, 870-878.
Uusitupa, М., Siitonen, O., Harkonen, M. et al. (1982) Modification of the metabolic and hormonal response to physical exercise by beta-blocking agents. Annals of Clinical Research 14 (suppl.), 165-167.
Vahl, N., Jorgensen, J.O., Skjaerback, C. et al. (1997) Abdominal adiposity rather than age and sex predicts the mass and patterned regularity of growth hormone secretion in mid-life healthy adults. American Journal of Physiology 272, Ell 08* 1116.
Veldhuis, J.D. (1995) The neuroendocrine regulation and implications of pulsatile GH secretion: gender effects. Endocrinologist 5, 198-213.
Veldhuis, J.D. (1996a) New modalities for understanding dynamic regulation of the somatotropic (GH) axis: explication of gender differences in GH neuroregulation in the human. Journal of Pediatric Endocrinology and Metabolism 9, 237*253.
Veldhuis, J.D. (1996b) Physiological regulation of growth hormone (GH)-insulin-like growth factor type I (IGF-I) axis: predominant impact of age, obesity, gonadal function, and sleep.
Veldhuis, J.D. (1998) Neuroendocrine control of pulsatile growth hormone release in man: relationship with gender. Growth Hormone and IGF Research 8, 49-59.
Veldhuis, J.D. (2003) A tripeptidyl ensemble perspective of interactive control of growth hormone secretion. Hormone Research 60, 86*101.
Veldhuis, J.D. & Bowers, C.Y. (2003a) Sex-steroid modulation of growth hormone (GH) secretory control: three-peptide ensemble regulation under dual feedback restraint by GH and IGF-I. Endocrine 22(1), 25-40.
Veldhuis, J.D. & Bowers, C.Y. (2003b) Three-peptide control of pulsatile and entropic feedback-sensitive modes of growth hormone secretion: modulation by estrogen and aromatizable androgen. Journal of Pediatric Endocrinology 16 (suppl. 3), 587-605.
Veldhuis, J.D. & Yoshida, K. (2000) Impact of chronic training on pituitary hormone secretion in the human. In: Sports Endocrinology (Warren, M.P. & Constantini, N.W., eds.). Humana Press, Totowa, NJ: 57-76.
Veldhuis, J.D., Lassiter, A.B. & Johnson, M.L. (1990) Operating behavior of dual or multiple endocrine pulse generators. American Journal of Physiology. Endocrinology and Metabolism 259, E351-E361.
Veldhuis, J.D., Iranmenesh, A., Ho, K.K.Y. et al. (1991) Dual defects in pulsatile growth hormone secretion and clearance subserve the hyposomatotropism of obesity in man. Journal of Clinical Endocrinology and Metabolism 72, 51-59.
Veldhuis, J.D., Liem, A.Y., South, S. et al. (1995) Differential impact of age, sex steroid hormones, and obesity on basal versus pulsatile growth hormone secretion in men as assessed in an ultrasensitive chemiluminescence assay. Journal of Clinical Endocrinology and Metabolism 80, 3209-3222.
Veldhuis, J.D., Iranmanesh, A. & Weltman, A. (1997) Elements in the pathophysiology of diminished growth hormone (GH) secretion in aging humans. Endocrine 7, 41-48.
Veldhuis, J.D., Iranmanesh, A., Mulligan, T. & Anderson, S. (2001) Interactive regulation of postmenopausal growth hormone insulin-like growth factor axis by estrogen and growth hormone-releasing peptide-2. Endocrine 14, 45-62.
Veldhuis, J.D., Iranmanesh, A., Mulligan, T. & Bowers, C.T. (2002) Mechanisms of conjoint failure of the somatotropic and gonadal axes in ageing men. Novartis Foundation Symposium 242, 98-118.
Weltman, A., Weltman, J.Y., Schurrer, R. et al. (1992) Endurance training amplifies the pulsatile release of growth hormone: effects of training intensity. Journal of Applied Physiology 72, 2188-2196.
Weltman, A., Weltman, J.Y., Hartman, M.L. et al. (1994) Relationship between age, percentage body fat, fitness, and 24-hour growth hormone release in healthy young adults: effects of gender. Journal of Clinical Endocrinology and Metabolism 78, 543-548.
Weltman, A., Weltman, J.Y., Womack, CJ. et al. (1997) Exercise training decreases the growth hormone (GH) response to acute con-stant-load exercise. Medicine and Science in Sports and Exercise 29, 669-676.
Weltman, A., Pritzlaff, CJ., Wideman, L. et al. (2000a) Exercise dependent growth hormone release is linked to markers of heightened central adrenergic outflow. Journal of Applied Physiology 89, 629-635.
Weltman, A., Pritzlaff, CJ., Wideman, L. et al. (2000b) The relationship between exercise intensity and growth hormone (GH) release is attenuated in older men. Paper presented at the Fourth International Conference of the Growth Hormone Research Society, Gothenberg, Sweden.
Weltman, A., Anderson, S.М., Wideman, L. et al (2001) Impact of short-term estrogen supplementation in postmenopausal women on spontaneous and exercise stimulated pulsatile growth hormone (GH) secretion. Paper presented at the 83rd Annual Meeting of the Endocrine Society. Denver, CO.
Weltman, A., Brill, K., Weltman, J.Y. et al. (2002) GHRP-2 partially rescues impaired exercise stimulation of growth hormone (GH) release in older men. Paper presented at the 84th Annual Meeting of the Endocrine Society, San Fransisco, CA.
Weltman, J.Y., Frick, K., Watson, D. et al. (2002) Comparison of continuous and intermittent exercise on 24-h growth hormone secretion in obese and non-obese young men. Paper presented at the 84th Annual Meeting of the Endocrine Society, San Fransisco, CA.
Wideman, L., Weltman, J.Y., Shah, N. et al (1999) The effects of gender on exercise-induced growth hormone release. Journal of Applied Physiology 87, 1154-1162.
Wideman, L., Weltman, J.Y., Patrie, J.T. et al. (2000a) Synergy of L-arginine and growth hormone (GH)-releasing peptide-2 (GHRP-2) stimulation of GH in men and women: Modulation by exercise. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 279, R1467-R1477.
Wideman, L., Weltman, J.Y., Patrie, J.T. et al (2000b) Synergy of L-arginine and growth hormone (GH)-releasing peptide-2 on GH release: influence of gender. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 279, R1455-R1466.
Williams, Т., Berelowitz, М., Joffe, S.N. et al. (1984) Impaired growth hormone responses to growth hormone-releasing factor in obesity: a pituitary defect reversed with weight reduction. New England Journal of Medicine 311, 1403-1407.
Winer, L.M., Shaw, M.A., Baumann, G. (1990) Basal plasma growth hormone levels in man: new evidence for rhythmicity of growth hormone secretion. Journal of Clinical Endocrinology and Metabolism 70, 1678-1686.
Zaccaria, М., Vanier, М., Piazza, P., Noventa, D. & Ermolao, A. et al. (1999) Blunted growth hormone response to maximal exercise in middle-aged versus young subjects and no effect of endurance training. Journal of Clinical Endocrinology and Metabolism 84, 2303-2307.
Zadik, Z., Chalew, S.A., McCarter, RJ. et al (1985) The influence of age on the 24-hour integrated concentration of growth hormone in normal individuals. Journal of Clinical Endocrinology and Metabolism 60, 513-516.
Проопиомеланокортин
Содержание
 [убрать] 
1 Проопиомеланокортин и занятия физическими упражнениями2 ПОМК и его возникновение в процессе эволюции живых организмов2.1 Филогенез ПОМК и белки — производные ПОМК2.2 Локализация ПОМК в организме человека2.3 Содержание ПОМК в организме человека3 ПОМК — предшественник АКТГ и β-эндорфина, а также эндокринная регуляция ответа на физическую нагрузку3.1 Секреция ПОМК в условиях физической нагрузки3.2 Срочные изменения ПОМК при тренировке аэробной выносливости3.3 Острые изменения ПОМК в ответ на силовую тренировку4 Хронические адаптации к физическим нагрузкам и изменения ПОМК: сравнение последствий продолжительных тренировочных программ аэробной и силовой направленности5 Перетренировка и зависимость от физических упражнений6 Влияние на сердечно-сосудистую систему7 Влияние возраста, расы и пола7.1 Физиологические и патофизиологические аспекты секреции ПОМК, индуцированной физической нагрузкой, и ее последствия для гомеостаза энергетического и метаболического обмена8 ПОМК, занятия физическими упражнениями и иммунная реакция организма9 Корреляция между производными ПОМК и половыми стероидами или гонадотропинами в условиях тренировочных занятий10 Новые аспекты функционального значения ПОМК и интерпретация определения стресса10.1 Функциональная роль производных ПОМК10.2 Методологические аспекты определения производных ПОМК11 Бета-эндорфин и психологические эффекты физических упражнений12 Заключение13 ЛитератураПроопиомеланокортин и занятия физическими упражнениями
Активация гипофизарной системы проопиомеланокортина (ПОМК) происходит под воздействием физических, психологических и иммунологических стрессовых воздействий, которые индуцируют секрецию фрагментов ПОМК в сердечно-сосудистую систему. Ответ на физическую нагрузку включает возникновение в нервной, эндокринной или иммунной системах разнообразных нейрогуморальных сигналов, приводящих к морфологическим или функциональным изменениям, например мышечной ткани или сердечно-сосудистой системы (Teschemacher, 2003).
Адренокортикотропный гормон (АКТГ) и бета-эндорфин являются наиболее изученными в условиях физической нагрузки, однако в результате занятий физическими упражнениями происходит также секреция других фрагментов ПОМК, например бета-липотропина. Секреция производных ПОМК во время занятий физическими упражнениями является результатом адаптационных изменений организма спортсмена, направленных на преодоление различных стрессовых воздействий. Этот процесс непосредственно связан с разнообразными психологическими стратегиями, которые облегчают поведение организма в стрессовой ситуации (McCubbin, 1993). Секреция АКТГ и β-эндорфина происходит только при определенной интенсивности и продолжительности занятий физическими упражнениями. Реакция на физическую нагрузку определяется также такими факторами, как уровень тренированности, а также других индивидуальных особенностей исследуемых лиц (Goldfarb, Jamurtas, 1997). Аэробная двигательная активность (упражнения для тренировки выносливости) существенно отличается от анаэробной активности, в частности упражнений силовой направленности. В случае возникновения ситуации перетренировки снижение секреции АКТГ может отражать нарушение способности организма спортсмена справляться с нагрузкой. В то время как кратковременное состояние перетренировки (перенапряжение) может быть устранено путем продления периода восстановления, дальнейшее стрессовое воздействие в такой ситуации приведет к развитию синдрома перетренировки. Было предложено использовать изменения концентрации гормонов в крови в качестве показателя перетренировки, однако такие изменения наблюдаются не всегда (Fry et al., 1998).
В то же время остается неизвестным, какую роль играет секреция фрагментов ПОМК в сердечно-сосудистую систему при выполнении физических упражнений. На это следует обратить особое внимание, несмотря на то, что часто можно слышать объяснения, в которых это явление называют "адаптацией к стрессу”. Выяснение функционального значения системы ПОМК, активация которой происходит в организме человека ежедневно в условиях самых разнообразных стрессовых воздействий, по-прежнему остается предметом интереса (Teschemacher, 2003). Мы можем только предполагать, какие механизмы отвечают за индуцированное физической нагрузкой увеличение уровня β-эндорфина, АКТГ и кортизола. Помимо всего прочего, они могут различаться в зависимости от интенсивности физической нагрузки (субмаксимальная или максимальная), когда упражнения с высокой интенсивностью при потреблении кислорода выше максимального уровня (V02max) уже не приводят к дальнейшему увеличению содержания β-эндорфина в плазме (Kraemer W.J. et al., 1993).
ПОМК и его возникновение в процессе эволюции живых организмов
Филогенез ПОМК и белки — производные ПОМК
Время возникновения проопиомеланокортина составляет более 500 млн лет назад. Этот белок обнаружен не только у млекопитающих, но также у беспозвоночных (Dencf, Van Bael, 1998) и в одноклеточных организмах (Salzct et al., 1997). Учитывая все это, можно предположить, что ПОМК играет важную роль в жизни как примитивных, так и высокоразвитых живых организмов. О происхождении системы ПОМК человека известно не очень много. Установлено лишь, что фрагменты ПОМК обнаруживаются в организме зародыша человека уже на пятой неделе беременности (Fachinetty et al., 1987). ПОМК и два других основных прогормона — проэнкефалин и продинорфин — являются предшественниками трех семейств опиоидных белков: эндорфинов, энкефалинов и динорфинов.
Пептидные гормоны и нейропептиды синтезируются как часть одной большой белковой молекулы— предшественника ПОМК, которая после трансляции подвергается различным ферментативным превращениям и модификациям. У человека на гаплоидный геном приходится одна копия гена РОМС, расположенная на 2-й хромосоме (р23). Он имеет длину 7665 пар нуклеотидов и состоит из трех экзонов, разделенных двумя большими нитронами (3—4 и 2—3 т.п.н. соответственно). Первый экзон имеет длину около 100 п.н. и содержит 5’-нетранслируемый участок мРНК ПОМК. Длина второго экзона около 150 п.п., и помимо небольшого участка 5’-нетранслируемой области он кодирует последовательность сигнального пептида и первые 18 аминокислот ПОМК. Третий экзон кодирует остальную часть предшественника ПОМК, включающую последовательности АКТГ, β-липотропина и β-эпдорфина. Биологически активные пептиды, образующиеся из ПОМК, подвергаются дальнейшим превращениям, в результате которых образуются пептидные продукты меньшего размера, обладающие специфической биологической активностью. Таким образом, в процессе превращений из молекулы ПОМК образуются про-у-меланоцитстимулирующий гормон (про-у-МСГ, также может называться N-ПОМК), кортикотропинподобиый белок (corticotropin-like-intermediate protein, CLIP), соединительный пептид (joining peptide, JP), АКТГ и β-липотропин. Существует, по крайней мере, 10 производных β-эндорфина, о которых известно, что они существуют в организме млекопитающих: β-эндорфии (1—27), (1 — 26), (1 —17) и (1 —16), а также их N-ацетилированные формы и, кроме того, N-ацетил-β-эпдорфин (1—31) (Teschemacher et al., 1990а; Hollt, 1993; Young et al., 1993). Про-у-МСГ расщепляется с образованием N-терминального пептида (N-ПОМК (1—49)), АКТГ — с образованием а-МСГ и CLIP, a β-липотропин — с образованием β-эндорфина и β-липотропииа. Соединительный пептид (JP) не обладает биологической активностью, хотя и содержит один остаток цистеина, что является уникальным для человека, который позволяет ему образовывать димеры. Предполагается, что ПОМК также может димеризоваться в клетке в процессе биосинтеза (Bicknell et al., 1996); N-ПОМК принимает участие в митогенезе надпочечников, а а-МСГ у низших позвоночных контролирует пигментацию.
Длина мРНК ПОМК в гипофизе составляет 1072 нуклеотида, в то время как длина транскриптов того же гена в других отделах головного мозга больше, а в периферических тканях — меньше и составляет около 800 нуклеотидов. Больше всего ПОМК образуется в гипофизе; мРНК ПОМК — в гипофизе, других отделах головного мозга и в периферических органах транслируется в аминокислотную последовательность "пре-проопиомеланокортина" или пре-ПОМК. После удаления из молекулы пре-ПОМК N-концевой сигнальной последовательности образуется ПОМК, который представляет собой белок из 241 аминокислотного остатка и далее расщепляется с образованием фрагментов ПОМК, например АКТГ или β-эндорфина (см. обзор Hollt, 1993; Bertagna, 1994).
Локализация ПОМК в организме человека
Основным местом экспрессии гена РОМС является гипофизарная железа, в частности кортикотропные клетки передней доли и меланотропные клетки средней доли гипофиза. Средняя доля гипофиза, которая представляет собой место локализации меланотропных клеток у низших видов, в гипофизе человека является рудиментарным образованием, поэтому в головном мозге человека нет четко выраженной средней доли гипофиза, содержащей меланотропные клетки. Однако в передней доле гипофиза также имеются экспрессирующие ПОМК клетки, способные подвергать его преобразованию по одному из путей ферментативного расщепления как кортикотропному, так и меланотропному. В то же время эти ферментативные системы, вероятнее всего, как и прежде, имеют независимую регуляцию (Evans V.R. et al., 1994).
Транскрипты ПОМК были также обнаружены и в других отделах мозга, кроме гипофиза, например в дугообразном ядре гипоталамуса. Более того, ПОМК подобные транскрипты были выявлены в ряде периферических тканей, в числе которых щитовидная железа, тимус, мозговое вещество надпочечников, гонады, плацента, поджелудочная железа, почки, селезенка, печень, стенки желудочно-кишечного тракта, кожа, моноциты, макрофаги и Т-клетки.
Содержание ПОМК в организме человека
В кортикотронных клетках ПОМК подвергается гликолизироиапию и фосфорилированию, а также ферментативному расщеплению на три больших фрагмента: так называемый 16 К-фрагмент, АКТГ и (5-липотропии, последний включает в себя у-линотропин и β-эндорфин, которые также образуются в небольших количествах. В меланотропных клетках из ПОМК образуются те же фрагменты, что и в кортикотропных, однако здесь они дополнительно расщепляются в серию фрагментов меньшего размера, часть которых подвергается N-концевому ацетилировапию или С-концевому амидированию. Типичными примерами таких производных ПОМК являются а-меланоцитстимулирующий гормон (а-МСГ) или ацетилированный β-эндорфин (Loh, 1992; Young et al., 1993; Castro, Morrison, 1997).
ПОМК — предшественник АКТГ и β-эндорфина, а также эндокринная регуляция ответа на физическую нагрузку
Секреция ПОМК в условиях физической нагрузки
При воздействии физической нагрузки происходит активация “кортикотропной части" системы ПОМК, что приводит к секреции иммунореактивного материала АКТГ и β-эндорфина. Изучение АКТГ как основного представителя системы ПОМК с точки зрения индуцированной стрессом активации гипоталамо-гипофизарно-надночечниковой системы продолжается уже достаточно долго (Ganong et al., 1987; Tache, Rivier, 1993). АКТГ рассматривается как основной валидный параметр стрессового ответа эндокринной системы помимо адреналина, норадреналина и кортизола (Adams, Hempelmann, 1991). Позднее было установлено, что секреция β-эндорфина и β-липотропина гипофизом происходит при аналогичных или подобных стрессовых воздействиях (Owens, Smith, 1987; McLoughlin et al., 1993).
Повышение концентрации иммунореактивных АКТГ и β-эндорфина в плазме в ответ на физические упражнения происходит практически в эквимолярных количествах (Akil et al., 1984; De Mcirlcirct al., 1986; Farrell et al., 1987; Rahkila ct al., 1988; Strassman ct al., 1989; Schwarz, Kindcrmann, 1990; Hcitkamp et al., 1993; Schulz et al., 2000). Вместе с тем, как было показано в исследованиях с участием женщин, занимавшихся марафонским бегом, базальный уровень иммунореактивного АКТГ и β-эндорфина могут различаться, а увеличение уровня АКТГ в определенных условиях, например во время бега до утомления, может превышать увеличение иммунореактивного β-эндорфина до пяти раз (Hcitkamp et al., 1996).
Острый стресс может быть определен биохимическими методами путем измерения секреции катехоламинов. Хронический стресс определить как изменение биохимических показателей гораздо сложнее, хотя с физиологической точки зрения его можно рассматривать как утрату способности противостоять воздействиям окружающей среды или потерю контроля над функциями организма при длительном сохранении стрессовых условий (McLoughlin et al., 1993). В случае, когда спортсмен ощущает субъективные симптомы стресса в сочетании с повышенной утомляемостью или снижением физической работоспособности, проявляется состояние стресса, связанного с перетренировкой.
Срочные изменения ПОМК при тренировке аэробной выносливости
На основании предположения о том, что отпет на стресс представляет собой нейроэндокринный процесс, активация которого происходит еще до начала выполнения физических упражнений, было проведено исследование возможности использования теста со ступенчатым увеличением нагрузки в качестве модельного стрессового фактора (De Vries et al., 2000). Лица, принимавшие участие в исследовании, выполняли упражнения на велотренажере с нагрузкой 40 — 100 % максимального потребления кислорода (V02max) до наступления утомления. Результаты исследования показали, что увеличение ЧСС, уровня лактата, адреналина и норадреналина отражает относительную нагрузку, в отличие от повышения концентрации АКТГ и β-эндорфина, которое происходило только после того как интенсивность упражнений достигала 80 % V02max. В целом проведенное исследование продемонстрировало, что активация стрессовых гормонов происходит в различные моменты времени, а задержка реакции гипоталамо-гипофизарно-надпочечниковой системы в условиях теста со ступенчатой нагрузкой контрастирует с отсутствием подобной задержки при ответе данной системы в условиях психологического стресса (De Vries et al., 2000).
Сравнение уровня АКТГ до и после субмаксимальной нагрузки (80 % V02max) и выполнения изотонических упражнений до утомления (100 % V02max) также позволило прийти к выводу о том, что индуцированное физическими упражнениями повышение содержания АКТГ в плазме крови и его корреляция с уровнемкортизола в крови зависит от интенсивности изотонических упражнений (Farell et al., 1983). При нагрузке 40—60 % V02max существенных изменений концентрации β-эндорфина не происходило, однако его уровень существенно повышался при интенсивности физических упражнений 80 % V02max (Donevan, Andrew, 1987; Langenfeld et al., 1987; McMurrey et al., 1987; Sforzo, 1989). В одном исследовании повышение уровня АКТГ после занятий бегом наблюдалось только у спортсменов, занимавшихся марафонским бегом, но не у нетренированных добровольцев (Duclos et al., 1997). Однако, поскольку при оценке уровня кортизола подобных различий выявлено не было, авторы данной статьи высказали предположение о более низкой чувствительности гипоталамо-гипофизарно-надпочечниковой системы к негативной обратной регуляции. Результаты последующих исследований этих же авторов (Duclos et al., 1998) опровергли гипотезу о пониженной чувствительности надпочечников к АКТГ после их гипофизарной стимуляции.
В другой работе были использованы низкие и высокие дозы дексометазона (Marquet et al., 1999). После приема последней дозы участники исследований выполняли тест на велоэргометре с максимальной нагрузкой, до и после каждого проведения теста брали кровь для анализа. Установлено, что применение дексаметазона приводит к снижению уровня АКТГ, β-эндорфина, кортизона и половых стероидов, за исключением тестостерона, в покое и после физической нагрузки. Авторы интерпретировали эти результаты как нарушение адаптации к интенсивным физическим нагрузкам.
Существуют противоречия по вопросу влияния продолжительности упражнений и объема физической нагрузки на секрецию β-эндорфииа. С одной стороны, показано, что повышенная концентрация β-эндорфина сохраняется в течение всего времени интенсивных занятий физическими упражнениями (тесты с нагрузкой 80 % V02max продолжительностью 10— 30 мин) (Angelopoulos, 2001), а с другой — сообщается о постепенном увеличении уровня β-эндорфина при нагрузке 80 % V02max (Goldfarb et al., 1991) либо о линейном повышении концентрации β-эндорфина со временем (Taylor et al., 1994). Противоречия между экспериментальными данными разных авторов могут быть обусловлены различиями в объеме физической нафузки либо совпадением скорости секреции и исчезновения β-эндорфина при нагрузке, равной 50 % V02max. Описана также зависимость секреции β-эндорфина и АКТГ от интенсивности упражнений (Rakhila et al., 1987, 1988). Однако, по данным других авторов, проводивших исследования в условиях марафонского забега и тестов с субмаксимальной нагрузкой 50 % V02max, секреция β-эндорфина и β-липофопина в большей степени зависит от продолжительности нагрузки, а не от ее интенсивности (Petraglia et al., 1990).
При изучении секреции β-эндорфина при нагрузке 60 и 90 % V02max достоверное увеличение уровня гормона наблюдалось только при более высокой интенсивности нагрузки и зависело от продолжительности занятия физическими упражнениями соответственно (Goldfarb, Jamurtas, 1977). Постепенное или ступенчатое увеличение нагрузки аэробного характера способствовало повышению уровня β-эндорфина. Выполнение физических упражнений с интенсивностью 66 и 57 % V02max приводило к увеличению β-эндорфина в плазме крови у нетренированных и тренированных лиц соответственно. Авторы указывают, что достоверных отличий в уровне β-эндорфина ни в состоянии покоя, ни во время выполнения физических упражнений между участниками исследований с различным уровнем тренированности не обнаружено.
Проведено исследование реакции кортизола на применение дексаметазона при блокаде АКТГ и в ответ на физические упражнения с максимальной нагрузкой VO,max. После занятия уровень АКТГ в плазме повышался до 600 % исходного значения, в то время как концентрация кортизола оставалась неизменной, авторы объясняют полученные результаты различиями в периферическом метаболизме (Lac et al., 1999).
Изучали также изменения уровня АКТГ и β-эндорфина в плазме крови при выполнении высокоинтенсивных упражнений на велоэргометре при стимуляции атмосферных условий на высоте 4300 м (пониженное давление и содержание кислорода) и на уровне моря. Выполнение физических упражнений в условиях острой гипоксии и пониженного давления не приводило к существенным изменениям уровня β-эндорфина, АКТГ и кортизола при физической нагрузке, не обнаружено и отличий в молярном отношении β-эндорфина и АКТГ (Kraemer WJ. et al., 1991). Существенное возрастание АКТГ в сыворотке крови наблюдалось после несоревновательного забега на 21 км на небольшой высоте (330 м над уровнем моря) по сравнению с аналогичной физической нагрузкой на высоте 650 м над уровнем моря. Высказано предположение о том, что АКТГ может играть роль в адаптации к физической нагрузке на небольших высотах (el Migdadi et al., 1996).
Регулярные занятия физическими упражнениями, включая последующий период восстановления, могут стать удобной моделью для изучения влияния различной продолжительности интервалов отдыха на последующую реакцию на стресс. С учетом этого соображения было проведено сравнение реакции нейроэндокринной и иммунной систем в дни занятий упражнениями для тренировки выносливости одинаковой интенсивности, однако с различным периодом отдыха перед первым и вторым занятием (Ronsen et al., 2002). Авторы исследования показали, что при выполнении упражнений через 3 ч после предыдущего повышение уровня адреналина, АКТГ и кортизола было более выраженным по сравнению с 6-часовым интервалом для отдыха. Было показано, что время восстановления также является важным фактором достижения гомеостаза между регулярными занятиями для тренировки выносливости.
β-Эндорфин и чувствительность дыхательной системы. Для подтверждения гипотезы о том, что упражнения для тренировки выносливости могут приводить к снижению хемочувствительности, которое может быть опосредовано повышением эндогенного β-эндорфина, было проведено измерение чувствительности дыхательной системы к повышению диоксида углерода в крови и содержания иммунореактивного β-эндорфипа в крови у участников марафонского забега. У всех участников забега отмечено повышение уровня β-эндорфина, начиная с предстартового момента и заканчивая финишем. Вместе с тем, существенных изменений чувствительности организма к двуокиси углерода в крови обнаружено не было. Был сделан вывод о том, что естественное увеличение эндогенного β-эндорфина, обусловленного марафонским забегом, не влияет па центральную хемочувствительность (Mahler et al., 1989). Взрослых студентов мужского пола с целью определения уровня аэробной подготовленности подвергали тесту определения V02max. В группе “хорошо подготовленных” наблюдалось существенно меньшее повышение ЧСС по сравнению с “неподготовленными”, однако эти различия в реакции организма лиц с различным уровнем аэробной подготовленности стирались в случае применения опиоидного антагониста налтрексона. Было высказано предположение, что регулярные тренировочные занятия аэробными упражнениями стимулируют секрецию опиоидов, обладающих ингибирующим эффектом (McCubbin, 1993).
Острые изменения ПОМК в ответ на силовую тренировку
Аэробная двигательная активность (упражнения на выносливость) существенно отличается от анаэробной, такой, как силовые упражнения. После занятий силовыми упражнениями наблюдали снижение β-эндорфипа плазмы крови по сравнению с исходным состоянием до начала занятия (Pierce ct al., 1994). Кроме того, не было обнаружено никакой взаимосвязи между физической нагрузкой и изменением уровня β-эндорфина (McGowan et al., 1993). Каких-либо закономерных изменений β-эндорфина в ответ на выполнение силовых упражнений не установлено и другими авторами (Goldfarb, Jamurtas, 1997).
При выполнении силовых упражнений с большой нагрузкой к ключевым факторам, определявшим степень изменений концентрации β-эндорфина в плазме крови, относятся продолжительность интервалов отдыха между подходами и уровень лактата в крови (Kraemer W.J. et al., 1993). Данные этих исследователей, обнаруживших достоверное увеличение β-эндорфина в плазме и кортизона в сыворотке крови только при использовании одного из 6 протоколов занятий с большой нагрузкой, показывают, что тренировочное воздействие, необходимое для повышения уровня β-эндорфина, характеризуется большей продолжительностью подходов и короткими интервалами отдыха между подходами и упражнениями. Основными факторами, определяющими физиологический стресс, являются количество повторений, которое позволяет выполнить нагрузка (т. с. интенсивность) за одни подход (т. е. продолжительность), а также длительность интервалов отдыха (Kraemer W.J. etal., 1993). Повышение уровня β-эндорфина наблюдалось только в конце занятия силовыми упражнениями во время энергетического баланса и было существенным только при негативном энергетическом балансе (Walberg-Rankin et al., 1992). У профессиональных тяжеловесов занятая силовыми упражнениями не влияли на уровень лактата и уровень p-эндорфина в крови (Kraemer W.J. et al., 1992). Создается впечатление, что занятия силовыми упражнениями не вызывают каких-либо закономерных изменений p-эндорфина. Виды силовой тренировки, не приводящей к полному утомлению, а именно упражнения с большой массой отягощений, хотя и требуют высокой мышечной активности на протяжении коротких промежутков времени, увеличением уровня p-эндорфина не сопровождаются (Pierce et al., 1993b), а могут даже вызывать его понижение (Pierce et al., 1994). Увеличение p-эидорфина наблюдалось только в случаях, когда при выполнении упражнений спортсмены занимались практически до наступления утомления (Kraemer W.J. et al., 1993). Было продемонстрировано повышение концентрации иммунореативного АКТГ и р-эндорфина в плазме при выполнении анаэробных упражнений, которое коррелировало с увеличением содержания лактата в крови (Schulz et al., 2000). Вместе с тем полный β-эндорфин (1—31) был обнаружен в небольших количествах только в двух образцах плазмы. Авторы работы заключили, что обнаруженный ими иммунорсактивный материал имеет отношение к полному пептиду β-эндорфина (1—31) лишь в незначительной степени, а большая его часть, обнаруживаемая в крови при выполнении анаэробных упражнений, вероятнее всего, представляет собой β-липотропин.
Результаты исследования эффектов силовой тренировки па секрецию β-эндорфина неоднозначны: частично они обусловлены выбором участников исследований, частично различиями в параметрах занятий: интенсивности, продолжительности и длительности интервалов отдыха (Kraemer W.J. et al., 1989; Goldfarb, Jamurtas, 1997), а частично — специфичностью использованных методов анализа (Harbach et al., 2000; Schulz et al., 2000).
Этанол не вызывает роста концентрации кортизола и крови выше, чем это происходит в результате занятий силовыми упражнениями, однако он обладает более продолжительным эффектом и не изменяет уровня АКТГ в крови (Koziris et al., 2000). Отсутствие изменений концентрации кортизола после коротких периодов интенсивной силовой тренировки но сравнению с состоянием покоя наблюдали также другие исследователи (Fry et al., 1998; Raastad et al., 2001).
Хронические адаптации к физическим нагрузкам и изменения ПОМК: сравнение последствий продолжительных тренировочных программ аэробной и силовой направленности
Изменения ПОМК в ответ на продолжительные занятия аэробными упражнениями. После выполнения тренировочной программы продолжительностью 12 недель у участников исследований наряду с существенным увеличением VO.max было обнаружено притупление реакции АКТГ на выполнение работы с субмаксималыюй нагрузкой (Buono et al., 1987). Вместе с тем у тренированных лиц выявлено менее выраженное увеличение уровня АКТГ в ответ на максимальные физические нагрузки (Luger et al., 1987). Однако при изучении влияния продолжительных тренировок выносливости на функцию коры надпочечников у женщин, занимавшихся бегом, путем определения увеличения уровня кортизона в крови в ответ па внутривенные инъекции АКТГ никаких функциональных изменений коры надпочечников обнаружено не было (Ronkainen et al., 1986).
Изменения ПОМК в ответ на продолжительные занятия силовыми упражнениями. По данным Кремера (Kraemer W.J. et al., 1992), выполнение силовых упражнений сопровождается увеличением β-эндорфина, тестостерона и лактата, однако после занятий силовыми упражнениями на протяжении двух лет выявлены изменения только тестостерона.
Исследование механизмов адаптационных изменений, связанных с отсутствием физической нагрузки мышц, показало, что утрата мышечной силы обусловлена прежде всего снижением способности нервной системы возбуждать мышечное сокращение, а не изменениями размера миофибрилл (Deschenes et al., 2002). В отличие от силовой тренировки, результатом которой является увеличение мышечной силы и гипертрофия мышечной ткани, отсутствие мышечной нагрузки приводит к снижению работоспособности мышц. Кроме того, эти исследователи обнаружили, что в отсутствие мышечной нафузки происходят изменения гормонального баланса организма, способствующие атрофии мышц, т. е. происходит рост катаболического гормона кортизона, который не сопровождается соответствующим повышением уровня АКТГ.
Недостаток сна не изменяет уровня β-эндорфина в состоянии покоя и не влияет иа эффективность ответа p-эндорфина па высокоинтенсивные упражнения (McMurrey et al., 1988).
Влияние тренировочных занятий. Существует обзор влияния тренировочных занятий на базальмый уровень гормонов в плазме или уровень после воздействия физической нагрузки (Goldfarb, Jamurtas, 1997). Анализ ряда исследований с участием разнообразного контингента обследованных лиц, а также с применением личных тренировочных программ приводит к выводу о явной противоречивости результатов: по данным разных авторов, занятия физическими упражнениями повышают, не влияют или снижают содержание β-эндорфина в крови. Авторы обзора (Goldfarb, Jamurtas, 1997) интерпретируют существующие в литературе противоречия как следствие различий в типе тренировочных программ и их интенсивности, методах определения β-эндорфина и видах применяемых физических упражнений. Образец четкого подхода к планированию эксперимента можно найти в статье Энгфреда (Engfred et al., 1994), который провел сравнение показателей тренированных и нетренированных добровольцев и проанализировал состояние этих людей до и после проведения тщательно спланированной программы тренировочных занятий. В обоих группах после занятий физическими упражнениями обнаружены сходные изменения норадреналина, адреналина, соматотропного гормона, β-эндорфина и инсулина. При использовании ступенчатовозрастающей нагрузки до утомления и продолжительных занятий аэробными упражнениями до утомления, таких, как марафонский бег, прирост концентраций АКТГ и β-эндорфина был приблизительно одинаковым (Heitkamp et al., 1993). После 5 недель тренировочных занятий наблюдалось достоверное существенное снижение прироста уровня АКТГ и β-эндорфина в ответ на физическую нагрузку. В спланированных аналогичным образом исследованиях нетренированные женщины на протяжении 8 недель тренировали выносливость, что выражалось в занятиях бегом продолжительностью 30 мин три раза в неделю (Heitkamp et al., 1998). Изучение изменений уровня гормонов после такой тренировочной программы показало отсутствие изменений базального уровня β-эндорфина и увеличение этого показателя для АКТГ. Уровень АКТГ и β-эндорфина сразу после занятия физическими упражнениями существенно возрастал, однако в случае р-эндорфина прирост был несколько меньшим. Таким образом, физические упражнения, очевидно, вызывают специфический ответ, проявляющийся в увеличении фрагментов ПОМК, который трудно обнаружить после разового воздействия физической нафузки. Результаты, полученные с участием тренированных и нетренированных добровольцев, также выявили различия в характере изменений уровня АКТГ и β-эндорфина у лиц с различным уровнем физической подготовленности, на основании которых авторы сделали сходные выводы (Diego Acosta et al., 2001). Очень вероятно, что влияние тренировочных занятий на метаболизм β-эндорфина в состоянии покоя и при выполнении физических упражнений зависит от парамефов выполнявшихся ранее упражнений. Аэробные упражнения среднего уровня интенсивностью 50 % VO,max не сопровождались изменениями β-эндорфина, тогда как при интенсивности упражнений 66 % V02max наблюдалось увеличение уровня β-эндорфина (Viru, Tendzegolskis, 1995).
Была проведена оценка изменений уровня АКТГ, кортизола и лактата в плазме у лиц с малоподвижным образом жизни, лиц со средним уровнем двигательной активности и интенсивно тренирующихся бегунов (Luger et al., 1987). У лиц с высоким уровнем физической подготовленности оказался повышенным уровень АКТГ в плазме. Подобно содержанию АКТГ и кортизола, уровень лактата в плазме определялся интенсивностью упражнений, поскольку во всех группах зависимость изменений лактата крови от интенсивности упражнений носила аналогичный характер. Лицам с более высоким уровнем физической подготовленности для достижения сопоставимого увеличения лактата в плазме крови требовалась более высокая абсолютная физическая нагрузка, при равной абсолютной нагрузке уровень активации гипоталамо-гипофизарно-надпочечниковой системы у них был существенно ниже по сравнению с нетренированными лицами. Было высказано предположение, что ежедневные интенсивные тренировки приводят к хронической гиперсекреции АКТГ и гиперфункции надпочечников, т. е. физическая тренировка сопровождается развитием адаптационных механизмов, таких, как рост способности справляться с более высокой нагрузкой при меньшей активации гипофизарно-надпочечниковой системы (Luger et al., 1987). Результаты исследования этой же группы авторов свидетельствуют о том, что у хорошо тренированных бегунов обнаруживается повышенный базальный уровень АКТГ и кортизола, а пониженное содержание экзогенного кортиколиберина обусловлена мягкой хронической гиперфункцией коры надпочечников (Luger et al., 1988).
В исследованиях, где проводилось сравнение лиц с низким уровнем двигательной активности и хорошо тренированных, при использовании различных тренировочных программ не было выявлено никаких адаптационных изменений в характере секреции производных ПОМК (Kraemer R.R. et al., 1989; Goldfarb et al., 1991). В тесте с максимальной нагрузкой на тредмиле участвовали три группы, которые занимались, соответственно, спринтерской интервальной тренировкой, тренировкой выносливости и комбинированной тренировкой в течение 10 недель. В группе, занимавшейся тренировкой выносливости, никаких гормональных изменений не обнаружено. В группе, тренировавшейся по комбинированной программе, несмотря на сохранение гормональной, наблюдалось значительное снижение прироста концентрации β-эндорфина и АКТГ в ответ на физическую нагрузку (Kraemer W.J. et al., 1989a).
По сравнению с мужчинами, у женщин, занимавшихся марафонским бегом, обнаружен более высокий уровень в покое и меньшее увеличение β-эндорфина, а также более низкая концентрация в покое и более значительное увеличение АКТГ после марафонского забега и тестов на тредмиле (Heitkamp et al., 1996). Кроме того, та же группа исследователей наблюдала тенденцию к повышению концентрации АКТГ в состоянии покоя в результате тренировок на выносливость (Heitkamp et al., 1998).
Секреция ПОМК в условиях экстремальной физической нагрузки. Супермарафонские забеги представляют собой экстремальную физическую нагрузку; содержание в сыворотке АКТГ и β-эндорфина в состоянии покоя существенно превышало границы нормального диапазона (изменения гормонального состояния в покое), уровень АКТГ оставался увеличенным, а концентрация p-эндорфипа в плазме находилась в пределах нормального диапазона без существенных изменений, и это интерпретировалось как гормональная адаптация к продолжительному стрессу (Pestell et al., 1989). Более выраженный ответ у лиц с высоким уровнем физической подготовленности наблюдался только в условиях экстремальной физической нагрузки (Farell et al., 1987).
Тарп (Tharp, 1975) еще в 1975 г. высказал следующее предположение о роли глюкокортикоидов при двигательной активности и спортивной тренировке. Утомление сопровождается снижением уровня глюкокортикоидов в плазме, что может представлять собой защитный механизм, предотвращающий истощение ресурсов организма. Хроническая физическая тренировка приводит к гипертрофии функции коры надпочечников и, как правило, небольшому повышению глюкокортикоидов во время острой физической нагрузки, в отличие от ситуации, наблюдаемой в организме нетренированных лиц. Изменения глюкокортикоидного ответа, обусловленные физическими тренировками, очевидно, вызваны снижением чувствительности коры надпочечников к стимуляции АКТГ и, возможно, адаптацией гипоталамо-гипофизарно-надпочечниковой системы, выражающейся в снижении секреции АКТГ в ответ на стресс (Tharp, 1975).
У нетренированных лиц обнаружен достоверно более высокий уровень у1-17-эндорфина и а1-16-эндорфина, а также их относительного количества по сравнению с p-эндорфином (Viru, Tendzegolskis, 1995), что свидетельствует об изменениях метаболизма p-эндорфина в состоянии покоя и при физической нагрузке, обусловленных предшествующими занятиями физическими упражнениями.
Перетренировка и зависимость от физических упражнений
Этот подраздел посвящен физиологии спорта и двигательной активности в состоянии нарушенного равновесия между переутомлением, возникающим в результате физических тренировок, и способностью спортсмена выдерживать нагрузку, которая приводит к состоянию перетренировки. Из-за отсутствия универсальной терминологии литература, посвященная вопросам перетренировки, временами может вводить в заблуждение (Fry, Kraemer, 1997). Состояние перетренировки может быть определено как любой тренировочный процесс, который происходит без полного восстановления организма спортсмена между тренировочными занятиями, что в итоге приводит к снижению показателей физической работоспособности (Fry, Kraemer, 1997; Raastad et al., 2001). Еще одним недостатком научных публикаций по данному вопросу является то, что при изучении состояния перетренировки не используются последовательно адекватные изменения объема или интенсивности упражнений, либо не очень тщательно анализируются параметры отдыха и восстановления используемой тренировочной программы, либо исследователи не наблюдают реального снижения работоспособности (Fry, Kraemer, 1997). В то время как кратковременное состояние перетренировки (перенапряжение) может быть возвращено к норме благодаря более длительному периоду восстановления, дальнейшее воздействие стрессовых факторов приведет к возникновению синдрома перетренировки. В работах, посвященных изучению состояния перетренировки, проводилось количественное определение таких субстратов, как лактат, мочевина, ферменты (например, креатинкиназа) или гормоны (например, кортизол, тестостерон, соматотропный гормон), однако мы остановимся только на сообщениях, где упоминаются АКТГ и β-эндорфин как представители производных ПОМК.
Ряд исследователей (Urhausen et al., 1995; Barron et al., 1985; Fry, Kraemer, 1997) отмечали нарушение индуцированного физическими упражнениями увеличения yровня АКТГ после краткосрочного теста на выносливость до утомления с нагрузкой 110 % индивидуального порога либо в ответ на индуцированную инсулином гипогликемию у спортсменов, занимавшихся марафонским бегом в состоянии перетренировки, которое объясняли негативной обратной связью при участии кортизона, истощением гипофизарных запасов АКТГ, а также изменениями внутриклеточного гомеостаза (Urhausen et al., 1995). Существуют также и другие сообщения об отсутствии индукции повышения уровня АКТГ у спортсменов в состоянии перетренировки (Kraemer et al., 1989b). Регулярные острые или хронические воздействия определенных видов стресса приводят к адаптации, которая может выражаться в снижении чувствительности гипоталамо-гипофизарно-надпочечниковой системы к последующим или продолжительным воздействиям этих видов стресса. Показано, что интенсивные физические тренировки приводят к адаптивным изменениям функции гипоталамо-гипофизарно-надпочечниковой системы в состоянии покоя, сдвигу фазы и усилению гипофизарной секреции АКТГ, а также снижению секреции кортизола (Wittert et al., 1996).
Во время интенсивных силовых тренировок или в периоды перенапряжения в большинстве случаев наблюдается снижение чувствительности надпочечников к АКТГ, которое компенсируется повышением секреции АКТГ в гипофизе (Lehmann et al., 1998). Сообщалось также о том, что у спортсменов в состоянии перетренировки происходит снижение секреции бета-эндорфина, индуцированной физической нагрузкой (Urhausen et al., 1995). Кроме того, существуют данные, подтверждающие снижение активности симпатической системы и чувствительности тканей-мишеней к катехоламинам (Lehmann et al.,1998).
Преобладающим в настоящее время синдромом переутомления является синдром парасимпатического или Аддисонова типа. На ранних стадиях, несмотря на увеличение секреции гипофизом АКТГ, происходит некомпенсируемое ничем снижение чувствительности надпочечников и уменьшение ответной секреции кортизола. На поздних стадиях заболевания секреция АКТГ также снижается. Однако подобная полная картина заболевания наблюдается только в случае перетренировки с большим объемом упражнений на выносливость при высоком уровне энерготрат: Устойчивое нарушение физической работоспособности у спортсменов в состоянии перетренировки можно объяснить функциональными изменениями гипофизарно-надпочечниковой и симпатической систем (Lehmann et al., 1998).
Эффект от занятий физическими упражнениями, который проявляется на состоянии центральной нервной системы в большей степени, чем на периферии, представляет собой зависимость от физических упражнений. Однако в исследовании, посвященном этой проблеме, не был проведен анализ корреляции между оценкой зависимости от занятий двигательной активностью но результатам опроса и уровнем p-эндорфина в плазме (Pierce et al., 1993а).
Нейроэндокринный ответ на перетренировку, вызванную большим объемом силовых упражнений, может комбинироваться с перегрузкой, вызванной интенсивной аэробной двигательной активностью. Вместе с тем чрезмерная интенсивность силовых тренировок (анаэробная двигательная активность) сопровождается характерными изменениями нейроэндокринного профиля (Fry, Kraemer, 1997). Было проведено сравнение концентрации кортизола в ответ на занятия силовыми упражнениями при увеличении тренировочного объема или интенсивности упражнений. При увеличении объема физических упражнений наблюдалось увеличение уровня кортизола в покое и в ответ на физическую нагрузку, тогда как при увеличении интенсивности не наблюдалось никаких изменений либо они были незначительны. В то же время при перетренировке, вызванной выполнением силовых упражнений с высокой интенсивностью, также не наблюдалось повышения уровня кортизола. Эти данные могут представлять особый интерес, поскольку было показано, что повышение уровня кортизола в крови может быть обусловлено состоянием психологической депрессии (Fry, Kraemer, 1997).
При сравнении анаэробной двигательной активности, такой, как силовые упражнения, с аэробной, обнаруживаются значительные различия. Многие симптомы перетренировки, показанные для аэробных упражнений, не обнаруживаются при перетренировке, вызванной анаэробными видами двигательной активности. Кроме того, изменение отдельных параметров программ силовой тренировки может приводить к разнообразным физиологическим последствиям (Fry et al., 1998). Уровень кортизола, индуцируемый физической нагрузкой, при увеличении объема тренировок снижается вдвое, что свидетельствует о том, что повышение уровня кортизола в состоянии покоя вносит свой вклад в истощение гипоталамо-гипофизарно-надпочечниковой системы, предотвращая таким образом адекватный ответ на интенсивную физическую нагрузку. В случае перетренировки, вызванной выполнением силовых упражнений с максимальной интенсивностью, никаких изменений содержания кортизола в крови в состоянии покоя не обнаружено. Такой ответ является противоположным тому, что наблюдается в случае перетренировки, обусловленной выполнением силовых упражнений с большим объемом нагрузки или аэробной тренировкой. Становится очевидным, что некоторые из классических признаков перетренировки, установленные на основании данных исследований спортсменов, занимавшихся аэробными вилами двигательной активности, могут оказаться неприменимыми к состояниям перетренировки, вызванным анаэробными нагрузками (Fry, Kraemer, 1997).
Что касается изменений уровня АКТГ и перетренировки, вызванной силовыми упражнениями, то при увеличении интенсивности упражнений происходит снижение повышенного уровня АКТГ. В случаях, когда в результате перетренировки, обусловленной выполнением силовых упражнений высокого уровня интенсивности, наблюдается снижение силовых показателей, уровень АКТГ не подвергается изменениям ни в состоянии покоя, ни после выполнения упражнений (Fry, Kraemer, 1997).
Исследования прежних лет были направлены на поиск эндокринных маркеров (“маркеров перетренировки"), которые бы позволили обнаруживать приближение синдрома перетренировки как для аэробной, так и анаэробной двигательной активности. Проведенные исследования показали, что силовые упражнения не приводят к существенному повышению иммунореактивного β-эндорфина, о котором повсеместно сообщается в связи с исследованием последствий занятий упражнениями на выносливость (McGovan et al., 1993). Наряду с этим, не было обнаружено никакой взаимосвязи между эмоциональным состоянием (настроением) и изменениями уровня p-эндорфина, индуцированными силовыми упражнениями. Несмотря на многочисленные предположения в отношении существенной роли изменений гормонов гипоталамо-гипофизарной системы в патогенезе перетренировки, известно лишь несколько экспериментальных подтверждений, полученных на спортсменах, которые в действительности находились в состоянии перетренировки (Urhausen et al., 1995). Наблюдение за эффектом различной интенсивности упражнений проводилось только Фраем и его коллегами (Fry, Kraemer, 1997; Fry et al., 1998). Учитывая отсутствие взаимосвязи между изменениями функции эндокринной системы и физических показателей, они пришли к заключению, что особенности силовой тренировки не позволяют использовать гормональные показатели и адаптации эндокринной системы для контроля развивающегося состояния перетренировки. Кроме того, создается впечатление, что перетренировки, обусловленные непродолжительными упражнениями с относительно высоким уровнем интенсивности, не могут успешно контролироваться с помощью концентрации гормонов в крови.
Проявления всех этих нейроэндокринных изменений, вызванных перетренировкой, для обеспечения адекватной тренировки следует контролировать путем применения различных способов дозирования тренировочной нагрузки, направленных на избежание развития синдрома перетренировки с продолжительными нарушениями гомеостаза (Fry, Kraemer, 1997). Величина временного утомления и скорость восстановления (после интенсивных силовых упражнений) может быть использована в качестве показателя эффективности долговременных адаптаций нейромышечной системы, свидетельствующих о необходимости начала следующего тренировочного занятия только после полного восстановления (Ahtiaincn et al., 2003).
Влияние на сердечно-сосудистую систему
Физические упражнения можно рассматривать в качестве одного из множества стрессовых факторов, оказывающих влияние па функцию сердечно-сосудистой системы и, следовательно, активирующих гипофизарную систему ПОМК. Увеличение концентрации β-эндорфина, индуцированное физическими упражнениями, наблюдали также в присутствии на-локсона (Shen et al., 1992). Результаты этих исследователей демонстрируют увеличение собственной ЧСС (ЧСС после автономной блокады) и Р-эндорфина после физической нагрузки, но показывают, что изменения собственной ЧСС не зависят от р-эндорфипа.
Изменения уровня β-эндорфина в ответ на выполнение физических упражнений представляют особый интерес в случае пациентов с ишемической болезнью сердца (ИБС). Проведено изучение реакции организма пациентов с подозрением на ИБС и установленным диагнозом ИБС в условиях физической нагрузки при выполнении велоэргометрического теста (Letizia et al., 1996). При пиковой нафузке одновременное увеличение концентрации р-эндорфина и АКТГ в плазме происходило у лиц, у которых при проведении нагрузочного теста не было обнаружено клинических симптомов и патологических изменений элекфокардиограммы, характерных для ИБС. Во время восстановления происходило дальнейшее увеличение уровня β-эндорфина, АКТГ и кортизола. У пациентов с ИБС и негативным результатом нагрузочного теста наблюдалось существенное увеличение β-эндорфина, при этом уровень АКТГ и кортизола в плазме практически не изменялся. Однако у пациентов с позитивным результатом нагрузочного теста не выявлено изменений p-эндорфина и производных пептидов ПОМК. В качестве интерпретации этих результатов было высказано предположение, что повышение β-эндорфииа наблюдается при пиковой нагрузке у пациентов с ИБС и негативными результатами нагрузочного теста как ассоциированное с безболезненной ишемией.
У пациентов с асимптоматической ишемией увеличение β-эндорфина в ответ на физические упражнения было существенно выше, чем у больных со стенокардией. Социальное общение стимулировало существенно больший рост уровня p-эндорфина по сравнению с физической нагрузкой. У пациентов с асимптоматической ишемией по сравнению с теми, у кого это заболевание было связано с болевыми ощущениями, отмечено большее увеличение уровня р-эндорфииа. Вместе с тем речевые стрессоры превзошли физическую нагрузку по стимулирующему воздействию на повышение концентрации β-эндорфина. Усиленный рост уровня β-эндорфина в ответ на речевые стимулы рассматривался как частичное преобладание безсимптомной ишемии при психологическом стрессе (Miller et al., 1993). У пациентов с ИБС и ишемией, индуцированной физическими упражнениями, социальное общение представляет собой психологический стресс, проявляющийся в увеличении реактивности сердечно-сосудистой системы и вызывающий рост уровня β-эндорфина, который достоверно коррелировал с порогом болевых ощущений (Shops et al., 1995). Те же авторы наблюдали различия в характере болей в груди при выполнении физических упражнений, связанные с полом пациентов. Женщины гораздо чаще, чем мужчины, жаловались на боли в сердце в течение дня и при воздействии исследовательских психологических тестов, но не во время выполнения упражнений. У мужчин оказались более низкие по сравнению с женщинами оценки депрессии и личностной тревожности. У женщин в состоянии покоя и при максимальной психологической нагрузке уровень β-эндорфина в плазме был существенно ниже, чем у мужчин. Исследователи сделали вывод, что полученные результаты отражают половые различия в эмоциональном и других аспектах болевого восприятия, которые могут объяснить связанные с полом пациентов особенности клинических проявлении заболевания (Sheps et al., 2001).
Уровень β-эндорфина у пациентов с ИБС изучали в связи с ишемией индуцированной физической нагрузкой. У симптоматических и асимптоматических пациентов не было обнаружено существенных различий в уровне β-эндорфина в плазме крови во время или после занятий физическими упражнениями, следовательно, различия в концентрации р-эндорфина и АКТГ в крови у этих больных не связаны с наличием или отсутствием болей (Heller et al., 1987; March ant ct al., 1994). Эти результаты согласуются с упоминавшимся ранее наблюдением того, что индуцированное физическими упражнениями повышение болевого порога не имеет отношения к уровню бета-эндорфина в плазме (Droste et al., 1991).
Влияние возраста, расы и пола
Проведено исследование эффектов хронического утомления на β-эндорфин и взаимосвязь с секрецией мелатонина у хорошо тренированных спортсменов (Appenzeller, Wood, 1992), которое показало рост концентрации уровней β-эндорфина и мелатонина после физических нагрузок. Интересно, что величина этого ответа оказалась зависимой от возраста. Хроническое утомление связано со снижением индуцированного физическими упражнениями выделения опиоидов у лиц с секрецией мелатонина, независимой от уровня β-эндорфина. Первое исследование, показавшее, что у лиц старшего возраста силовая тренировка может вызывать физиологические адаптации в эндокринной системе, было поведено Кремером с соавторами (Kraemer W.J. et al., 1999). Они исследовали адаптации эндокринной системы в ответ па выполнение программы силовой тренировки у мужчин разного возраста. Оказалось, что у мужчин старшего возраста уровень кортизола в состоянии покоя и его увеличение в ответ па физическую нагрузку были ниже. Снижение у мужчин старшего возраста концептрации кортизола в состоянии покоя на протяжении выполнения тренировочной программы без заметных изменений уровня АКТГ свидетельствует о возможной негативной регуляции рецепторов АКТГ в надпочечниках. Изменение стимулирующего воздействия физических упражнений па секрецию кортизола после выполнения тренировочной программы, очевидно, опосредовано снижением секреции АКТГ в ответ на физическую нагрузку. Утрата способности к активации гормональных механизмов ответа на выполнение интенсивных силовых упражнений была интерпретирована как следствие изменений или нарушений функции эндокринной системы у пожилых людей.
Выполнение теста до наступления утомления на велоэргометре женщинами постклимактерического возраста стимулировало значительное повышение уровня АКТГ, кортизола и пролактина, а также естественной активности клеток-киллеров. Было высказано предположение, что у женщин постклимактерического возраста недостаточная сила оказывает влияние на характер эндокринного и иммунного ответа на интенсивные физические упражнения (Van-der-Pompe et al., 2001).
Установлено, что уровень АКТГ в плазме у женщин негроидной расы заметно выше, чем у женщин европеоидной расы, при этом различий в уровне кортизола не наблюдалось (Yanovsky et al., 2000). В составе АКТГ плазмы негроидных женщин содержалось значительное количество фрагментов гормона, которых не выявлено у белых женщин. Уровень АКТГ после выполнения физических упражнений также был выше у женщин негроидной расы, однако в содержании кортизола различий не выявлено. АКТГ женщин различных рас, очевидно, характеризуется отличиями по эффективности воздействия на рецепторы меланокортина-2 надпочечников, поскольку более высокий уровень АКТГ у представительниц негроидной расы не приводил к повышению секреции кортизола.
По данным Голдфарба (Goldfarb et al., 1998), увеличение уровня β-эндорфина в крови женщин, занимавшихся на велоэргометре, при интенсивности нагрузки 80 % V02max было сопоставимым по амплитуде с соответствующей реакцией мужчин, независимо от фалы менструального цикла. При сравнении уровня АКТГ и р-эндорфина в плазме мужчин и женщин с различным уровнем физической подготовленности в состоянии покоя и при воздействии физической нагрузки не было выявлено никаких заметных половых отличий, за исключением немного сниженной концентрации иммунореактивного р-эндорфина в состоянии покоя у женщин, независимо от фазы менструального цикла.
Проведено количественное определение концентраций АКТГ, кортизола и β-эндорфина во время бега на тредмиле при нагрузке 80 % ЧССмах у женщин и мужчин, занимавшихся бегом, которые затем сравнивали с концентрациями соответствующих гормонов мужчин и женщин, ведущих малоподвижный образ жизни (Kraemer R.R. et al., 1989). Бег на тредмиле не сопровождался увеличением уровня ни одного из гормонов. Уровень β-эндорфина у мужчин был заметно выше, чем у женщин. На протяжении теста не было выявлено никаких отличий в концентрациях гормонов, которые можно было бы связать с полом или уровнем физической подготовленности. Эти данные свидетельствуют о том, что пол и опыт занятий физическими упражнениями не оказывают влияния на концентрацию АКТГ и кортизола до, во время и после занятия бегом на тредмиле с нагрузкой 80 % ЧССмах, тогда как уровень β-эндорфина в этих же условиях у мужчин был существенно выше.
Индуцированные физической нагрузкой изменения АКТГ в плазме при выполнении теста на тредмиле со ступенчатой нагрузкой до 90 % V02max были существенно ослаблены у женщин в период лактации. На основании этих данных сделано заключение об ограниченности возможностей сфессового ответа нейроэндокринной системы женщин в период лактации (Altemus et al., 1995).
У лиц старшего возраста отмечены изменения функции гипоталамо-гинофизарно-надпочечниковой и гипоталамо-гипофизарно-половой систем наряду с нарушениями когнитивной функции, степень проявления которых зависела от уровня физической подготовленности. Обнаружено, что у лиц старшего возраста, ранее занимавшихся спортом, секреция глюкокортикоидов сохраняется на практически нормальном уровне в течение более продолжительного времени (Struder ct al., 1999).
Физиологические и патофизиологические аспекты секреции ПОМК, индуцированной физической нагрузкой, и ее последствия для гомеостаза энергетического и метаболического обмена
Физические упражнения могут рассматриваться как один из многих стрессовых факторов, которые активируют метаболические реакции организма и, следовательно, гипофизарную систему ПОМК. Однако в отличие от большинства других стрессоров нет никаких сомнений в том, что организм пытается адаптироваться к нему не путем восстановления морфологии и функций к исходному состоянию, имевшему место до воздействия физических нагрузок, а путем преобразования морфологии и функций в измененное, конкретное, адаптированное к стрессору состояние, противодействуя таким образом возможности возникновения в будущем аналогичных стрессовых ситуаций.
Установлено, что постоянное состояние гипергликемии не является стимулом для усиления секреции p-эндорфина в плазму и па такое отсутствие реакции не оказывают влияния предшествующие занятия физическими упражнениями (Farell et al., 1986).
У пациентов, больных диабетом и бессимптомной ишемией миокарда, в состоянии покоя и после выполнения физических упражнений был обнаружен сниженный уровень β-эидорфина но сравнению с больными ишемией, но без диабета. На основании этих данных был сделан вывод о том, что у больных диабетом р-эндорфин играет менее существенную роль по сравнению с теми, кто не болен диабетом (Hikita et al., 1993).
Повышенный уровень секреции β-эндорфина наблюдали во время выполнения физических упражнений в случае опиоидного антагонизма (при использовании налоксона) по сравнению с тестовым плацебо, на основании чего было предложено существование цепи позитивной обратной связи для β-эндорфина, которая связана с регуляцией содержания глюкозы в крови (Angclopoulos, 2001). Отсутствие стимуляции секреции кортиколиберина и АКТГ наблюдали у молодых мужчин после физических упражнений с нагрузкой 50 % V02max до наступления утомления в случае, когда у них поддерживали исходный уровень концентрации глюкозы в крови (Tabata et al., 1991). Критическим для запуска гипофизарно-надпочечниковой системы оказался уровень глюкозы в крови 3,3 ммоль. Существенное увеличение кортиколиберина в периферической системе кровообращения продемонстрировано при выполнении упражнений с субмаксимальной нагрузкой, однако оно не было ассоциировано с гипогликемией (Inder et al., 1998). Повышение уровня кортизола при выполнении физических упражнений или в период восстановления может быть инициировано снижением уровня глюкозы в крови и может предотвращать чрезмерный уровень воспалительной и иммунной реакций, стабилизируя таким образом гомеостаз организма (De Vries ct al., 2000).
Многочисленные исследования (см. обзоры Steinberg et al., 1985; Cumming, Wheeler, 1987; Sforzo, 1989; Schwarz, Kindermann, 1992; Hoffmann et al., 1996; Goldfarb, Jamurtas, 1997; Vassilakopoulos et al., 1999) показывают, что активация гипофизарной системы ПОМК происходит при определенном уровне метаболических потребностей, которые характеризуются тем, что содержание лактата в крови превышает анаэробный порог, и могут быть достигнуты при непродолжительном выполнении анаэробных упражнений либо продолжительных занятиях аэробной двигательной активностью. По-видимому, анаэробное состояние организма приводит к выбросу кортиколиберина или аргинин-вазопрессина, секреция которых, как известно, происходит в паравентрикулярном гипоталамическом ядре или в задней доле гипофиза соответственно, с целью стимуляции выделения фрагментов ПОМК (Inder et al., 1998).
Таким образом, несмотря на то что предпосылки или последствия анаэробного метаболизма тесно связаны с активацией системы ПОМК, лактат сам по себе, вероятно, не оказывает непосредственного стимулирующего воздействия на гипоталамические структуры, отвечающие за активацию гипофизарной системы ПОМК (Pctrides ct al., 1999). Было высказано предположение, сдвиг pH в кислую сторону может быть лучшим показателем секреции β-эндорфина или непосредственным стимулом для активации гипофизарной системы ПОМК (Taylor et al., 1994). В отличие от этого для упражнений на выносливость (марафон и занятия на велотренажере в стационарном режиме) сообщается, что постоянный уровень лактата в крови не связан с повышением уровня β-эндорфина (Goldfarb et al., Heitkamp ct al., 1996). Кажется, что при высоком уровне интенсивности упражнений уровень лактата в крови не связан с изменениями уровня гормонов гипоталамо-гипофизарно-надпочечниковой системы в плазме (Kraemer WJ. et al., 1989b). Вполне вероятно, что он ассоциирован с секрецией тестостерона или повышением его уровня в плазме во время выполнения физических упражнений, однако это предположение требует дополнительных исследований (Raastad et al., 2000). В то же время был обнаружен высокий уровень корреляции концентрации лактата и концентраций β-эндорфина, АКТГ и кортизола (Kraemer W.J. et al., 1989a). Силовая тренировка с низким объемом нагрузки приводит к повышению концентрации лактата, но не влияет на уровень эпдорфина (Kraemer R.R. et al., 1996).
Метаболическая реакция на физическую нагрузку должна рассматриваться как возможный кандидат для регуляторного воздействия фрагментов ПОМК (Weissman, 1990). Учитывая тот факт, что секреция фрагментов ПОМК явно зависит от анаэробного состояния, когда уровень лактата в крови превышает анаэробный порог, и метаболический ацидоз предположительно является непосредственным стимулом для секреции фрагментов ПОМК, наиболее вероятной функциональной мишенью секреции производных ПОМК может быть предотвращение потенциального метаболического кризиса, вызванного физической нафузкой, путем увеличения энергоснабжения скелетных мышц (Knudtzon, 1986; Evans А.А. et al., 1997). Поскольку анаэробное ацидозное состояние является возможным стимулом секреции β-эндорфина, мишенями этого гормона могут быть периферические отделы или системы организма, ответственные за метаболический гомеостаз или поддержание кислотно-щелочного равновесия (Schulz et al., 2000).
Интенсивное использование аминокислотных пищевых добавок способствует усилению секреции АКТГ, лютеинизирующего гормона (ЛГ) и фолликулостимулирующего гормона (ФСГ) под влиянием кортико- и гонадолиберина (Di Luigi et al., 1999), тогда как ацетилсалициловая кислота влияет на секрецию АКТГ, p-эндорфина и кортизола, индуцированную физическими нагрузками) Эти данные подтверждают роль простагландинов в этих процессах и могут представлять интерес в связи с интенсивным применением противовоспалительных лекарственных препаратов спортсменами, поскольку взаимодействие ацетилсалициловой кислоты и гормонов может позитивно или негативно влиять на состояние здоровья (De Luigi et al., 2001).
ПОМК, занятия физическими упражнениями и иммунная реакция организма
Физические упражнения могут рассматриваться в качестве одного из стрессовых факторов, вызывающих иммунную реакцию организма и стимулирующего таким образом гипофизарную систему ПОМК. Эффекты p-эндорфина на иммунную систему (Tcschemacher et al., 1990b) до сих пор остаются предметом различных гипотез.
Влияние фрагмента ПОМК на иммунную систему могло бы стать привлекательным для рассмотрения. Взаимодействия β-эпдорфина (Sibinga, gold-stein, 1988) или АКТГ (посредством секреции кортизола в надпочечниках) с клетками иммунной системы хорошо исследованы, как, например, в случае стрессового воздействия в общем (Fricchione, Stefano, 1994) или влияния физических упражнений, в частности (Jonsdottir et al., 1997). Эти эффекты могут вносить свой вклад как в активацию, так и в подавление отдельных функций иммунной системы, ответственных за защиту от инфекции или необходимых для морфологических изменений в смысле повышения способности справляться с физическими нагрузками в дальнейшем.
Предполагается, что физические упражнения могут быть использованы в качестве модели временного угнетения иммунной системы, происходящего при значительной физической нагрузке. Увеличение уровня катехоламинов и соматотропного гормона опосредуют срочное воздействие физических упражнений па нейтрофилы, тогда как кортизол может быть ответственным за сохранение лимфопении и нейтроцитоза после занятий физическими упражнениями большой продолжительности. И наконец, роль β-эндорфина менее ясна, тогда как изменение цитокинов имеет непосредственное отношение к повреждениям мышечной ткани. Однако кажется, что ПОМК не имеет непосредственного отношения к повышению уровня цитокинов (Pedersen et al., 1997; Pedersen, Hoffmann-Goetz, 2000) или росту активности клеток-киллеров (Dishman et al., 2000). В то же время получены данные, свидетельствующие о том, что катехоламины, индуцированные физическими упражнениями, модулируют экспрессию молекул адгезина в клетках-киллерах, что приводит к мобилизации клеток-киллеров в систему кровообращения.
Механизмы, которые лежат в основе изменений иммунной системы организма, обусловленных физическими упражнениями, являются многофакторными. Изменение содержания глюкозы в плазме также имеет отношение к снижению уровня гормонов во время стресса и, следовательно, оказывает влияние на функцию иммунной системы (Nieman, Pedersen, 1999).
Следующим кандидатом, имеющим отношение к стрессу, функции иммунной системы, чувствительности к инсулину и заболеваниям сердечно-сосудистой системы, является дегидроэпиандростерон, который сскрстируется корой надпочечников при стимуляции АКТГ (см. обзор Kroboth et al., 1999).
Интенсивные занятия физическими упражнениями способствуют повышению количества нейтрофилов и лимфоцитов в крови, а во время периода восстановления количество лимфоцитов резко снижается, что приводит к лимфопении в случае достаточной интенсивности и продолжительности выполнения упражнений. Одним из последних результатов в этом направлении было обнаружение особенно выраженной нейтрофилии и лимфопении во время и после второго занятия физическими упражнениями, проводившегося после короткого отдыха, по сравнению с картиной, наблюдавшейся после длительного отдыха (Ronsen et al., 2002). Эти исследователи показали, что повторение занятия физическими упражнениями с интервалом для отдыха продолжительностью всего несколько часов приводит к усилению стрессового ответа нейроэндокринной системы. Они пришли к заключению, что проведение нескольких занятий физическими упражнениями в день подвергает организм существенному физическому, психологическому и метаболическому стрессу, что может приводить как к адаптивным, так и дезадаптивным изменениям иммунной системы (Ronsen et al., 2002).
Корреляция между производными ПОМК и половыми стероидами или гонадотропинами в условиях тренировочных занятий
Для исследования механизмов снижения чувствительности коры надпочечников к физической нагрузке и умеренного повышения функции коры надпочечников у женщин, занимавшихся бегом, с нормальным менструальным циклом и аменореей в сравнении со стимуляцией АКТГ у женщин с низким уровнем двигательной активности и нормальным менструальным циклом, были проведены тесты с применением дексаметазона. Изменения уровня кортизона у женщин, занимавшихся бегом, с аменореей под влиянием физической нагрузки было незначительным на фоне умеренного повышения уровня кортикостероидов, что, вероятно, обусловлено естественными ограничениями секреторной максимальной способности надпочечников (De Souza et al., 1994).
Спортсменки с нормальным менструальным циклом занимались физическими упражнениями в фолликулярной и лютеиновой фазах, а также после десенситизации агонистом гонадолиберина. Между женщинами с нормальным менструальным циклом и имеющими его нарушения не было выявлено отличий по уровню бета-эндорфина и кортизола в крови. Достоверное увеличение уровня p-эндорфина в ответ на физические упражнения наблюдалось только у женщин с нормальным менструальным циклом после десенситизации агонистом гонадолиберина. Авторы исследования пришли к выводу, что нарушения менструального цикла и овуляции у спортсменок не связаны с повышением уровня опиоидных гормонов. У женщин с олигоменореей никаких нарушений в работе гипоталамо-гонадотропной системы не выявлено. Применение половых стероидов не оказывало никакого эффекта на уровень p-эндорфина в состоянии покоя, однако это не было обусловлено предшествующим повышенным уровнем опиоидных гормонов (Meyer et al., 1999).
Изменения менструального цикла у спортсменок сопровождаются сокращением продолжительности лютеиновой фазы и вторичной аменореей. Исходя из этого, можно предполагать, что причиной снижения секреции ЛГ может быть повышенный уровень кортиколиберина, подавляющего секрецию гонадолиберина. Кроме того, повышение уровня кортиколиберина сопровождается повышением концентрации p-эндорфина, который также ингибирует выделение гонадолиберина (Keizer, Rogol, 1990).
Эффект оральных контрацептивов на содержание β-эндорфина в плазме крови. Уровень иммунореактивного р-эндорфина в плазме крови в cocтоянии покоя у лиц, не пользовавшихся коптрацепции ными препаратами, был выше по сравнению с теми, кто их применял. При нагрузке 60 % VO,max у лиц, не использовавших контрацептивы, происходило небольшое повышение концентрации кортикотропина и β-эндорфина, которого не было обнаружено у лиц, применявших контрацептивы. При нагрузке 90 % VO2max в обеих группах отмечалось существенное повышение кортикотропипа и β-эндорфина. Авторы исследования пришли к выводу, что прием оральных контрацептивных препаратов сопровождается повышением порога интенсивности упражнений, при котором происходит стимуляция секреции бета-эндорфина и кортикотропипа (Rahkila, Laatikaincn, 1992). Для изучения индивидуальной эндокринной реакции на экстремальную физическую нагрузку отбирали образцы крови у хорошо подготовленных спортсменов до и после супермарафонского забега на 1000 км. Было показано существенное повышение уровня АКТГ по сравнению с границами колебаний гормона в норме. Концентрации иммунореактивного β-эндорфина, соматотропного гормона, пролактина, тестостерона, кортизола и кортизолсвязывающего глобулина были в пределах нормы. Уровень катехоламинов и АКТГ оставался существенно выше нормальных значений, при этом уровень β-эндорфина сохранялся нормальным без заметных колебаний. Наблюдалось также заметное увеличение концентрации кортизола, которое не сопровождалось изменениями кортизолсвязывающего глобулина. В качестве модели хронической физической нагрузки эти результаты демонстрируют существенные изменения базового гормонального состояния, о чем можно судить по первичным медиаторам ответа на стресс, катехоламинам и продуктам гипоталамо-гипофизарно-надпочечниковой системы. Реакция организма спортсменов на интенсивную физическую нагрузку отличалась от таковой у нетренированных лиц, у которых происходило снижение уровня связанных катехоламинов и увеличение уровня АКТГ. В целом полученные результаты интерпретировались как возможная адаптация эндокринной системы к продолжительной нагрузке (Pestell et al., 1989).
Новые аспекты функционального значения ПОМК и интерпретация определения стресса
Функциональная роль производных ПОМК
Функциональное значение основной массы систем ПОМК, рассеянных но всему организму, остается неизвестным. Это относится и к гипофизарной системе ПОМК. На притяжении достаточно долгого времени было известно, что продукты ПОМК выделяются в кровь в условиях “стресса". Гипофиз как орган эндокринной системы предназначен для передачи гормональных сообщений тканям всего организма через систему кровообращения и получает команды на передачу этих сообщений непосредственно от центральной нервной системы, часть которых поступает также по кровеносным сосудам. Очевидно, что гипофиз содержит несколько систем передачи сигналов в специализированные системы, например гонадотропную или тиреотропную системы. Для каждой из этих специализированных систем передачи сигнала можно постулировать существование специфических команд, основанных на специфических стимулах, а также специфических периферических мишеней, способных воспринимать гормональные мессенджеры, секретируемые гипофизом в кровь (Mooren et al., 2005).
Для гипофизарной системы ПОМК продемонстрировано существование большого количества стимулов, способных ее активировать, которые можно объединить под одним общим названием “стресс”. Показано, что и физические и эмоциональные стрессоры индуцируют секрецию ПОМК в систему кровообращения. Диапазон этих стрессовых факторов простирается от страха до боли, от физических упражнений к тренировке до полного утомления, от нарушений обмена веществ до серьезных травм, связанных с радами, хирургическими операциями и другими инцидентами. Пептиды, являющиеся производными ПОМК, с функциональной точки зрения являются гормонами, после того как они секретеруются клетками гипофиза в кровь.
Следует отмстить различия в механизмах восприятия организмом физических и психологических стрессовых факторов: информация о травме периферической ткани, принципиально представляющая угрозу для жизни, немедленно передается но спинному мозгу в головной мозг и затем через гипоталамические структуры непосредственно в гипофиз. Однако стрессовые факторы эмоционального характера или психологические компоненты физического стресса, как предполагают, воспринимаются и подвергаются достаточно сложной обработке в супраспинальных образованиях, таких, как лимбическая система, прежде чем конечная информация будет передана через гипоталамические образования в гипофиз и активирует там систему ПОМК (Herman, Cullinan, 1997), т. с. осуществит активацию гипоталамо-гипофизарно-надпочечниковой системы.
С момента выделения первого эндогенного опиоида в 1975 г. интерес был направлен на выяснение анальгетических (болеутоляющих) свойств β-змдорфина, поскольку аминокислотная последовательность, расположенная на его N-конце, способна связываться с опиоидными рецепторами. Однако повышение порога болевой чувствительности, обусловленное выполнением физических упражнений, не имеет отношения к изменениям уровня р-эндорфина и плазме (Droste et al., 1991), тогда как удалось установить связь между повышением концентрации p-эндорфина в сыворотке крови вследствие физических упражнений и изменением восприятия болевых ощущений (Harber, Satton, 1984). Установлена корреляция уровня β-эндорфина с различными психологическими и физиологическими изменениями, включая “эйфорию, вызванную двигательной активностью”, “эйфорию бегунов” (runner’s high), зависимость от двигательной активности, негативные изменения настроения, снижение аппетита, подавление функции иммунной системы и нарушение функции репродуктивной системы. Однако изолирующая функция, обеспечиваемая гематоэнцефалическим барьером головного мозга, исключает возможность какого-либо влияния эндорфина на активность центральной нервной системы. Кроме того, повышение уровня Р-эндорфина, индуцированное интенсивными занятиями аэробными упражнениями, не связано с тенденцией к формированию зависимости от двигательной активности (Pierce et al., 1993а).
Методологические аспекты определения производных ПОМК
Изменения концентрации β-эндорфина/β-липотропина в ответ на физические упражнения характеризуются значительными индивидуальными вариациями (Farrell ct al., 1982; Shcps ct al., 1988). Кроме того, до сих пop существуют некоторые методологические трудности, связанные с определением β-эндорфина. В то время как определение АКТГ всегда даст однозначные результаты, при определении β-эндорфина с использованием иммуноанализа в выявляемом иммунореактивном материале, наряду с собственно β-эндорфином, может содержаться до 10 производных этого соединения. Последние исследования показали, что иммунореактивный материал, выявляемый с помощью антител к β-эндорфину, содержит больше β-липотропина, чем β-эндорфина. В исследованиях, в которых наряду с определением иммунореактинного β-эндорфина и АКТГ проводили анализ содержания Р-липотропина с применением специфических методов (Olcshansky ct al., 1990; Pctraglia ct al., 1988), было выявлено, что β-липотропин достигает почти таких же концентраций, как иммунореактивпый р-эндорфин или АКТГ. И наоборот, дальнейшее применение избирательных или высокоспецифичных методов анализа β-эндорфина показало, что о условиях занятий физическими упражнениями концентрация этого вещества остается на низком (Farrell ct al., 1987; Engfrcd ct al., 1994) или минимальном ypовне (Harbach ct al., 2000; Schulz ct al., 2000) но сравнению с АКТГ или p-линотропипом. Как видно на примере иммунных клеток, фрагменты различных участков p-эндорфина (1 — 31) могут обладать различными функциями: β-эндорфии взаимодействует с опиоидными рецепторами посредством своего N-концевого компонента, тогда как взаимодействие с сайтами связывания комплемента или тимоцитов осуществляется С-концевой последовательностью. Таким образом, идентичность “β-эндорфина”, уровень которого, как утверждается, повышается в плазме после занятий физическими упражнениями, имеет большое значение для получения правильных выводов о возможной функции этих изменений (Schulz et al., 2000).
Кроме того, нельзя исключать возможность секреции фрагментов ПОМК при физической нагрузке мозговым слоем надпочечников (Evans C.J. et al., 1983). В некоторых ситуациях во время выполнения физических упражнений помимо АКТГ и р-липотропина в крови могут обнаруживаться и другие производные ПОМК, представляющие собой фрагменты Р-эндорфина меньшего размера (Wiedemann. Teschemacher, 1983). Количественное соотношение отдельных фрагментов p-эндорфина в плазме также может варьировать в зависимости от уровня физической подготовленности исследуемых лиц (Viru, Tendzegolskis, 1995).
Наряду с секрецией катехоламинов существуют доказательства срочного ответа гипофизарной системы ПОМК на все виды стрессоров. Вместе с тем однозначная информация о функциональном значении фрагментов ПОМК, выделяемых в условиях стресса в систему кровообращения, отсутствует. Несмотря на существование таких хорошо изученных мишеней, как надпочечники для АКТГ, функциональное значение воздействия фрагментов ПОМК на периферические ткани остается неизвестным; а эффекты АКТГ, опосредованные кортикостероидами, например в ответ на испуг, по-прежнему являются предметом для умозрительных построений. Таким образом, гипофизарная система ПОМК, несомненно, играет определенную роль в ответе на стресс, однако нельзя с уверенностью сказать этого о ее роли в процессе адаптации к стрессу, поскольку все еще не ясно, какой вклад она может вносить в восстановление нарушенных функций и возобновление гомеостаза (Teschemacher, 2003). Хотя некоторые хорошо известные эффекты физических упражнений связывают с фрагментами ПОМК, в частности с опиоиднымн пептидами (см. обзор Cumming, Wheeler, 1987), функциональное значение этих производных ПОМК, выделяемых в условиях физической нагрузки, но прежнему остается предметом догадок. Некоторые из предложенных функций производных ПОМК, секретируемых в систему кровообращения, кажутся маловероятными, поскольку предполагается, что соответствующие эффекты проявляются не в периферических тканях, а в центральной нервной системе, например ослабление депрессивного состояния, снижение тревожности, повышение самооценки, улучшение общего состояния, что в результате улучшает эмоциональное состояние, которое проявляется как “эйфория бегунов” (runner’s high). Экспериментальные данные показывают, что аэробные упражнения могут активировать эндогенную опиоидную систему центральной нервной системы, об этом, в частности, свидетельствует изменение уровня опиоидов в головном мозге и повышение уровня β-эндорфина в спинно-мозговой жидкости у экспериментальных крыс; занимавшихся бегом (Hoffmann et al., 1996).
Наиболее вероятная гормональная роль β-эндорфина в системе кровообращения заключается в модуляции ответной реакции надпочечников на стресс путем контроля секреции кортизола в ответ на стимуляцию АКТГ (McLoughlin et al., 1993). Кроме того, на периферии фрагменты ПОМК могут оказывать определенное воздействие на пищеварительную и репродуктивную функции, поскольку жировая ткань и половые железы являются их тканями-мишенями. Однако центральные системы ПОМК в гипоталамической области в любом случае более важны при воздействии на нарушения репродуктивной функции (Rivier, Rivest, 1991).
Бета-эндорфин и психологические эффекты физических упражнений
Для p-эндорфина не обнаружено никаких биохимических цепей, которые могли бы объяснить возможное влияние двигательной активности на депрессию (Williams, Getty, 1986). Однако более низкий уровень p-эндорфина в плазме в состоянии покоя у тренированных лиц имел отношение к адаптациям к физическим нагрузкам, большей эмоциональной стабильности и снижению депрессии (Lobstein et al., 1989). Тренировка выносливости на протяжении 8 месяцев приводит к снижению концентрации β-эндорфина в плазме в состоянии покоя и оценки депрессии (Lobstein, Rasmussen, 1991).
Различные изменения уровня АКТГ и кортизола в ответ па психологический или физический стресс наблюдали после применения дексаметазона (Singh ct al.,1999). Лиц, принимавших участие в этом исследовании, классифицировали как высоко- и низкореактивных в зависимости от величины изменений АКТГ на выполнение физических упражнений. Психологический стресс приводил к увеличению ЧСС, артериального давления, уровня АКТГ и кортизола в плазме крови как у высоко-, так и у низкореактивных лиц. У высокореактивных лиц в ожидании психологического стресса наблюдалась тенденция к более значительному росту ЧСС и артериального давления (АД). Повышение уровня АКТГ во время теста с использованием психологического стресса было более выраженным у высокореактивных лиц, однако различия между двумя группами не были достоверными. В группе высокореактивных лиц наблюдался достоверно более высокий уровень кортизола в ответ на психологический стресс. Авторы исследования высказали предположение о повышенной чувствительности коры надпочечников к АКТГ у высокореактивных лиц и пришли к заключению, что для мужчин с выраженной реакцией па физические нагрузки характерна столь же выраженная реакция на психологический стресс.
Посттравматическое стрессовое расстройство может быть обусловлено изменениями функции эндогенных опиоидных пептидов. Для проверки этого предположения ветеранам Вьетнамской войны с посттравматическим стрессовым расстройством было предложено принять участие в стандартных тестах с физической нагрузкой. Уровень p-эндорфина в плазме в состоянии покоя в контрольной группе и группе ветеранов войны был сопоставимым. В то же время достоверное повышение содержания β-эндорфина в плазме после выполнения физических упражнений было обнаружено только у пациентов с посттравматическим стрессовым расстройством. Эти данные предполагают возможность избирательного изменения реакции β-эндорфииа на физическую нагрузку при посттравматическом стрессовом расстройстве (Hamner, Hitri, 1992). Здоровые женщины зрелого возраста подвергались обследованию психологами и эндокринологами. Проводили определение показателя тревожности и тесты для определения фрустрации (неудовлетворенности). На основании результатов этих тестов субъекты исследования были разделены на две группы, в одну из которых вошли спокойные лица, в другую — с признаками повышенной возбудимости и/или эйфории после нагрузки. Кроме того, была проведена оценка уровня АКТГ и β-эндорфина в состоянии покоя и после выполнения физических упражнений. В состоянии покоя уровень АКТГ и кортизола оказался одинаковым в обеих группах, тогда как содержание р-эндорфина в группе лиц с повышенной возбудимостью/призпаками эйфории оказалось достоверно более высоким по сравнению с контрольной группой. Кроме того, после выполнения физических упражнений у лиц с повышенной тревожностью/признаками фрустрации наблюдалось резкое повышение уровня АКТГ и небольшое увеличение уровня β-эндорфина в плазме. Абсолютные значения содержания АКТГ и р-эндорфина после физической нагрузки в этой группе были достоверно выше по сравнению с контрольной группой. Эти результаты свидетельствуют о повышенном уровне адренокортикотропной и опиоидной активности у женщин зрелого возраста с повышенными оценками психологических показателей тревожности и фрустрации (Gerra et al., 1992). Кроме того, существенное повышение β-эндорфина и кортиколиберииа наблюдается после занятий бегом и медитаций, и этим изменениям приписывается позитивное воздействие (Harte et al., 1995).
В то же время существуют исследования, в которых не удалось выявить достоверной связи между уровнем β-эндорфииа в плазме до и после занятий физическими упражнениями, а также изменениями в состоянии настроения (McGowan et al., 1993).
Заключение
Секреция ПОМК или его производных во время выполнения физических упражнений рассматривается как адаптивная реакция организма спортсмена, направленная на преодоление различных стрессовых ситуаций и непосредственно взаимосвязанная с различными психологическими процессами, призванными облегчить поведение в условиях стресса (McCubbin, 1993). Секреция АКТГ и β-эндорфина происходит только при определенной интенсивности и продолжительности занятий физическими упражнениями. Реакция на физическую нагрузку определяется также такими факторами, как уровень тренированности, и другими индивидуальными особенностями исследуемых лиц (Goldfarb, Jamurtas, 1997).
Усилия, направленные на выяснение вопроса об участии β-эпдорфипа в опосредовании влияния физических упражнений путем блокады опиоидных рецепторов во время физической нагрузки (Strassman et al., 1989; Angelopoulos, 2001), обнаружили противоречивые воздействия на уровень p-эндорфииа в плазме, однако не дали ничего в отношении углубления нашего понимания изучяемых механизмов.
В случае перетренировки снижение секреции АКТГ в ответ на стресс отражает нарушение способности спортсмена преодолевать стрессовую ситуацию. Изменения уровня АКТГ и кортизола в случае перетренировки, обусловленной выполнением силовых упражнений с максимальной интенсивностью, противоположны по отношению к изменениям, наблюдающимся в случае перетренировки при выполнении большою объема силовых упражнений или интенсивных занятий аэробными упражнениями. Таким образом, становится очевидным, что признаки перетренировки, выделенные в результате исследований спортсменов, занимавшихся упражнениями па выносливость, могут оказаться неприменимыми к перетренировке, вызванной анаэробными видами двигательной активности. Дальнейшие исследования должны быть направлены на выяснение возможных механизмов такой ответной реакции кортизола, а именно: обусловлены они истощением секреторных возможностей коры надпочечников либо находятся под симпатическим или каким-либо другим контролем (Fry, Kraemer, 1997).
Фрагменты ПОМК могут оказывать влияние на иммунную систему, в частности в условиях стресса, обусловленного физическими нагрузками (Jonsdottir et al., 1997). Предполагается, что физические упражнения могут рассматриваться в качестве модели временного подавления функции иммунной системы, происходящего в условиях острого физического стресса. Увеличение уровня катехоламинов (адреналина и норадреналина) и соматотропного гормона опосредуют быстрые воздействия физической нагрузки на нейтрофилы, в то время как кортизол может быть ответственным за поддержание лимфопе-нии и нейтроцитоза после продолжительных занятий физическими упражнениями (Pedersen et al., 1997). Роль β-эндорфина менее ясна, однако рост концентрации цитокинов имеет пепосредственное отношение к травмам мышечной ткани, а гормоны стресса, по-видимому, прямого отношения к этому не имеют.
И наконец, эти явления делают маловероятным предположение о ведущей роли p-эндорфина в срочном воспроизведении клеток-киллеров (см. обзор Pedersen, Hoffman-Goetz, 2000).
Метаболический ответ на выполнение физических упражнений может являться потенциальным кандидатом регуляторного воздействия фрагментов ПОМК (Weissman, 1990), направленного на обеспечение организма энергией и поддержание гомеостаза (Knudtzon, 1986). В условиях выполнения физических упражнений ПОМК действует в рамках сложных взаимоотношений эндокринной, метаболической, сердечно-сосудистой, нервной и иммунной систем. Какие выводы можно сделать на основании имеющихся разнородных данных об эффективности занятий физическими упражнениями и участии в них ПОМК? Учитывая трудности, связанные с проведением исследований, можно высказать следующие предположения:
Среди производных ПОМК больше всего доступной информации (в связи с условиями занятий физическими упражнениями) в отношении АКТГ, который изучался в качестве основного представителя семейства ПОМК, секретирусмого в условиях индуцированной стрессом активации гипоталамо-гипофизарно-надпочечниковой системы. Позднее были идентифицированы β-эндорфин и β-липотропин, которые также секретируются гипофизом в систему кровообращения в условиях занятий физическими упражнениями.
Точно установлено, что в условиях физической нагрузки происходит активация “кортикотропной” части гипофизарной системы ПОМК.
Практически во всех сообщениях упоминается о повышении уровня p-эндорфина в плазме в ответ на выполнение физических упражнений. Тем не менее значительная индивидуальная вариабельность соотношения β-эндорфина и β-липотропина в секрете гипофиза и методологические сложности дифференцированного определения β-эндорфипа и его производных представляют собой дополнительную проблему, которая до сих пор не позволяет установить биологическое значение β-эндорфипа.
Тренировочные и экстремальные физические нагрузки сопровождаются различным ответом АКТГ и β-эндорфина. Фактором, стимулирующим секрецию p-эндорфина в условиях выполнения анаэробных упражнений до наступления утомления, вероятнее всего, является ацидоз, поскольку при выполнении упражнений, не приводящих к истощению ресурсов организма, например силовых упражнений с большой массой отягощений, повышения уровня β-эндорфина не наблюдается.
Возраст, пол и расовая принадлежность существенно влияют на секрецию производных ПОМК в условиях занятий физическими упражнениями, однако необходимо проведение дальнейших исследований влияния этих факторов на срочные и долговременные адаптации организма к физическим нагрузкам.
Глюкоза и лактат являются субстратами, которые интенсивно изучались в физиологии спорта и двигательной активности в связи с процессами, происходящими в организме в условиях физической и экстремальной нагрузки. АКТГ, кортизол и β-эидорфин оказывают влияние на регуляцию уровня этих субстратов. Однако до сих пор не известно, каким образом они вносят свой вклад в поддержание гомеостаза организма.
Установлена достоверная корреляция между производными ПОМК и половыми стероидами или гонадотропинами.
Физические упражнения — один из множества стрессовых факторов, вызывающих реакцию иммунной системы организма и, следовательно, активирующих гипофизарную систему ПОМК. β-эндорфин и АКТГ могут вносить свой вклад как в активацию, так и в подавление иммунной системы.
Изменения содержания производных ПОМК, таких, как АКТГ и β-эндорфин, в ответ на стресс, обусловленный выполнением физических упражнений, являются достаточно сложными и даже при наличии множества возможных ответов остаются не выясненными до конца. Несмотря на существование доказательств быстрой реакции гипофизарной системы ПОМК на физическую нагрузку (чувствительность к стрессу), никаких доводов, позволяющих говорить о ее роли в процессах адаптации к стрессу, не имеется. Все это обусловливает необходимость дальнейших исследований, направленных на выяснение функционального значения производных ПОМК в условиях физической нафузки, которые за последние годы дали потрясающие результаты.
Литература
Adams, Н.А. & Hempelmann, G. (1991) The endocrine stress reaction in anesthesia and surgery-origin and significance. Anacsthcsiologic Intcnsivmcdizin Not fa limed izin Schmerztherapic 26(6), 294 — 305. Ahtiainen, J.P., Pakarinen, A., Kraemer, W.J. & Hakkinen, K. (2003) Acute hormonal and neuromuscular re